MEAN implementation changed to Average Pool

This is a small commit which changes one of
the four MEAN implementations to a simpler
one, using an AvgPool instead of a
DepthwiseConv.

Signed-off-by: Dwight Lidman <dwight.lidman@arm.com>
Change-Id: I9e8af071e8b820796577ee4792b4812a1212602b
diff --git a/SUPPORTED_OPS.md b/SUPPORTED_OPS.md
index 1ad65c6..013cad2 100644
--- a/SUPPORTED_OPS.md
+++ b/SUPPORTED_OPS.md
@@ -199,7 +199,9 @@
 - IFM must be int8 or uint8
 - Input tensor must be at least 2D
 - Axis indices must correspond to height and width axes
-- Product of height and width can be at most 4096
+- Product of height and width can be at most 65536
+- Product of height and width can be at most 4096 when IFM and OFM have different scale or zero point,  
+        or keep_dims is True
 - Product of IFM height and width can be at most 256 when the following are true:  
         IFM dimensions are 4,  
         Axis indices are 1 and 2,  
diff --git a/ethosu/vela/graph_optimiser.py b/ethosu/vela/graph_optimiser.py
index bea22a2..56932db 100644
--- a/ethosu/vela/graph_optimiser.py
+++ b/ethosu/vela/graph_optimiser.py
@@ -1382,7 +1382,7 @@
     return op
 
 
-def convert_mean_to_depthwise_conv(op, arch, nng):
+def convert_mean_to_depthwise_conv_or_avgpool(op, arch, nng):
     if op.type == Op.Mean and op.run_on_npu:
         keep_dims = op.attrs.get("keep_dims", False)
         inp, axis = op.inputs
@@ -1422,8 +1422,6 @@
         )
         # Change op type
         op.type = Op.DepthwiseConv2DBias
-        # Add None bias tensor
-        op.inputs.append(None)
         # Set IFM/OFM shapes after changing op type
         op.set_ifm_ofm_shapes()
 
@@ -1509,14 +1507,11 @@
                 op.set_output_tensor(intermediate)
                 op.set_ifm_ofm_shapes()
         elif ifmq.zero_point == ofmq.zero_point and ifmq.scale_f32 == ofmq.scale_f32:
+            # Here we can just use a simple AvgPool with truncating rounding,
+            # as we're emulating simple integer division.
             op.rounding_mode = NpuRoundingMode.TRUNCATE
-            weight_scale = 1 / (h * w)
-            foq = ofmq.clone()
-            foq.zero_point = 0
-            op.forced_output_quantization = foq
-            fiq = ifmq.clone()
-            fiq.zero_point = 0
-            op.forced_input_quantization = fiq
+            op.type = Op.AvgPool
+            op.attrs.update({"ksize": (1, h, w, 1), "filter_height": h, "filter_width": w})
         else:
             op.rounding_mode = NpuRoundingMode.NATURAL
             weight_scale = 1 / (h * w)
@@ -1537,6 +1532,12 @@
             shape = [shape[0], 1, h * w, shape[3]]
             op.ifm_shapes[0] = Shape4D(shape)
             inp.avoid_NHCWB16 = True
+            if h > 256 and op.type == Op.AvgPool:
+                op.attrs.update({"ksize": (1, 1, h * w, 1), "filter_height": 1, "filter_width": h * w})
+
+        # If the AvgPool version is used, we don't need to do anything else
+        if op.type == Op.AvgPool:
+            return op
 
         # Make unit weight tensor quantization
         weight_quant = ifmq.clone()
@@ -1561,6 +1562,8 @@
         )
         op.weights.quant_values = np.reshape(op.inputs[1].quant_values, weight_shape)
 
