blob: 04d684e6994438c10ed1f995ad8310cddd0f2a4a [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Compresses and pads the weigths. It also calculates the scales and packs with the biases.
import math
from collections import namedtuple
import numpy as np
from ethosu import mlw_codec
from .architecture_features import Block
from .data_type import DataType
from .nn_graph import SchedulingStrategy
from .numeric_util import round_up
from .operation import NpuBlockType
from .scaling import quantise_scale
from .scaling import reduced_quantise_scale
from .tensor import TensorBlockTraversal
from .tensor import TensorFormat
from .tensor import TensorPurpose
from .tensor import TensorSubPurpose
def encode(weight_stream):
assert np.amin(weight_stream) >= -255
assert np.amax(weight_stream) <= 255
# Encode flattened signed weight stream
compressed = mlw_codec.encode(weight_stream)
# pad with 0xFF as needed so the length of the weight stream
# is a multiple of 16
while (len(compressed) % 16) != 0:
compressed.append(0xFF)
return compressed
def generate_brick(arch, brick_weights, ofm_block, block_traversal, ifm_bitdepth):
is_depthwise = block_traversal == TensorBlockTraversal.DepthWise
is_partkernel = block_traversal == TensorBlockTraversal.PartKernelFirst
subkernel_max = arch.subkernel_max
ofm_ublock = arch.ofm_ublock
ifm_ublock = arch.ifm_ublock
# Expect weights formatted HWIO
ofm_depth = brick_weights.shape[-1]
ifm_depth = brick_weights.shape[-2]
kernel_width = brick_weights.shape[-3]
kernel_height = brick_weights.shape[-4]
# IFM block depth
if is_partkernel or (ifm_bitdepth == 16):
# IFM block depth is always 16 for part-kernel-first
ifm_block_depth = 16
elif ifm_bitdepth == 8:
ifm_block_depth = 32
else:
assert False
stream = []
# Top level striping - OFM blocks in the entire brick's depth
for ofm_block_z in range(0, ofm_depth, ofm_block.depth):
clipped_ofm_block_depth = min(ofm_block.depth, ofm_depth - ofm_block_z)
# IFM blocks required for the brick
for ifm_block_z in range(0, (1 if is_depthwise else ifm_depth), ifm_block_depth):
if is_depthwise:
clipped_ifm_block_depth = ifm_ublock.depth
else:
clipped_ifm_block_depth = (
min(ifm_block_depth, ifm_depth - ifm_block_z) if is_partkernel else ifm_block_depth
)
# Weight decomposition
# Subkernel Splitting (H)
for subkernel_y in range(0, kernel_height, subkernel_max.height):
sub_height = min(kernel_height - subkernel_y, subkernel_max.height)
# Subkernel splitting (W)
for subkernel_x in range(0, kernel_width, subkernel_max.width):
sub_width = min(kernel_width - subkernel_x, subkernel_max.width)
subkernel_elements = sub_width * sub_height
# Part kernel first works across the kernel H/W and needs padding
if is_partkernel:
if ifm_bitdepth == 16 and subkernel_elements % 2 != 0:
subkernel_elements = int(math.ceil(subkernel_elements / 2) * 2)
elif ifm_bitdepth == 8 and subkernel_elements % 4 != 0:
subkernel_elements = int(math.ceil(subkernel_elements / 4) * 4)
# Depthwise Conv requires multiple of 4 kernel elements in its weight block
# this is different from normal conv which is considered "weights depth-first"
elif is_depthwise:
subkernel_elements = int(math.ceil(subkernel_elements / 4.0) * 4)
ifm_block_depth_outer = clipped_ifm_block_depth if is_partkernel else 1
ifm_block_depth_inner = 1 if is_partkernel else clipped_ifm_block_depth
# IFM Ublocks in IFM-block over depth for part-kernel-first mode
# For depth-first IFM Ublocks are traversed after subkernel elements so this loop is ignored.
for ifm_ublk_outer in range(0, ifm_block_depth_outer, ifm_ublock.depth):
# OFM Ublocks in OFM-block over depth
for ofm_ublk in range(0, clipped_ofm_block_depth, ofm_ublock.depth):
# HW Kernel element traversal - cannot be a H/W loop due to element
# padding requirement on depthwise/part-kernel configurations
for element in range(subkernel_elements):
