blob: 1d8756b5634e195b76c53ef1c6dde128dfb96fdd [file] [log] [blame]
# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Contains the main sequencing of the compiler.
import time
from . import extract_npu_subgraphs
from . import graph_optimiser
from . import high_level_command_stream_generator
from . import high_level_command_to_npu_op
from . import live_range
from . import lut
from . import mark_tensors
from . import npu_performance
from . import npu_serialisation
from . import pass_packing
from . import scheduler
from . import tensor_allocation
from .debug_database import DebugDatabase
from .nn_graph import PassPlacement
from .nn_graph import TensorAllocator
from .operation import Op
from .rewrite_graph import verify_graph_health
from .rewrite_graph import visit_graph_post_order
from .scheduler import OptimizationStrategy
from .tensor import MemArea
from .tensor import MemType
from .tensor import Tensor
class CompilerOptions:
"""Set of options to change compiler behaviour - verbosity, targets, turning off passes.
Note the difference between ArchitectureFeatures and CompilerOptions
- ArchitectureFeatures is for changing the Ethos-U and system architecture
- CompilerOptions is for changing the behaviour of the compiler"""
def __init__(
self,
verbose_graph=False,
verbose_quantization=False,
verbose_packing=False,
verbose_tensor_purpose=False,
verbose_tensor_format=False,
verbose_allocation=False,
verbose_high_level_command_stream=False,
verbose_register_command_stream=False,
verbose_operators=False,
verbose_weights=False,
verbose_performance=False,
show_cpu_operations=False,
tensor_allocator=TensorAllocator.Greedy,
timing=False,
output_dir="outputs",
cpu_tensor_alignment=Tensor.AllocationQuantum,
hillclimb_max_iterations=None,
):
self.verbose_graph = verbose_graph
self.verbose_quantization = verbose_quantization
self.verbose_packing = verbose_packing
self.verbose_tensor_purpose = verbose_tensor_purpose
self.verbose_tensor_format = verbose_tensor_format
self.verbose_allocation = verbose_allocation
self.verbose_high_level_command_stream = verbose_high_level_command_stream
self.verbose_register_command_stream = verbose_register_command_stream
self.verbose_operators = verbose_operators
self.verbose_weights = verbose_weights
self.verbose_performance = verbose_performance
self.show_cpu_operations = show_cpu_operations
self.tensor_allocator = tensor_allocator
self.timing = timing
self.output_dir = output_dir
self.cpu_tensor_alignment = cpu_tensor_alignment
self.hillclimb_max_iterations = hillclimb_max_iterations
def __str__(self):
return type(self).__name__ + ": " + str(self.__dict__)
__repr__ = __str__
def next_sram_factor(alloc_results):
# Bisects to find the max SRAM usage that successfully can be fitted with the tensor allocator.
# Returns tuple (factor, dry_test), with factor is None (stop) or 0 <= factor <= 1 (next SRAM factor to try),
# dry_test is True while still bisecting.
upper = 1.0
lower = 0.7
MAX_ITERATIONS = 8
if len(alloc_results) == 0:
# First iteration, try max SRAM, keep the result if it succeeds
return (upper, False)
elif len(alloc_results) == 1:
if alloc_results[0]:
# The allocator succeeded at first try; stop
return (None, False)
else:
# Start bisecting, try lowerbound SRAM
return (lower, True)
elif len(alloc_results) > MAX_ITERATIONS:
# Stop
return (None, False)
if not alloc_results[1]:
# Allocation at lower failed; search interval 0 - lower
upper = lower
lower = 0
best = lower
for success in alloc_results[2:]:
middle = (lower + upper) / 2
if success:
best = max(best, middle)
lower = middle
else:
upper = middle
if len(alloc_results) == MAX_ITERATIONS:
# Done bisecting; repeat the best match, but not as dry test
return (best, False)
# Next try; run only as dry test
return ((lower + upper) / 2, True)
def _record_operator(op, arch):
if op.type != Op.Const:
DebugDatabase.add_source(op)
def _check_schedule(nng, arch, scheduler_options):
# check sram usage for optimisation strategy
sram_usage = nng.get_root_subgraph().memory_used.get(MemArea.Sram)
if sram_usage is not None and scheduler_options.optimization_strategy == OptimizationStrategy.Performance:
if sram_usage > scheduler_options.optimization_sram_limit:
print(
f"Warning: SRAM target for arena memory area exceeded."