+        # Add None bias tensor
+        op.inputs.append(None)
         # Add bias tensor
         if bias:
             bias_shape = [shape[-1]]
@@ -1643,7 +1646,7 @@
 
     op_rewrite_list = [
         set_tensor_equivalence,
-        convert_mean_to_depthwise_conv,
+        convert_mean_to_depthwise_conv_or_avgpool,
         convert_depthwise_to_conv,
         convert_conv_to_fc,
         convert_softmax,
diff --git a/ethosu/vela/supported_operators.py b/ethosu/vela/supported_operators.py
index 777e9c7..5bf2c45 100644
--- a/ethosu/vela/supported_operators.py
+++ b/ethosu/vela/supported_operators.py
@@ -122,6 +122,7 @@
     filter_product_range = (1, 256 * 256)
     mean_kernel_product = 64 * 64
     mean_kernel_product_int8 = 16 * 16
+    mean_kernel_product_avgpool = 256 * 256
     # Supported consumers
     supported_pad_consumers = convolution_ops | depthwise_convolution_ops | pooling_ops
 
@@ -272,6 +273,7 @@
         self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_input_8bit)
         self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_input_dims)
         self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_axis)
+        self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product_avgpool)
         self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product)
         self.specific_constraints[Op.Mean].append(SupportedOperators.constraint_mean_height_width_product_int8)
 
@@ -1028,6 +1030,7 @@
             valid = len(op.ifm.shape) == len(op.ofm.shape)
         return valid, f"Op has ifm shape={op.ifm.shape} and ofm shape={op.ofm.shape}"
 
+    @staticmethod
     def constraint_mean_input_dims(op):
         "Input tensor must be at least 2D"
         dims = len(op.inputs[0].shape)
@@ -1045,9 +1048,25 @@
         return valid, f"Axis is {axis}"
 
     @classmethod
+    @docstring_format_args([mean_kernel_product_avgpool])
+    def constraint_mean_height_width_product_avgpool(cls, op):
+        """Product of height and width can be at most {}"""
+        shape = op.inputs[0].shape
+        hi = 0 if len(shape) < 4 else 1
+        h, w = shape[hi : hi + 2]
+        max_prod = cls.mean_kernel_product_avgpool
+        return h * w <= max_prod, f"Product of height and width is {h * w}"
+
+    @classmethod
     @docstring_format_args([mean_kernel_product])
     def constraint_mean_height_width_product(cls, op):
-        "Product of height and width can be at most {}"
+        """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
+        or keep_dims is True"""
+        ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
+        keep_dims = op.attrs.get("keep_dims")
+        # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
+        if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
+            return True, ""
         shape = op.inputs[0].shape
         hi = 0 if len(shape) < 4 else 1
         h, w = shape[hi : hi + 2]
@@ -1064,6 +1083,8 @@
         IFM datatype is int8"""
         shape = op.ifm.shape
         axis = op.inputs[1].values if op.inputs[1].shape == [] else list(op.inputs[1].values)
+        # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
+        # and constraint_mean_height_width_product
         if (
             len(shape) != 4
             or op.ifm.dtype != DataType.int8
diff --git a/ethosu/vela/test/test_supported_operators.py b/ethosu/vela/test/test_supported_operators.py
index aad2849..355b472 100644
--- a/ethosu/vela/test/test_supported_operators.py
+++ b/ethosu/vela/test/test_supported_operators.py
@@ -864,7 +864,7 @@
 
 
 def test_mean_hw_product():
-    op = create_mean([1, 64, 64, 16], [1, 1, 16], [1, 2], DataType.uint8, {})
+    op = create_mean([1, 64, 64, 16], [1, 16], [1, 2], DataType.uint8, {})
     assert support.is_operator_supported(op)
     op = create_mean([1, 65, 64, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
     assert not support.is_operator_supported(op)
@@ -875,3 +875,10 @@
     assert support.is_operator_supported(op)
     op = create_mean([1, 16, 17, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
     assert not support.is_operator_supported(op)
+
+
+def test_mean_hw_product_avgpool():
+    op = create_mean([1, 200, 200, 16], [1, 16], [1, 2], DataType.uint8, {"keep_dims": False})
+    assert support.is_operator_supported(op)
+    op = create_mean([1, 200, 200, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
+    assert not support.is_operator_supported(op)