kx = element % sub_width
ky = element // sub_width
# IFM Ublocks in IFM-block over depth (only 1 ublock if depthwise)
# In case of part-kernel-first IFM Ublock traversal have already been handled
# and this loop is ignored.
for ifm_ublk_inner in range(0, ifm_block_depth_inner, ifm_ublock.depth):
# Feed OFM ublock elements
for ofm_ublock_z in range(ofm_ublock.depth):
# Source IFM ublock elements (only 1 element deep if depthwise)
for ifm_ublock_z in range(1 if is_depthwise else ifm_ublock.depth):
# Source position within the current subkernel
wx = subkernel_x + kx
wy = subkernel_y + ky
# Source IFM/OFM slices
ifm_ublk = ifm_ublk_inner + ifm_ublk_outer
ifm_z = ifm_block_z + ifm_ublk + ifm_ublock_z
ofm_z = ofm_block_z + ofm_ublk + ofm_ublock_z
if (ifm_z >= ifm_depth) or (ofm_z >= ofm_depth) or (ky >= sub_height):
stream.append(0)
else:
stream.append(brick_weights[wy][wx][ifm_z][ofm_z])
return stream
# Compress the weights
def compress_weights(tens, arch, npu_block_type, ofm_block, ofm_depth_step, min_val=None, max_val=None):
assert tens.purpose == TensorPurpose.Weights
assert tens.format == TensorFormat.WeightsCompressed
WeightCompressionConfig = namedtuple("WeightCompressionConfig", ["npu_block_type", "ofm_block", "ofm_depth_step"])
# check if weights have already been compressed
wcc = tens.weight_compression_config
if wcc is not None:
assert wcc.npu_block_type == npu_block_type, "Weights not used by the same operator type"
if wcc.ofm_block == ofm_block and wcc.ofm_depth_step == ofm_depth_step:
return
assert tens.quantization is not None
assert tens.quantization.scale_f32 is not None
assert tens.quantization.zero_point is not None
zero_point = tens.quantization.zero_point
quant_buf = tens.quant_values.astype(np.int64)
# Early zero-point correction
weights = quant_buf - zero_point
if len(weights.shape) == 2:
weights = np.expand_dims(np.expand_dims(weights, axis=0), axis=0)
weights_shape = (weights.shape[0], 1, 1, weights.shape[1])
else:
weights_shape = weights.shape
compression_scales = []
compressed_offsets = []
encoded_streams = []
offset = 0
max_single_buffer_len = 0
ifm_bitdepth = tens.consumer_list[0].inputs[0].dtype.size_in_bits()
ifm_depth = weights.shape[-2]
if npu_block_type == NpuBlockType.ConvolutionDepthWise:
tens.block_traversal = TensorBlockTraversal.DepthWise
if npu_block_type == NpuBlockType.ConvolutionMxN:
# Determine which block traversal strategy has better DPU utilization
kernel_size = weights_shape[0] * weights_shape[1]
depth_utilization = weights_shape[2] / round_up(weights_shape[2], 32 if ifm_bitdepth == 8 else 16)
part_kernel_utilization = (weights_shape[2] / round_up(weights_shape[2], 8)) * (
kernel_size / round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2)
)
if part_kernel_utilization >= depth_utilization or ifm_depth <= 8:
# Part-kernel first is always better for ifm depths <= 8
tens.block_traversal = TensorBlockTraversal.PartKernelFirst
else:
tens.block_traversal = TensorBlockTraversal.DepthFirst
# Slice weight stream up depth-ways into bricks and compress
full_ofm_depth = quant_buf.shape[-1]
for idx in range(0, full_ofm_depth, ofm_depth_step):
# Get the weights necessary for this brick
count = min(full_ofm_depth - idx, ofm_depth_step)
brick_weights = weights[:, :, :, idx : idx + count]
# Encode all weights into one chunk
raw_stream = generate_brick(arch, brick_weights, ofm_block, tens.block_traversal, ifm_bitdepth)
encoded = encode(raw_stream)
encoded_streams.append(encoded)
# Remember maximum encoded length for DoubleBuffering
if max_single_buffer_len < len(encoded):
max_single_buffer_len = len(encoded)
# Remember where we put it for linear addressing
compressed_offsets.append(offset)
offset += len(encoded)
assert offset % 16 == 0
