blob: d9b241fd78e2d3f2243aaf141ccfee7e494fae6c [file] [log] [blame]
# SPDX-FileCopyrightText: Copyright 2020-2022 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Unit tests for tflite support_operators
import numpy as np
from ethosu.vela.data_type import DataType
from ethosu.vela.operation import ActivationFunction
from ethosu.vela.operation import Op
from ethosu.vela.operation import Padding
from ethosu.vela.tensor import create_const_tensor
from ethosu.vela.tensor import QuantizationParameters
from ethosu.vela.tensor import Tensor
from ethosu.vela.test import testutil
from ethosu.vela.tflite_supported_operators import TFLiteSupportedOperators
support = TFLiteSupportedOperators()
def test_constraint_tens_dtype():
# Tensors can only be of type uint8, int8, int16 and int32
op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.float32)
assert not support.is_operator_supported(op)
def test_constraint_tens_int32_ops():
# For int32, only select op types are allowed:
op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], datatype=DataType.int32)
assert support.is_operator_supported(op)
op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
assert not support.is_operator_supported(op)
def test_constraint_tens_dimension():
# Tensors can only have values in the inclusive range of 1-65535
op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 0], [1, 8, 8, 65536])
assert not support.is_operator_supported(op)
def test_constraint_tens_quant_per_axis_not_supp():
# Quantization scale cannot be array-valued for elemwise ops
qp = QuantizationParameters()
qp.zero_point = np.zeros((1, 3))
qp.scale_f32 = np.ones((1, 3))
op = testutil.create_elemwise_op(Op.Mul, "op", [1, 8, 8, 8], [], [1, 8, 8, 8], ifm_quant=qp)
assert not support.is_operator_supported(op)
def test_constraint_tens_quant_per_axis_is_supp():
op = testutil.create_op_with_quant_tensors(
Op.Conv2DBias, [1, 1, 1, 3], [1, 1, 1, 3], weights_shape=[1, 1, 1, 3], bias_shape=[1, 1, 1, 3]
)
op.attrs = {"stride_w": 1, "stride_h": 1}
assert support.is_operator_supported(op)
qp = QuantizationParameters()
qp.zero_point = np.zeros((1, 3))
qp.scale_f32 = np.ones((1, 3))
op.bias.quantization = qp
assert support.is_operator_supported(op)
def test_constraint_fc_output_2d_is_supp():
op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [4, 8, 8, 4], [32, 32], weights_shape=[4, 8, 8, 4])
assert support.is_operator_supported(op)
op = testutil.create_op_with_quant_tensors(Op.FullyConnected, [1, 1024], [16, 64], weights_shape=[1, 1024])
assert support.is_operator_supported(op)
def test_constraint_faf():
# Fused activation functions, if set, must be a valid op type
op = testutil.create_op_with_quant_tensors(Op.Relu, [1, 8, 8, 8], [1, 8, 8, 8])
op.activation = ActivationFunction(Op.Conv2D)
assert not support.is_operator_supported(op)
def test_constraint_faf_ofm_dtype():
# If fused activation function is present, OFM must be 8 or 16 bit
shp = [1, 8, 8, 8]
for dtype in [DataType.int8, DataType.uint8, DataType.int16, DataType.int32]:
op = testutil.create_elemwise_op(Op.Add, "op", shp, shp, shp, datatype=dtype)
op.activation = ActivationFunction(Op.Relu)
expected = dtype.size_in_bytes() <= 2
assert support.is_operator_supported(op) == expected, f"Data type: {dtype}"
def test_constraint_conv_pass():
# First test a simple conv passes
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
assert support.is_operator_supported(op)
def test_constraint_stride_range():
# Stride width and height must lie within a certain range
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 0, "stride_h": 20}
assert not support.is_operator_supported(op)
def test_constraint_dilated_height_range():
# Dilated kernel height must lie within a certain range
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[65, 64, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
assert not support.is_operator_supported(op)
def test_constraint_dilated_product_range():
# Dilated kernel width x height must lie within a certain range
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[64, 65, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
assert not support.is_operator_supported(op)
def test_constraint_weights_type():
# Weight tensor must be 8-bit
op = testutil.create_op_with_quant_tensors(
Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1], datatype=DataType.int16
)
op.attrs = {"stride_w": 1, "stride_h": 1}
assert not support.is_operator_supported(op)
