blob: 7634fe1fd5890493f9a6f6ed9b4078d5df2fa4d4 [file] [log] [blame]
# SPDX-FileCopyrightText: Copyright 2020-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Conversion from high level command to NpuOperation
from enum import IntEnum
from typing import cast
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from .api import NpuActivation
from .api import NpuActivationOp
from .api import NpuAddressRange
from .api import NpuBlockOperation
from .api import NpuBlockTraversal
from .api import NpuConv2DOperation
from .api import NpuConvDepthWiseOperation
from .api import NpuDataType
from .api import NpuDmaOperation
from .api import NpuElementWiseOp
from .api import NpuElementWiseOperation
from .api import NpuFeatureMap
from .api import NpuLayout
from .api import NpuOperation
from .api import NpuOperationType
from .api import NpuPadding
from .api import NpuPoolingOp
from .api import NpuPoolingOperation
from .api import NpuQuantization
from .api import NpuResamplingMode
from .api import NpuRoundingMode
from .api import NpuShape3D
from .api import NpuTileBox
from .architecture_features import ArchitectureFeatures
from .data_type import DataType
from .debug_database import DebugDatabase
from .errors import UnsupportedFeatureError
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .high_level_command_stream import Box
from .high_level_command_stream import Command
from .high_level_command_stream import DMA
from .high_level_command_stream import NOP
from .high_level_command_stream import NpuStripe
from .numeric_util import quantise_float32
from .numeric_util import round_up
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .operation import Padding
from .register_command_stream_generator import generate_command_stream
from .register_command_stream_util import BASE_PTR_INDEX_MEM2MEM
from .register_command_stream_util import to_npu_kernel
from .register_command_stream_util import UNARY_ELEMWISE_OPS
from .shape4d import Shape4D
from .tensor import MemType
from .tensor import Tensor
from .tensor import TensorFormat
from .tensor import TensorPurpose
from .weight_compressor import NpuWeightTensor
from .weight_compressor import WeightKey
class BasePointerIndex(IntEnum):
WeightTensor = 0 # base address index for the Weight tensor
ScratchTensor = 1 # base address index for the Scratch_tensor in the TensorArena
ScratchFastTensor = 2 # base address for the Scratch_fast_tensor
dtype_map = {
DataType.uint8: NpuDataType.UINT8,
DataType.int8: NpuDataType.INT8,
DataType.uint16: NpuDataType.UINT16,
DataType.int16: NpuDataType.INT16,
DataType.int32: NpuDataType.INT32,
}
# Maps an elementwise op type to an elementwise_mode enum value used by NPU_OP_ELEMENTWISE
elementwise_op_map = {
Op.Mul: NpuElementWiseOp.MUL,
Op.Add: NpuElementWiseOp.ADD,
Op.Sub: NpuElementWiseOp.SUB,
Op.Minimum: NpuElementWiseOp.MIN,
Op.Maximum: NpuElementWiseOp.MAX,
Op.LeakyRelu: NpuElementWiseOp.LRELU,
Op.Abs: NpuElementWiseOp.ABS,
Op.CLZ: NpuElementWiseOp.CLZ,
Op.SHR: NpuElementWiseOp.SHR,
Op.SHL: NpuElementWiseOp.SHL,
}
# inverse of the resampling_mode_map in the register command stream generator
resampling_mode_inv_map = {
resampling_mode.NONE: NpuResamplingMode.NONE,
resampling_mode.NEAREST: NpuResamplingMode.NEAREST,
resampling_mode.TRANSPOSE: NpuResamplingMode.TRANSPOSE,
}
def ifm_ifm2_correct_order(ifm_shape: Shape4D, ifm2_shape: Shape4D) -> bool:
if ifm_shape is None:
# Scalar needs to be in IFM2
return False
if ifm2_shape is None:
return True
for ifm, ifm2 in zip(ifm_shape.as_list(), ifm2_shape.as_list()):
if ifm != ifm2 and ifm == 1:
# Broadcasted FM needs to be in IFM2
return False
return True
def get_rounding_mode(op: Operation, fused_quantize: bool) -> NpuRoundingMode:
"""Specifies type of rounding to be used"""
rounding_mode = NpuRoundingMode.TFL
if op.type.is_resize_op():
rounding_mode = NpuRoundingMode.NATURAL
elif (
op.type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise)
and op.ifm.dtype == DataType.int16
):
rounding_mode = NpuRoundingMode.NATURAL
elif (
not fused_quantize
and op.type.is_avgpool_op()
and op.memory_function == Op.ConcatSliceWrite
and op.kernel.elements_wh() == 1
):
rounding_mode = NpuRoundingMode.NATURAL
if op.rounding_mode is not None:
rounding_mode = op.rounding_mode
return rounding_mode
def create_padding(cmd: NpuStripe, primary_op: Operation, npu_op: NpuBlockOperation) -> NpuPadding:
if primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
return NpuPadding(top=0, left=0, bottom=0, right=0)
top, left, bottom, right = primary_op.attrs["explicit_padding"]
# Check if this is for horizontal ifm streaming
if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
top = cmd.pad_top
bottom = cmd.pad_bottom
# the ifm box coordinate range depends upon whether the primary op was combined with a split slice read
ifm_read_offset = primary_op.read_offsets[0]
ifm_read_shape = primary_op.read_shapes[0]
if ifm_read_offset is None or len(ifm_read_offset) < 2:
box_start_coord_min = 0
box_end_coord_max = cmd.ps.ifm_shapes[0].width
else:
box_start_coord_min = ifm_read_offset[-2]
box_end_coord_max = ifm_read_shape[-2]
# Indexing from end since a 1x1 Avgpool might have been added with non 4-dimensional input/output,
# because of activation function needed to be fused.
if len(cmd.ifm_box.start_coord) >= 2 and cmd.ifm_box.start_coord[-2] > box_start_coord_min:
left = 0
if len(cmd.ifm_box.end_coord) >= 2 and cmd.ifm_box.end_coord[-2] < box_end_coord_max:
right = 0
# If tile padding is selected, modify the tile base addresses and set NpuPadding to zero.
if primary_op.attrs.get("padding", None) == Padding.TILE:
assert cmd.ifm_tensor.format == TensorFormat.NHCWB16, "Tensor format NHCWB16 required to perform tile padding"
assert npu_op.op_type == NpuOperationType.ConvDepthWise, "Tile padding only supported for depthwise convolution"
assert npu_op.ifm is not None, "Feature map must be initialized to modify the tile addresses"
npu_op.ifm.tiles = modify_tile_addresses_for_padding(
npu_op.ifm.tiles,
primary_op.attrs.get("explicit_padding", None),
channels=cmd.ps.ifm_shapes[0].depth,
dtype=cmd.ifm_tensor.dtype,
)
top, left, bottom, right = 0, 0, 0, 0
return NpuPadding(top=top, left=left, bottom=bottom, right=right)
def modify_tile_addresses_for_padding(
tile_box: NpuTileBox, padding_direction: List[int], channels: int, dtype: DataType
) -> NpuTileBox:
# Addresses are 16-bytes aligned when using the NHCWB16 format, which is required to utilize tiling
# Calculate the offset to top right, bottom left and bottom right element in the IFM (top left offset is 0)
"""
Example: 4x4x1 IFM
| a b c d | <-- Offset to TR ('d') is (w0-1) = 3
| e f g h |
| i j k l |
| m n o p | <-- Offset to BL ('m') is (w0*(h0-1)) = 12 and to BR ('p') ((w0*h0)-1) = 15
"""
h0, h1, w0, addresses = tile_box
elem_size = 2 if dtype == DataType.int16 else 1
tr_offset = (w0 - 1) * 16 * elem_size
bl_offset = w0 * (h0 - 1) * 16 * (round_up(channels, 16) // 16) * elem_size
