blob: 0b4ac696c8fcfb438d2b1c8c2ff28a1356452484 [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Compresses and pads the weigths. It also calculates the scales and packs with the biases.
import os
import sys
import enum
import math
import numpy as np
from collections import namedtuple
from .numeric_util import round_up
from .scaling import quantise_scale
from .tensor import TensorPurpose, TensorSubPurpose, TensorFormat, TensorBlockTraversal
from .operation import NpuBlockType
from .architecture_features import Block
from .nn_graph import SchedulingStrategy
from .data_type import DataType
from ethosu import mlw_codec
def encode(weight_stream):
assert np.amin(weight_stream) >= -255
assert np.amax(weight_stream) <= 255
# Encode flattened signed weight stream
compressed = mlw_codec.encode(weight_stream)
# pad with 0xFF as needed so the length of the weight stream
# is a multiple of 16
while (len(compressed) % 16) != 0:
compressed.append(0xFF)
return compressed
def generate_brick(arch, brick_weights, ofm_block, block_traversal, ifm_bitdepth):
is_depthwise = block_traversal == TensorBlockTraversal.DepthWise
is_partkernel = block_traversal == TensorBlockTraversal.PartKernelFirst
subkernel_max = arch.subkernel_max
ofm_ublock = arch.ofm_ublock
ifm_ublock = arch.ifm_ublock
# Expect weights formatted HWIO
ofm_depth = brick_weights.shape[-1]
ifm_depth = brick_weights.shape[-2]
kernel_width = brick_weights.shape[-3]
kernel_height = brick_weights.shape[-4]
# IFM block depth
if is_partkernel or (ifm_bitdepth == 16):
# IFM block depth is always 16 for part-kernel-first
ifm_block_depth = 16
elif ifm_bitdepth == 8:
ifm_block_depth = 32
else:
assert False
stream = []
# Top level striping - OFM blocks in the entire brick's depth
for ofm_block_z in range(0, ofm_depth, ofm_block.depth):
clipped_ofm_block_depth = min(ofm_block.depth, ofm_depth - ofm_block_z)
# IFM blocks required for the brick
for ifm_block_z in range(0, (1 if is_depthwise else ifm_depth), ifm_block_depth):
if is_depthwise:
clipped_ifm_block_depth = ifm_ublock.depth
else:
clipped_ifm_block_depth = (
min(ifm_block_depth, ifm_depth - ifm_block_z) if is_partkernel else ifm_block_depth
)
# Weight decomposition
# Subkernel Splitting (H)
for subkernel_y in range(0, kernel_height, subkernel_max.height):
sub_height = min(kernel_height - subkernel_y, subkernel_max.height)
# Subkernel splitting (W)
for subkernel_x in range(0, kernel_width, subkernel_max.width):
sub_width = min(kernel_width - subkernel_x, subkernel_max.width)
subkernel_elements = sub_width * sub_height
# Part kernel first works across the kernel H/W and needs padding
if is_partkernel:
if ifm_bitdepth == 16 and subkernel_elements % 2 != 0:
subkernel_elements = int(math.ceil(subkernel_elements / 2) * 2)
elif ifm_bitdepth == 8 and subkernel_elements % 4 != 0:
subkernel_elements = int(math.ceil(subkernel_elements / 4) * 4)
# Depthwise Conv requires multiple of 4 kernel elements in its weight block
# this is different from normal conv which is considered "weights depth-first"
elif is_depthwise:
subkernel_elements = int(math.ceil(subkernel_elements / 4.0) * 4)
ifm_block_depth_outer = clipped_ifm_block_depth if is_partkernel else 1
ifm_block_depth_inner = 1 if is_partkernel else clipped_ifm_block_depth
# IFM Ublocks in IFM-block over depth for part-kernel-first mode
# For depth-first IFM Ublocks are traversed after subkernel elements so this loop is ignored.
for ifm_ublk_outer in range(0, ifm_block_depth_outer, ifm_ublock.depth):
# OFM Ublocks in OFM-block over depth
for ofm_ublk in range(0, clipped_ofm_block_depth, ofm_ublock.depth):
# HW Kernel element traversal - cannot be a H/W loop due to element
# padding requirement on depthwise/part-kernel configurations
for element in range(subkernel_elements):