def test_constraint_weights_const():
# Weight tensor cannot be non-const tensors
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 1, "stride_h": 1}
weights = Tensor([64, 64, 1, 1], DataType.uint8, "weights")
weights.quantization = testutil.default_quant_params()
op.add_input_tensor(weights)
assert not support.is_operator_supported(op)
def test_constraint_weights_limit():
# Sum of weights has a limit
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
op.weights.quantization.zero_point = np.array([[[[(127 * 65536) + 1]]]])
assert not support.is_operator_supported(op)
def test_constraint_bias_type():
# Bias must have a certain datatype
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
bias = Tensor([1, 8, 8, 8], DataType.uint8, "bias")
op.add_input_tensor(bias)
assert not support.is_operator_supported(op)
def test_constraint_bias_40bit():
# Bias must not exceed 40-bit
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
bias = Tensor([1, 1, 1, 1], DataType.int64, "bias")
bias.values = np.array([0x01FF_FFFF_FFFF])
op.add_input_tensor(bias)
assert not support.is_operator_supported(op)
def test_constraint_batch_size():
op = testutil.create_op_with_quant_tensors(Op.Conv2DBias, [2, 8, 8, 8], [1, 8, 8, 8], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1}
assert not support.is_operator_supported(op)
def test_constraint_depth_multiplier():
# Valid. Depth multiplier is 1 so no further constraints
op = testutil.create_op_with_quant_tensors(
Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 2], weights_shape=[1, 1, 1, 1]
)
op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 1}
assert support.is_operator_supported(op)
# Invalid. Depth multiplier doesnt equal ofm channel
op = testutil.create_op_with_quant_tensors(
Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 1], weights_shape=[1, 1, 1, 1]
)
op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 2}
assert not support.is_operator_supported(op)
# Valid. Depth multiplier is equal to ofm channel
op = testutil.create_op_with_quant_tensors(
Op.DepthwiseConv2DBias, [1, 1, 1, 1], [1, 1, 1, 2], weights_shape=[1, 1, 1, 1]
)
op.attrs = {"stride_w": 1, "stride_h": 1, "depth_multiplier": 2}
assert support.is_operator_supported(op)
def test_constraint_tconv_stride():
# Strides must be 2
op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 2, 2, 1], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 1, "stride_h": 1, "padding": Padding.SAME}
ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
ifm.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm)
assert not support.is_operator_supported(op)
def test_constraint_tconv_same():
# Valid
op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 2, 2, 1], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.SAME}
ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
ifm.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm)
assert support.is_operator_supported(op)
# Invalid
op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[1, 1, 1, 1])
op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.SAME}
ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
ifm.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm)
assert not support.is_operator_supported(op)
def test_constraint_tconv_valid():
# Valid
op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[4, 4, 1, 1])
op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.VALID}
ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
ifm.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm)
assert support.is_operator_supported(op)
# Invalid
op = testutil.create_op_with_quant_tensors(Op.Conv2DBackpropInput, [0], [1, 4, 4, 1], weights_shape=[2, 2, 1, 1])
op.attrs = {"stride_w": 2, "stride_h": 2, "padding": Padding.VALID}
ifm = Tensor([1, 1, 1, 1], DataType.uint8, "ifm")
ifm.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm)
assert not support.is_operator_supported(op)
def test_constraint_filter_range():
# Avg pool restrictions are dependent on padding:
# SAME padding restricts both W and H to max 8
op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 20, "filter_height": 20, "padding": Padding.SAME}
assert not support.is_operator_supported(op)
# VALID padding limits are much larger
op.attrs["padding"] = Padding.VALID
assert support.is_operator_supported(op)
def test_constraint_filter_height_range_valid_pad():