br_offset = tr_offset + bl_offset
# Explicit padding order: (Top, Left, Bottom, Right)
if padding_direction == (1, 1, 0, 0):
# Pad top left corner
"""
| a a b |
| a b | -> | a a b |
| c d | | c c d |
"""
addresses = [addresses[0]] * 4
h0, h1, w0 = 1, 1, 1
elif padding_direction == (1, 0, 0, 1):
# Pad top right corner
"""
| a b b |
| a b | -> | a b b |
| c d | | c d d |
"""
addresses = [addresses[0], addresses[0] + tr_offset, addresses[0], addresses[0] + tr_offset]
h0, h1, w0 = 1, 1, w0
elif padding_direction == (0, 1, 1, 0):
# Pad bottom left corner
"""
| a b | | a a b |
| c d | -> | c c d |
| c c d |
"""
addresses = [addresses[0], addresses[0], addresses[0] + bl_offset, addresses[0] + bl_offset]
h0, h1, w0 = h0, h1, 1
elif padding_direction == (0, 0, 1, 1):
# Pad bottom right corner
"""
| a b | | a b b |
| c d | -> | c d d |
| c d d |
"""
addresses = [
addresses[0],
addresses[0] + tr_offset,
addresses[0] + bl_offset,
addresses[0] + br_offset,
]
# h0, h1, w0 = h0, h1, w0
else:
assert 0, "Invalid padding direction for tile padding"
return NpuTileBox(height_0=h0, height_1=h1, width_0=w0, addresses=[int(addr) for addr in addresses])
def get_region(mem_type: MemType, arch: ArchitectureFeatures) -> int:
base_ptr_idx_map = {
MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
MemType.Scratch: BasePointerIndex.ScratchTensor,
}
if arch.is_spilling_enabled():
base_ptr_idx_map[MemType.Scratch_fast] = BasePointerIndex.ScratchFastTensor
else:
base_ptr_idx_map[MemType.Scratch_fast] = BasePointerIndex.ScratchTensor
return base_ptr_idx_map[mem_type].value
def get_mem_limits_for_regions(arch: ArchitectureFeatures) -> Dict[int, int]:
"""Returns map region -> max size of the region in bytes"""
mem_limits = dict()
for mem_type in MemType.all():
mem_limits[get_region(mem_type, arch)] = arch.mem_type_size(mem_type)
mem_limits[BASE_PTR_INDEX_MEM2MEM] = arch.shram_size_bytes
return mem_limits
def get_ifm_depth(npu_block_type: NpuBlockType, ifm_box: Box, ofm_box: Box) -> int:
if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
block = ifm_box.get_block()
else:
block = ofm_box.get_block()
return block.depth
def use_zero_point_0(ps, tens: Tensor, is_ifm_tensor: bool) -> bool:
"""Checks if quantization should use 0 as zero point"""
if tens.dtype == DataType.int32 and is_ifm_tensor:
return True
# Force zero point to 0 for ResizeBilinear when converting to a DepthwiseConv since the reference kernel
# will ignore the zero point.
if ps.primary_op.original_type == Op.ResizeBilinear and ps.primary_op.type == Op.DepthwiseConv2DBias:
return True
if ps.primary_op.type not in (Op.AvgPool, Op.CLZ, Op.SHL) and not ps.primary_op.type.is_resize_op():
return False
if ps.primary_op.type == Op.AvgPool and ps.primary_op.explicit_scaling:
return False
fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
forced_ofm_quantization = ps.primary_op.forced_output_quantization
use_0 = (
(
ps.primary_op.activation is None
or forced_ofm_quantization is not None
or (ps.primary_op.type.is_avgpool_op() and ps.primary_op.activation.op_type.is_relu_op())
)
and (ps.primary_op.memory_function != Op.ConcatSliceWrite)
and not fused_quantize
)
return use_0
def get_ifm_or_ifm2_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
"""Gets quantization for IFM/IFM2"""
op = ps.primary_op
ifm_quant = op.forced_input_quantization if op.forced_input_quantization is not None else tens.quantization
if ifm_quant is None:
return None