kx = element % sub_width
ky = element // sub_width
# IFM Ublocks in IFM-block over depth (only 1 ublock if depthwise)
# In case of part-kernel-first IFM Ublock traversal have already been handled
# and this loop is ignored.
for ifm_ublk_inner in range(0, ifm_block_depth_inner, ifm_ublock.depth):
# Feed OFM ublock elements
for ofm_ublock_z in range(ofm_ublock.depth):
# Source IFM ublock elements (only 1 element deep if depthwise)
for ifm_ublock_z in range(1 if is_depthwise else ifm_ublock.depth):
# Source position within the current subkernel
wx = subkernel_x + kx
wy = subkernel_y + ky
# Source IFM/OFM slices
ifm_ublk = ifm_ublk_inner + ifm_ublk_outer
ifm_z = ifm_block_z + ifm_ublk + ifm_ublock_z
ofm_z = ofm_block_z + ofm_ublk + ofm_ublock_z
if (ifm_z >= ifm_depth) or (ofm_z >= ofm_depth) or (ky >= sub_height):
stream.append(0)
else:
stream.append(brick_weights[wy][wx][ifm_z][ofm_z])
return stream
# Compress the weights
def compress_weights(tens, arch, npu_block_type, ofm_block, ofm_depth_step, min_val=None, max_val=None):
assert tens.purpose == TensorPurpose.Weights
assert tens.format == TensorFormat.WeightsCompressed
WeightCompressionConfig = namedtuple("WeightCompressionConfig", ["npu_block_type", "ofm_block", "ofm_depth_step"])
# check if weights have already been compressed
wcc = tens.weight_compression_config
if wcc is not None:
assert wcc.npu_block_type == npu_block_type, "Weights not used by the same operator type"
if wcc.ofm_block == ofm_block and wcc.ofm_depth_step == ofm_depth_step:
return
assert tens.quantization is not None
assert tens.quantization.scale_f32 is not None
assert tens.quantization.zero_point is not None
zero_point = tens.quantization.zero_point
quant_buf = tens.quant_values.astype(np.int64)
# Early zero-point correction
weights = quant_buf - zero_point
if len(weights.shape) == 2:
weights = np.expand_dims(np.expand_dims(weights, axis=0), axis=0)
weights_shape = (weights.shape[0], 1, 1, weights.shape[1])
else:
weights_shape = weights.shape
compression_scales = []
compressed_offsets = []
encoded_streams = []
offset = 0
max_single_buffer_len = 0
ifm_bitdepth = tens.consumer_list[0].inputs[0].dtype.size_in_bits()
ifm_depth = weights.shape[-2]
if npu_block_type == NpuBlockType.ConvolutionDepthWise:
tens.block_traversal = TensorBlockTraversal.DepthWise
if npu_block_type == NpuBlockType.ConvolutionMxN:
# Determine which block traversal strategy has better DPU utilization
kernel_size = weights_shape[0] * weights_shape[1]
depth_utilization = weights_shape[2] / round_up(weights_shape[2], 32 if ifm_bitdepth == 8 else 16)
part_kernel_utilization = (weights_shape[2] / round_up(weights_shape[2], 8)) * (
kernel_size / round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2)
)
if part_kernel_utilization >= depth_utilization or ifm_depth <= 8:
# Part-kernel first is always better for ifm depths <= 8
tens.block_traversal = TensorBlockTraversal.PartKernelFirst
else:
tens.block_traversal = TensorBlockTraversal.DepthFirst
# Slice weight stream up depth-ways into bricks and compress
full_ofm_depth = quant_buf.shape[-1]
for idx in range(0, full_ofm_depth, ofm_depth_step):
# Get the weights necessary for this brick
count = min(full_ofm_depth - idx, ofm_depth_step)
brick_weights = weights[:, :, :, idx : idx + count]
# Encode all weights into one chunk
raw_stream = generate_brick(arch, brick_weights, ofm_block, tens.block_traversal, ifm_bitdepth)
encoded = encode(raw_stream)
encoded_streams.append(encoded)
# Remember maximum encoded length for DoubleBuffering
if max_single_buffer_len < len(encoded):