# Avg pool restrictions are dependent on padding:
op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2, "filter_height": 256, "padding": Padding.VALID}
assert support.is_operator_supported(op)
# VALID padding restricts to 256 in filter height
op.attrs["filter_height"] = 257
assert not support.is_operator_supported(op)
def test_constraint_filter_product_height_range_valid_pad():
# Avg pool restrictions are dependent on padding:
op = testutil.create_op_with_quant_tensors(Op.AvgPool, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 256, "filter_height": 256, "padding": Padding.VALID}
assert support.is_operator_supported(op)
# VALID padding restricts filter W x H to 256x256
op.attrs["filter_width"] = 257
assert not support.is_operator_supported(op)
def test_constraint_filter_height_range():
# Max pool restrictions arent dependent on padding
op = testutil.create_op_with_quant_tensors(Op.MaxPool, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 2, "filter_height": 256, "padding": Padding.SAME}
assert support.is_operator_supported(op)
# Restricts to 256 in filter height
op.attrs["filter_height"] = 257
assert not support.is_operator_supported(op)
# Doesnt matter if SAME or VALID
op.attrs["padding"] = Padding.VALID
assert not support.is_operator_supported(op)
def test_constraint_filter_product_height_range():
# Max pool restrictions arent dependent on padding
op = testutil.create_op_with_quant_tensors(Op.MaxPool, [1, 8, 8, 8], [1, 8, 8, 8])
op.attrs = {"stride_w": 2, "stride_h": 2, "filter_width": 256, "filter_height": 256, "padding": Padding.SAME}
assert support.is_operator_supported(op)
# Restricts filter W x H to 256x256
op.attrs["filter_width"] = 257
assert not support.is_operator_supported(op)
# Doesnt matter if SAME or VALID
op.attrs["padding"] = Padding.VALID
assert not support.is_operator_supported(op)
def test_constraint_resize():
for resize_op in Op.op_set(Op.is_resize_op):
# IFM W and H == 1
op = testutil.create_op_with_quant_tensors(resize_op, [1, 1, 1, 8], [1, 8, 8, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [8, 8], np.int32))
assert support.is_operator_supported(op)
# IFM == OFM
op = testutil.create_op_with_quant_tensors(resize_op, [1, 8, 8, 8], [1, 8, 8, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [8, 8], np.int32))
assert support.is_operator_supported(op)
# IFM x2 == OFM ; align_corners = False
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 8, 8, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [8, 8], np.int32))
assert support.is_operator_supported(op)
# IFM x4 == OFM ; align_corners = False
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 16, 16, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [16, 16], np.int32))
assert support.is_operator_supported(op)
# IFM x8 == OFM ; align_corners = False
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 32, 32, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [32, 32], np.int32))
assert support.is_operator_supported(op)
# IFM -1 x2 == OFM -1 ; align_corners = True
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 7, 7, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [7, 7], np.int32))
op.attrs["align_corners"] = True
assert support.is_operator_supported(op)
# IFM -1 x4 == OFM -1 ; align_corners = True
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 13, 13, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [13, 13], np.int32))
op.attrs["align_corners"] = True
assert support.is_operator_supported(op)
# IFM -1 x8 == OFM -1 ; align_corners = True
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 25, 25, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [25, 25], np.int32))
op.attrs["align_corners"] = True
assert support.is_operator_supported(op)
# Invalid case - upscale size
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 17, 17, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [17, 17], np.int32))
assert not support.is_operator_supported(op)
# Invalid case - upscale size with align corners
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 15, 15, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [15, 15], np.int32))
op.attrs["align_corners"] = True
assert not support.is_operator_supported(op)
def test_constraint_resize_size():
for resize_op in Op.op_set(Op.is_resize_op):
# Invalid case - size != ofm size
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 8, 8, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [7, 7], np.int32))