if use_zero_point_0(ps, tens, True):
zero_point = 0
else:
zero_point = int(ifm_quant.zero_point)
return NpuQuantization(scale_f32=ifm_quant.scale_f32, zero_point=zero_point)
def get_ofm_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
"""Gets quantization for OFM"""
op = ps.primary_op
# Check if operation's output quantization is should be used instead of the output tensor's quantization
# (used in LUTs)
ofm_quant = op.forced_output_quantization if op.forced_output_quantization is not None else tens.quantization
if ofm_quant is None:
return None
if use_zero_point_0(ps, tens, False):
zero_point = 0
else:
zero_point = int(ofm_quant.zero_point)
return NpuQuantization(scale_f32=ofm_quant.scale_f32, zero_point=zero_point)
def create_feature_map(
tens: Tensor,
box: Box,
arch: ArchitectureFeatures,
op_shape4D: Shape4D,
tile_base_offsets: List[int],
stride_multiplier: Optional[List[int]] = None,
) -> NpuFeatureMap:
"""Creates feature map with common fields populated"""
fm = NpuFeatureMap()
fm.region = get_region(tens.mem_type, arch)
fm.data_type = dtype_map[tens.dtype]
if tens.format == TensorFormat.NHWC:
fm.layout = NpuLayout.NHWC
elif tens.format == TensorFormat.NHCWB16:
fm.layout = NpuLayout.NHCWB16
else:
assert 0, "Incorrect tensor format"
strides = tens.get_strides(op_shape4D)
assert strides is not None
if stride_multiplier and stride_multiplier != [1, 1, 1]:
assert (
tens.format == TensorFormat.NHWC
), "Only default stride multiplier ([1, 1, 1]) supported for NHCWB16 format"
# Multiply strides for C/H/W (in that order) with corresponding stride factor
for i, stride_factor in enumerate(stride_multiplier, start=1):
strides[i] *= stride_factor
height_0, height_1, width_0, addresses = tens.addresses_for_rolling_buffer(
box.start_coord, box.end_coord, strides, op_shape4D
)
for idx, offset in enumerate(tile_base_offsets):
addresses[idx] += offset
fm.tiles = NpuTileBox(
height_0=height_0, height_1=height_1, width_0=width_0, addresses=[int(addr) for addr in addresses]
)
fm.strides = NpuShape3D(height=int(strides[2]), width=int(strides[3]), depth=int(strides[1]))
fm.name = tens.name
return fm
def create_weights(
weight_tensor: NpuWeightTensor, weight_box: Box, scale_tensor: NpuWeightTensor, arch: ArchitectureFeatures
) -> Tuple[List[NpuAddressRange], List[NpuAddressRange]]:
"""Returns address ranges for weights and scales"""
weights = []
biases = []
shared_region = get_region(weight_tensor.mem_type, arch)
scale_region = get_region(scale_tensor.mem_type, arch) if scale_tensor else 0
w_tensor_src = weight_tensor
if weight_tensor.src_tensor:
w_tensor_src = cast(NpuWeightTensor, weight_tensor.src_tensor)
core_offset = 0
for core in range(0, arch.ncores):
# Get weight range per core
key = WeightKey(core, weight_box.start_coord[-1])
if key in w_tensor_src.encoded_ranges:
weight_range = w_tensor_src.encoded_ranges[key]
if weight_tensor == w_tensor_src:
# Straight from source tensor
address = weight_tensor.address + weight_range.offset
else:
# Weight buffered tensor
address = weight_tensor.address + core_offset
core_offset += round_up(weight_range.total_bytes, 16)
# Location of weights in tensor
addr_range = NpuAddressRange(
shared_region, int(address + weight_range.weight_offset), round_up(int(weight_range.weight_bytes), 16)
)
weights.append(addr_range)
# Location of standalone scales or combined weights tensor scales
if scale_tensor:
assert scale_tensor.src_tensor is None # Must be standalone
scale_range = scale_tensor.encoded_ranges[key]