f" Target = {scheduler_options.optimization_sram_limit} Bytes,"
f" Actual = {sram_usage} Bytes"
)
def compiler_driver(nng, arch, options, scheduler_options, network_type):
assert verify_graph_health(nng)
# Pre-optimisation operator tracking
for sg in nng.subgraphs:
visit_graph_post_order(sg.output_tensors, arch, [], [_record_operator])
nng = graph_optimiser.optimise_graph(nng, arch, network_type, options.verbose_graph)
assert verify_graph_health(nng)
if options.verbose_quantization:
nng.print_graph_with_tensor_quantization()
nng = mark_tensors.mark_tensor_purpose(nng, arch, options.verbose_tensor_purpose)
assert verify_graph_health(nng)
pass_packing.pack_into_passes(nng, arch, options.verbose_packing)
assert verify_graph_health(nng)
extract_npu_subgraphs.extract_npu_subgraphs(nng, arch)
assert verify_graph_health(nng)
if options.timing:
start = time.time()
# Run the scheduler
scheduler.schedule_passes(nng, arch, options, scheduler_options)
_check_schedule(nng, arch, scheduler_options)
if options.timing:
stop = time.time()
print("Scheduling took %f s" % (stop - start))
start = time.time()
# LiveRanges for constant tensors for all Npu subgraphs
permanent_storage = arch.permanent_storage_mem_area
lr_graph_flash = live_range.LiveRangeGraph()
# Placeholders for scratch and flash tensors that are common for all Npu subgraphs
scratch_tens = None
scratch_fast_tens = None
flash_tens = None
# Create list of NPU subgraphs with same order as the list of all subgraphs
npu_subgraphs = [sg for sg in nng.subgraphs if sg.placement == PassPlacement.Npu]
# Calculate live ranges for all constant Npu tensors, in permanent storage
for sg in npu_subgraphs:
lr_graph_flash = live_range.create_linear_live_range_graph(
sg,
permanent_storage,
MemType.Permanent_NPU,
lr_graph=lr_graph_flash,
)
if npu_subgraphs:
# Allocate all Npu constant tensors to the first Npu subgraph since it is
# processed first during serialization into tensors
first_npu_sg = npu_subgraphs[0]
tensor_allocation.allocate_tensors(
nng,
first_npu_sg,
arch,
permanent_storage,
set((MemType.Permanent_NPU,)),
tensor_allocator=TensorAllocator.LinearAlloc,
verbose_allocation=options.verbose_allocation,
lr_graph=lr_graph_flash,
)
root_sg = nng.get_root_subgraph()
# Generate command streams and serialise Npu-ops into tensors
for sg in npu_subgraphs:
high_level_command_stream_generator.generate_high_level_command_stream_for_schedule(
nng, sg, arch, options.verbose_high_level_command_stream
)
lut.optimize_high_level_cmd_stream(sg, arch)
high_level_command_to_npu_op.generate_register_command_stream_for_sg(
nng, sg, arch, options.verbose_register_command_stream
)
scratch_tens, scratch_fast_tens, flash_tens = npu_serialisation.serialise_npu_subgraph_into_tensors(
sg, arch, scratch_tens, scratch_fast_tens, flash_tens
)
npu_serialisation.rewrite_npu_call_ops(root_sg, arch)
# Set Scratch and Fast_scratch Tensor size
if scratch_tens is not None:
scratch_tens.set_all_shapes([root_sg.memory_used_per_type.get(MemType.Scratch, 0)])
if scratch_fast_tens is not None:
scratch_fast_tens.set_all_shapes([root_sg.memory_used_per_type.get(MemType.Scratch_fast, 0)])
# Allocate all Cpu constant tensors, this is done last because the Npu-ops
# have to be serialized into flash and scratch tensors first
tensor_allocation.allocate_tensors(
nng,
root_sg,
arch,
permanent_storage,
set((MemType.Permanent_CPU,)),
tensor_allocator=TensorAllocator.LinearAlloc,
verbose_allocation=options.verbose_allocation,
cpu_tensor_alignment=options.cpu_tensor_alignment,
)
npu_performance.calc_new_performance_for_network(nng, arch, network_type, options.verbose_performance)