assert not support.is_operator_supported(op)
def test_constraint_resize_attrs():
for resize_op in Op.op_set(Op.is_resize_op):
# Invalid case - both align corners and half-pixel centers
op = testutil.create_op_with_quant_tensors(resize_op, [1, 4, 4, 8], [1, 8, 8, 8])
op.add_input_tensor(create_const_tensor("size", [2], DataType.int32, [8, 8], np.int32))
op.attrs["align_corners"] = True
op.attrs["half_pixel_centers"] = True
assert not support.is_operator_supported(op)
def test_constraint_concat_pass():
# A working concat
op = testutil.create_op_with_quant_tensors(Op.Concat, [1, 1, 1, 4], [1, 1, 1, 8])
ifm2 = Tensor([1, 1, 1, 4], DataType.uint8, "in2")
ifm2.quantization = testutil.default_quant_params()
op.add_input_tensor(ifm2)
op.attrs["axis"] = 3
assert support.is_operator_supported(op)
def create_pad_op(
in_shape,
out_shape,
padding,
in_dtype=DataType.int8,
out_dtype=DataType.int8,
pad_dtype=DataType.int32,
):
qp = testutil.default_quant_params()
in0 = Tensor(in_shape, in_dtype, "in")
in0.quantization = qp
pad_tensor = create_const_tensor(name="pad", shape=list(np.shape(padding)), values=padding, dtype=pad_dtype)
out = Tensor(out_shape, out_dtype, "out")
out.quantization = qp.clone()
op = testutil.create_op(Op.Pad, [in0, pad_tensor], out)
return op
def test_constraint_padded_dimensions():
# Incorrect padding dimensions, can only pad width and height
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[[1, 1], [1, 1], [1, 1], [0, 0]],
)
assert not support.is_operator_supported(op)
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[[1, 1], [1, 1], [0, 0]],
)
assert support.is_operator_supported(op)
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[[1, 1], [1, 1], [0, 1]],
)
assert not support.is_operator_supported(op)
def test_constraint_pad_shape():
# PAD operator must be of shape (3,2) or (4,2)
op = create_pad_op(in_shape=[1, 1, 1, 1], out_shape=[1, 3, 3, 1], padding=[[1, 1], [1, 1], [0, 0]])
assert support.is_operator_supported(op)
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]],
)
assert not support.is_operator_supported(op)
def test_constraint_pad_none():
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[],
)
assert not support.is_operator_supported(op)
def test_constraint_pad_dtype():
# PAD operator dtype should be int32 or int64
op = create_pad_op(
in_shape=[1, 1, 1, 1],
out_shape=[1, 3, 3, 1],
padding=[[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]],
pad_dtype=DataType.int16,
)
assert not support.is_operator_supported(op)
def create_strided_slice_op(in_shape, out_shape, start_offsets, end_offsets):
qp = testutil.default_quant_params()
in0 = Tensor(in_shape, DataType.uint8, "in")
in0.quantization = qp
in1 = create_const_tensor("begin", [len(start_offsets)], DataType.uint8, start_offsets, quantization=qp)
in2 = create_const_tensor("end", [len(end_offsets)], DataType.uint8, end_offsets, quantization=qp)
in3 = create_const_tensor("strides", [len(end_offsets)], DataType.uint8, len(end_offsets) * [1], quantization=qp)
out = Tensor(out_shape, DataType.uint8, "out")
out.quantization = qp
attrs = {"ellipsis_mask": 0, "new_axis_mask": 0, "shrink_axis_mask": 0, "begin_mask": 0, "end_mask": 0}
return testutil.create_op(Op.StridedSlice, [in0, in1, in2, in3], out, attrs=attrs)
def create_strided_slice():
# Creates a valid strided slice operator with some valid inputs/outputs
op = create_strided_slice_op([1, 10, 10, 10], [1, 5, 5, 10], [127, 2, 2, 0], [0, 7, -3, 0])
op.attrs["begin_mask"] = 1
op.attrs["end_mask"] = 9
assert support.is_operator_supported(op)
return op
def test_constraint_stridedslice_stride_values():
# Unsupported strides
op = create_strided_slice()
op.inputs[3].values = [1, 1, 2, 1]
assert not support.is_operator_supported(op)
def test_constraint_inputs_int32():
# both inputs must be type int32
op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
assert not support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
assert support.is_operator_supported(op)
op.ifm2.dtype = DataType.int16
assert not support.is_operator_supported(op)
def test_constraint_output_int32():
# output must be type int32
op = testutil.create_elemwise_op(Op.SHL, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8], datatype=DataType.int32)
assert support.is_operator_supported(op)
op.ofm.dtype = DataType.int16
assert not support.is_operator_supported(op)
def test_constraint_matching_quantization_parameters():