address = scale_tensor.address + scale_range.offset
addr_range = NpuAddressRange(scale_region, int(address), round_up(int(scale_range.scale_bytes), 16))
else:
addr_range = NpuAddressRange(shared_region, int(address), round_up(int(weight_range.scale_bytes), 16))
biases.append(addr_range)
return weights, biases
def create_npu_activation(op: Operation) -> NpuActivation:
"""Creates fused activation function"""
if op.activation is None:
return NpuActivation(NpuActivationOp.NONE_OR_RELU)
faf = op.activation.op_type
act_op = NpuActivationOp.NONE_OR_RELU
if faf == Op.Tanh:
act_op = NpuActivationOp.TANH
elif faf == Op.Sigmoid:
act_op = NpuActivationOp.SIGMOID
elif faf == Op.LUT:
act_op = NpuActivationOp.TABLE_LOOKUP
elif not faf.is_relu_op():
raise UnsupportedFeatureError(f"Unsupported fused_activation_function: {faf.name}")
act = NpuActivation(act_op)
act.min = op.activation.min
act.max = op.activation.max
if act_op is NpuActivationOp.NONE_OR_RELU and op.type.is_avgpool_op() and not op.explicit_scaling:
quant = op.ofm.quantization
if quant and quant.zero_point: # Zero point is not 0
scale_f32 = 1 if quant.scale_f32 is None else quant.scale_f32
zero_point = quant.zero_point
if act.min is not None:
act.min = scale_f32 * quantise_float32(act.min, scale_f32, zero_point)
if act.max is not None:
act.max = scale_f32 * quantise_float32(act.max, scale_f32, zero_point)
act.lookup_table_index = op.activation.lut_index
return act
def set_common_op_fields(npu_op: NpuBlockOperation, cmd: NpuStripe, arch: ArchitectureFeatures):
"""Sets common fields of the given operation"""
ps = cmd.ps
op = ps.primary_op
ifm_height = cmd.ifm_box.get_block().height
ifm_width = cmd.ifm_box.get_block().width
ifm_depth = get_ifm_depth(op.type.npu_block_type, cmd.ifm_box, cmd.ofm_box)
npu_op.ifm = create_feature_map(cmd.ifm_tensor, cmd.ifm_box, arch, ps.ifm_shapes[0], op.tile_base_offsets_ifm[0])
npu_op.ifm.shape = NpuShape3D(height=ifm_height, width=ifm_width, depth=ifm_depth)
npu_op.ifm.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm_tensor)
out_block = cmd.ofm_box.get_block()
npu_op.ofm = create_feature_map(
cmd.ofm_tensor, cmd.ofm_box, arch, ps.ofm_shapes[0], op.tile_base_offsets_ofm, op.ofm_stride_multiplier
)
npu_op.ofm.shape = NpuShape3D(height=out_block.height, width=out_block.width, depth=out_block.depth)
npu_op.ofm.quantization = get_ofm_quantization(ps, cmd.ofm_tensor)
if cmd.weight_tensor is not None:
npu_op.weights, npu_op.biases = create_weights(cmd.weight_tensor, cmd.weight_box, cmd.scale_tensor, arch)
npu_op.activation = create_npu_activation(op)
npu_op.fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
npu_op.rounding_mode = get_rounding_mode(op, npu_op.fused_quantize)
npu_op.block_config = NpuShape3D(height=ps.block_config[0], width=ps.block_config[1], depth=ps.block_config[3])
if not op.type.is_elementwise_op():
npu_op.padding = create_padding(cmd, op, npu_op)
npu_op.kernel = to_npu_kernel(op.kernel)
npu_op.ifm_upscale = resampling_mode_inv_map[op.ifm_resampling_mode]
return npu_op
def create_npu_conv2d_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConv2DOperation:
"""Converts the command to NpuConv2DOperation"""
npu_op = NpuConv2DOperation()
set_common_op_fields(npu_op, cmd, arch)
if cmd.ps.primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
npu_op.block_traversal = NpuBlockTraversal.DEPTH_FIRST
else:
if cmd.weight_tensor.src_tensor:
npu_op.block_traversal = cmd.weight_tensor.src_tensor.hw_traversal