max_single_buffer_len = len(encoded)
# Remember where we put it for linear addressing
compressed_offsets.append(offset)
offset += len(encoded)
assert offset % 16 == 0
# Compression scale tracking
compression_scales.append(len(encoded) / len(raw_stream))
# Also track complete length in the offsets array
compressed_offsets.append(offset)
if tens.sub_purpose == TensorSubPurpose.DoubleBuffer and len(encoded_streams) > 2:
offset = 2 * max_single_buffer_len
assert offset % 16 == 0
tens.storage_shape = [1, 1, 1, offset]
tens.weight_compression_scales = compression_scales
tens.weight_compression_config = WeightCompressionConfig(npu_block_type, ofm_block, ofm_depth_step)
tens.weight_compressed_offsets = compressed_offsets
tens.compression_scale_for_worst_weight_stream = np.amax(compression_scales)
tens.storage_compression_scale = tens.bandwidth_compression_scale = np.average(compression_scales)
tens.compressed_values = encoded_streams
tens.brick_size = (weights_shape[0], weights_shape[1], weights_shape[2], min(tens.shape[-1], ofm_depth_step))
def calc_scales_and_pack_biases(tens, arch, oc_quantum, rescale_for_faf=False):
assert tens.purpose == TensorPurpose.FeatureMap
assert tens.format == TensorFormat.NHWC
# the connected operator should expect a bias input unless it is a FullyConnected
assert "Bias" in tens.consumer_list[0].type or tens.consumer_list[0].type.startswith("FullyConnected")
# the input bias tensor is the same as that connected to the operator
assert tens is tens.consumer_list[0].inputs[2]
# the operator should only have a single output
assert len(tens.consumer_list[0].outputs) == 1
def pack_bias_and_scale(bias, scale, shift):
bias = np.int64(bias)
assert -(1 << (40 - 1)) <= bias < (1 << (40 - 1)) # signed 40-bit range
assert 0 <= scale < (1 << 32) # unsigned 32-bit range
assert 0 <= shift < (1 << 6) # unsigned 6-bit range
# pack the 80 bit value = [0(2-bits),shift(6-bits),scale(32-bits),bias(40-bits)]
data = bytearray(10)
data[0] = (bias >> (0 * 8)) & 0xFF
data[1] = (bias >> (1 * 8)) & 0xFF
data[2] = (bias >> (2 * 8)) & 0xFF
data[3] = (bias >> (3 * 8)) & 0xFF
data[4] = (bias >> (4 * 8)) & 0xFF
data[5] = (scale >> (0 * 8)) & 0xFF
data[6] = (scale >> (1 * 8)) & 0xFF
data[7] = (scale >> (2 * 8)) & 0xFF
data[8] = (scale >> (3 * 8)) & 0xFF
data[9] = shift & 0x3F
return data
biases = tens.quant_values
first_consumer_op = tens.consumer_list[0]
ifm_dtype = first_consumer_op.inputs[0].dtype
ifm_scale = first_consumer_op.inputs[0].quantization.scale_f32
ofm_scale = first_consumer_op.outputs[0].quantization.scale_f32
weight_scales = first_consumer_op.inputs[1].quantization.scale_f32
# biases can have multiple consumers for rnn cells. if so, then check that they are all the same
for op in tens.consumer_list[1:]:
assert ifm_scale == op.inputs[0].quantization.scale_f32
assert ofm_scale == op.outputs[0].quantization.scale_f32
assert weight_scales == op.inputs[1].quantization.scale_f32
if not hasattr(weight_scales, "__iter__"):
# If weight_scales is not already an iterable make it into a list
weight_scales = [weight_scales]
# Convert scales to np.double (from np.float32) to conform to TensorFlow Lite which
# uses double during scaling calculations
# TensorFlow Lite casts the scales slightly differently for uint8 and int8
if not rescale_for_faf:
if ifm_dtype == DataType.uint8:
scales = [np.double(ifm_scale * weight_scale) / np.double(ofm_scale) for weight_scale in weight_scales]
elif ifm_dtype == DataType.int8:
scales = [
(np.double(ifm_scale) * np.double(weight_scale)) / np.double(ofm_scale)
for weight_scale in weight_scales
]
else:
assert False, str(ifm_dtype) + " not implemented"
else:
if ifm_dtype == DataType.uint8:
scales = [np.double(ifm_scale * weight_scale * 0x3000) for weight_scale in weight_scales]
elif ifm_dtype == DataType.int8:
scales = [(np.double(ifm_scale * 0x3000) * np.double(weight_scale)) for weight_scale in weight_scales]
else:
assert False, str(ifm_dtype) + " not implemented"
# quantise all of the weight scales into (scale_factor, shift)
quantised_scales = [quantise_scale(scale) for scale in scales]
for _, shift in quantised_scales:
assert shift >= 16
# pack the biases and scales
tens.compressed_values = []
if len(quantised_scales) == 1:
# If only 1 quantised scale is used, repeat that value for the length of the biases
quantised_scales = [quantised_scales[0]] * len(biases)
assert len(quantised_scales) == len(biases)
for i, bias in enumerate(biases):
tens.compressed_values.append(pack_bias_and_scale(bias, *quantised_scales[i]))
tens.element_size_bytes = 10
# Figure out if we need padded storage (extra whole elements)
padding = (len(tens.compressed_values) * tens.element_size_bytes) % 16
if padding != 0:
padding = 16 - padding
# This adds enough padding to allow over-reads
while padding > 0:
tens.compressed_values.append(pack_bias_and_scale(0, 0, 0))
padding = padding - tens.element_size_bytes
tens.storage_shape = [len(tens.compressed_values)]
def update_pass_weight_and_scale_tensors(nng, arch):
def find_npu_usage_of_tensor(tens):
# TODO: This function is identical to the one in mark_tensors.py. A common version should be used.
for op in tens.consumers():
if op.type == "DMA":
return find_npu_usage_of_tensor(op.outputs[0])
if "npu_block_type" in op.attrs:
return op.attrs["npu_block_type"]
return NpuBlockType.Default
for sg in nng.subgraphs:
for ps in sg.passes:
if ps.weight_tensor != None:
npu_usage_of_tensor = find_npu_usage_of_tensor(ps.weight_tensor)
if npu_usage_of_tensor == NpuBlockType.ConvolutionDepthWise:
ps.weight_tensor.quant_values = np.transpose(ps.weight_tensor.quant_values, (0, 1, 3, 2))
ps.weight_tensor.shape = ps.weight_tensor.storage_shape = ps.weight_tensor.bandwidth_shape = list(
ps.weight_tensor.quant_values.shape
)
ps.weight_tensor.weight_transpose_depthwise = True
needs_dma = len(ps.weight_tensor.ops) == 1 and ps.weight_tensor.ops[0].type == "DMA"
if ps.cascade.strategy == SchedulingStrategy.WeightStream and needs_dma:
ofm_depth_step = ps.block_config[-1]
else:
ofm_depth_step = ps.weight_tensor.shape[-1]
compress_weights(
ps.weight_tensor,
arch,
npu_usage_of_tensor,
Block(ps.block_config[-3], ps.block_config[-4], ps.block_config[-1]),
ofm_depth_step,
)
# Update source tensor
if len(ps.weight_tensor.ops) == 1 and ps.weight_tensor.ops[0].type == "DMA":
src_tens = ps.weight_tensor.ops[0].inputs[0]
src_tens.shape = ps.weight_tensor.shape
src_tens.weight_transpose_depthwise = ps.weight_tensor.weight_transpose_depthwise
src_tens.quant_values = ps.weight_tensor.quant_values
src_tens.compressed_values = ps.weight_tensor.compressed_values
src_tens.storage_shape = [1, 1, 1, ps.weight_tensor.weight_compressed_offsets[-1]]
src_tens.brick_size = ps.weight_tensor.brick_size
src_tens.weight_compression_scales = ps.weight_tensor.weight_compression_scales
src_tens.weight_compressed_offsets = ps.weight_tensor.weight_compressed_offsets
if ps.scale_tensor != None:
rescale_for_faf = False
activation_ops = set(("Sigmoid", "Tanh"))
if (ps.ops[-1].type in activation_ops) and (ps.npu_block_type != NpuBlockType.ElementWise):
rescale_for_faf = True
calc_scales_and_pack_biases(ps.scale_tensor, arch, ps.block_config[3], rescale_for_faf)