qp = QuantizationParameters()
qp.scale_f32 = np.float32(1.5)
qp.zero_point = 128
# valid - all matching (uses default quant params)
op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
assert support.is_operator_supported(op)
# invalid - ifm mismatch ofm
op.ifm.quantization = qp
assert not support.is_operator_supported(op)
# invalid - ifm2 mismatch ofm
op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
op.ifm2.quantization = qp
assert not support.is_operator_supported(op)
# invalid - both ifm and ifm2 mismatch ofm
op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], [1, 8, 8, 8], [1, 8, 8, 8])
op.ifm.quantization = qp
op.ifm2.quantization = qp
assert not support.is_operator_supported(op)
# valid - all matching
op.ofm.quantization = qp
assert support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Minimum, "op", [1, 8, 8, 8], None, [1, 8, 8, 8])
assert support.is_operator_supported(op)
def test_constraint_elemwise_batch_size():
# BINARY CASE
# Batch can be >1 if dims is <=3D
op = testutil.create_elemwise_op(Op.Add, "op", [2, 2, 2], [2, 2, 2], [2, 2, 2])
assert support.is_operator_supported(op)
# For dims >3D, batch must be 1
op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2])
assert support.is_operator_supported(op)
# invalid case
op = testutil.create_elemwise_op(Op.Add, "op", [2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2])
assert not support.is_operator_supported(op)
# UNARY CASE
# Batch can be >1 if dims is <=3D
op = testutil.create_elemwise_op(Op.CLZ, "op", [2, 2, 2], None, [2, 2, 2], datatype=DataType.int32)
assert support.is_operator_supported(op)
# For dims >3D, batch must be 1
op = testutil.create_elemwise_op(Op.CLZ, "op", [1, 2, 2, 2], None, [1, 2, 2, 2], datatype=DataType.int32)
assert support.is_operator_supported(op)
# invalid case
op = testutil.create_elemwise_op(Op.CLZ, "op", [2, 2, 2, 2], None, [2, 2, 2, 2], datatype=DataType.int32)
assert not support.is_operator_supported(op)
def test_constraint_broadcast_shapes():
# BINARY CASE
# Only allow broadcast to 1 dim, for 1 rank index
op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 4], [1, 2, 4], [1, 2, 4])
assert support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 4], [1, 1, 4], [1, 2, 4])
assert support.is_operator_supported(op)
# Only allow broadcast to 1 dim, for 3 rank indexes
op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 1, 1], [1, 4, 8, 16], [1, 4, 8, 16])
assert support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 8, 16], [1, 1, 1, 1], [1, 4, 8, 16])
assert support.is_operator_supported(op)
# One broadcast dim not 1
op = testutil.create_elemwise_op(Op.Add, "op", [1, 2, 4], [1, 4, 4], [1, 4, 4])
assert not support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 4], [1, 2, 4], [1, 4, 4])
assert not support.is_operator_supported(op)
# OFM shape dim largest ifm/ifm2 shape dim
op = testutil.create_elemwise_op(Op.Add, "op", [1, 4], [4, 4], [1, 4])
assert not support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 4], [4, 4], [1, 4])
assert not support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 4, 1, 16], [1, 1, 4, 1], [1, 4, 1, 16])
assert not support.is_operator_supported(op)
op = testutil.create_elemwise_op(Op.Add, "op", [1, 1, 4, 1], [1, 4, 1, 16], [1, 4, 1, 16])
assert not support.is_operator_supported(op)
def create_mean(input_shape, output_shape, axis, datatype, attrs):
ifm = Tensor(input_shape, datatype, "in")
ifm.quantization = testutil.default_quant_params()
ofm = Tensor(output_shape, datatype, "out")
ofm.quantization = testutil.default_quant_params()
if type(axis) is list:
indices = create_const_tensor("indices", [len(axis)], DataType.int32, axis, np.uint8)
elif type(axis) is int:
indices = create_const_tensor("indices", [], DataType.int32, axis, np.uint8)
op = testutil.create_op(Op.Mean, [ifm, indices], ofm, attrs)
return op
def test_mean_hw_product():
op = create_mean([1, 64, 64, 16], [1, 16], [1, 2], DataType.uint8, {})
assert support.is_operator_supported(op)
op = create_mean([1, 65, 64, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
assert not support.is_operator_supported(op)
def test_mean_hw_product_avgpool():
op = create_mean([1, 200, 200, 16], [1, 16], [1, 2], DataType.uint8, {"keep_dims": False})
assert support.is_operator_supported(op)
op = create_mean([1, 200, 200, 16], [1, 1, 1, 16], [1, 2], DataType.int8, {"keep_dims": True})
assert not support.is_operator_supported(op)