else:
npu_op.block_traversal = cmd.weight_tensor.hw_traversal
return npu_op
def create_npu_conv_depthwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConvDepthWiseOperation:
"""Converts the command to NpuConvDepthWiseOperation"""
npu_op = NpuConvDepthWiseOperation()
set_common_op_fields(npu_op, cmd, arch)
return npu_op
def create_npu_pool_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuPoolingOperation:
"""Converts the command to NpuPoolingOperation"""
ps = cmd.ps
op = ps.primary_op
if op.type.is_maxpool_op():
pool_op = NpuPoolingOp.MAX
elif op.type.is_avgpool_op() or op.type.is_resize_op():
pool_op = NpuPoolingOp.AVERAGE
elif op.type == Op.ReduceSum:
pool_op = NpuPoolingOp.REDUCE_SUM
else:
assert 0, f"Unknown pool type {op.type}"
npu_op = NpuPoolingOperation(pool_op)
set_common_op_fields(npu_op, cmd, arch)
# Pooling specific info
if op.explicit_scaling:
# Note: reuse of rescale for explicit scaling to not expose this in the external API
npu_op.rescale = op.explicit_scaling
return npu_op
def create_npu_elementwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuElementWiseOperation:
"""Converts the command to NpuElementWiseOperation"""
ps = cmd.ps
op = ps.primary_op
assert op.type in elementwise_op_map, f"Unknown elementwise type {op.type}"
elemwise_op = elementwise_op_map[op.type]
npu_op = NpuElementWiseOperation(elemwise_op)
if elemwise_op not in UNARY_ELEMWISE_OPS:
ifm_shape = None if cmd.ifm_tensor.shape == [] else ps.ifm_shapes[0]
ifm2_shape = None if cmd.ifm2_tensor.shape == [] else ps.ifm_shapes[1]
if cmd.reversed_operands:
assert ifm_ifm2_correct_order(ifm_shape, ifm2_shape)
npu_op.reversed_operands = True
elif not ifm_ifm2_correct_order(ifm_shape, ifm2_shape):
# The scalar/broadcasted feature map has to be the ifm2 tensor so switch the ifms
cmd.ifm_tensor, cmd.ifm2_tensor = cmd.ifm2_tensor, cmd.ifm_tensor
cmd.ifm_box, cmd.ifm2_box = cmd.ifm2_box, cmd.ifm_box
ps.ifm_shapes[0], ps.ifm_shapes[1] = ps.ifm_shapes[1], ps.ifm_shapes[0]
npu_op.reversed_operands = True
npu_op.ifm2 = create_feature_map(
cmd.ifm2_tensor,
cmd.ifm2_box,
arch,
ps.ifm_shapes[1],
op.tile_base_offsets_ifm[1],
)
npu_op.ifm2.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm2_tensor)
if cmd.ifm2_tensor.shape == []:
# scalar
npu_op.ifm2_scalar = cmd.ifm2_tensor.get_scalar()
npu_op.ifm2.shape = NpuShape3D(height=0, width=0, depth=0)
else:
ifm2_blk = cmd.ifm2_box.get_block()
npu_op.ifm2.shape = NpuShape3D(height=ifm2_blk.height, width=ifm2_blk.width, depth=ifm2_blk.depth)
set_common_op_fields(npu_op, cmd, arch)
# Check if output scale needs to be overridden
output_scale = None
if op.explicit_scaling is not None:
assert not op.explicit_scaling.per_channel
assert op.type in (Op.Add, Op.Mul, Op.Sub)
npu_op.rescale = (op.explicit_scaling.multiplier[0], op.explicit_scaling.shift[0])
elif op.type == Op.Add and op.original_type.is_resize_op():
# Force output scale same as the input scale for
# resizebilinear/nearestneighbor 1x1 that is converted to add
output_scale = npu_op.ifm2.quantization.scale_f32
elif op.type == Op.Abs:
output_scale = npu_op.ifm.quantization.scale_f32 / npu_op.ofm.quantization.scale_f32
elif op.type == Op.LeakyRelu:
output_scale = op.attrs["alpha"]
elif op.type in (Op.Add, Op.Mul, Op.Sub):
if op.activation is not None and op.activation.op_type in (Op.Sigmoid, Op.Tanh):
output_scale = 1 / 0x3000
if output_scale is not None:
npu_op.ofm.quantization = NpuQuantization(scale_f32=output_scale, zero_point=npu_op.ofm.quantization.zero_point)
return npu_op
def create_dma_op(cmd: DMA, arch: ArchitectureFeatures) -> NpuDmaOperation:
"""Converts the command to NpuDmaOperation"""
src_region = get_region(cmd.in_tensor.mem_type, arch)
if cmd.out_tensor.purpose == TensorPurpose.LUT:
dest_region = BASE_PTR_INDEX_MEM2MEM
else:
dest_region = get_region(cmd.out_tensor.mem_type, arch)
if cmd.in_tensor.purpose == TensorPurpose.Weights:
# Get weight range per core
sz = 0
for core in range(0, arch.ncores):
key = WeightKey(core, cmd.box.start_coord[-1])
if key in cmd.in_tensor.encoded_ranges:
weight_range = cmd.in_tensor.encoded_ranges[key]
sz += round_up(weight_range.total_bytes, 16)
if core == 0:
weight_range = cmd.in_tensor.encoded_ranges[key]
src_addr = cmd.in_tensor.address + weight_range.offset
dest_addr = cmd.out_tensor.address
else:
src_addr = cmd.in_tensor.address_for_coordinate(cmd.box.start_coord)
dest_addr = cmd.out_tensor.address_for_coordinate(cmd.box.start_coord)
# DMA must use 16 bytes alignment (tensors are always aligned but the sz calculation uses actual size)
sz = round_up(cmd.in_tensor.address_for_coordinate(cmd.box.end_coord, is_top_box=True) - src_addr, 16)
src = NpuAddressRange(src_region, int(src_addr), int(sz))
dest = NpuAddressRange(dest_region, int(dest_addr), int(sz))
return NpuDmaOperation(src, dest)
def convert_command_to_npu_op(cmd: Command, arch: ArchitectureFeatures) -> NpuOperation:
"""Converts the high level command to NpuOperation"""
npu_op: NpuOperation
if isinstance(cmd, DMA):
npu_op = create_dma_op(cmd, arch)
npu_op.name = cmd.out_tensor.name
elif isinstance(cmd, NpuStripe):
npu_block_type = cmd.ps.primary_op.type.npu_block_type
if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct):
npu_op = create_npu_conv2d_op(cmd, arch)
elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
npu_op = create_npu_conv_depthwise_op(cmd, arch)
elif npu_block_type in (NpuBlockType.Pooling, NpuBlockType.ReduceSum):
npu_op = create_npu_pool_op(cmd, arch)
elif npu_block_type == NpuBlockType.ElementWise:
npu_op = create_npu_elementwise_op(cmd, arch)
else:
assert 0, f"Unknown command type {npu_block_type}"
npu_op.name = cmd.ps.primary_op.name
return npu_op
def generate_register_command_stream_for_sg(nng, sg, arch, verbose=False):
"""Generates command stream for the subgraph, adds it to sg.register_command_stream"""
# Convert high level command stream to list of NpuOperation
npu_op_list = []
npu_op_to_cmd = dict() # map from npu op to high level command
for cmd in sg.high_level_command_stream:
if isinstance(cmd, NpuStripe) and cmd.ps.npu_block_type == NpuBlockType.Default:
print("Warning: Skipping register command stream generation for", cmd.ps)
elif isinstance(cmd, NOP):
# NOP should not generate anything
continue
else:
npu_op = convert_command_to_npu_op(cmd, arch)
npu_op_list.append(npu_op)
npu_op_to_cmd[npu_op] = cmd
mem_limits = get_mem_limits_for_regions(arch)
# Generate register commands
if len(sg.high_level_command_stream) > 0:
stream_id = DebugDatabase.add_stream(sg)
sg.generated_stream_id = stream_id
def add_to_debug_db(npu_op: NpuOperation, offset: int):
"""Adds info to the debug database"""
if not isinstance(npu_op, NpuDmaOperation):
cmd = npu_op_to_cmd[npu_op]
DebugDatabase.add_command(stream_id, offset, cmd.ps.primary_op)
sg.register_command_stream = generate_command_stream(
npu_op_list, arch, verbose, mem_limits, add_to_debug_db, npu_op_to_cmd
)