# Compression scale tracking
compression_scales.append(len(encoded) / len(raw_stream))
# Also track complete length in the offsets array
compressed_offsets.append(offset)
if tens.sub_purpose == TensorSubPurpose.DoubleBuffer and len(encoded_streams) > 2:
offset = 2 * max_single_buffer_len
assert offset % 16 == 0
tens.storage_shape = [1, 1, 1, offset]
tens.weight_compression_scales = compression_scales
tens.weight_compression_config = WeightCompressionConfig(npu_block_type, ofm_block, ofm_depth_step)
tens.weight_compressed_offsets = compressed_offsets
tens.compression_scale_for_worst_weight_stream = np.amax(compression_scales)
tens.storage_compression_scale = tens.bandwidth_compression_scale = np.average(compression_scales)
tens.compressed_values = encoded_streams
tens.brick_size = (weights_shape[0], weights_shape[1], weights_shape[2], min(tens.shape[-1], ofm_depth_step))
def calc_scales_and_pack_biases(tens, arch, oc_quantum, rescale_for_faf=False):
assert tens.purpose == TensorPurpose.FeatureMap
assert tens.format == TensorFormat.NHWC
# the connected operator should expect a bias input unless it is a FullyConnected
assert "Bias" in tens.consumer_list[0].type or tens.consumer_list[0].type.startswith("FullyConnected")
# the input bias tensor is the same as that connected to the operator
assert tens is tens.consumer_list[0].inputs[2]
# the operator should only have a single output
assert len(tens.consumer_list[0].outputs) == 1
def pack_bias_and_scale(bias, scale, shift):
bias = np.int64(bias)
assert -(1 << (40 - 1)) <= bias < (1 << (40 - 1)) # signed 40-bit range
assert 0 <= scale < (1 << 32) # unsigned 32-bit range
assert 0 <= shift < (1 << 6) # unsigned 6-bit range
# pack the 80 bit value = [0(2-bits),shift(6-bits),scale(32-bits),bias(40-bits)]
data = bytearray(10)
data[0] = (bias >> (0 * 8)) & 0xFF
data[1] = (bias >> (1 * 8)) & 0xFF
data[2] = (bias >> (2 * 8)) & 0xFF
data[3] = (bias >> (3 * 8)) & 0xFF
data[4] = (bias >> (4 * 8)) & 0xFF
data[5] = (scale >> (0 * 8)) & 0xFF
data[6] = (scale >> (1 * 8)) & 0xFF
data[7] = (scale >> (2 * 8)) & 0xFF
data[8] = (scale >> (3 * 8)) & 0xFF
data[9] = shift & 0x3F
return data
biases = tens.quant_values
first_consumer_op = tens.consumer_list[0]
ifm_dtype = first_consumer_op.inputs[0].dtype
ifm_scale = first_consumer_op.inputs[0].quantization.scale_f32
ofm_scale = first_consumer_op.outputs[0].quantization.scale_f32
weight_scales = first_consumer_op.inputs[1].quantization.scale_f32
# biases can have multiple consumers for rnn cells. if so, then check that they are all the same
for op in tens.consumer_list[1:]:
assert ifm_scale == op.inputs[0].quantization.scale_f32
assert ofm_scale == op.outputs[0].quantization.scale_f32
assert weight_scales == op.inputs[1].quantization.scale_f32
if not hasattr(weight_scales, "__iter__"):
# If weight_scales is not already an iterable make it into a list
weight_scales = [weight_scales]
# Convert scales to np.double (from np.float32) to conform to TensorFlow Lite which
# uses double during scaling calculations
# TensorFlow Lite casts the scales slightly differently for uint8 and int8
if not rescale_for_faf:
if ifm_dtype == DataType.uint8:
scales = [np.double(ifm_scale * weight_scale) / np.double(ofm_scale) for weight_scale in weight_scales]
elif ifm_dtype == DataType.int8 or ifm_dtype == DataType.int16:
scales = [
(np.double(ifm_scale) * np.double(weight_scale)) / np.double(ofm_scale)
for weight_scale in weight_scales
]
else:
assert False, str(ifm_dtype) + " not implemented"
else:
if ifm_dtype == DataType.uint8:
scales = [np.double(ifm_scale * weight_scale * 0x3000) for weight_scale in weight_scales]
elif ifm_dtype == DataType.int8 or ifm_dtype == DataType.int16:
scales = [(np.double(ifm_scale * 0x3000) * np.double(weight_scale)) for weight_scale in weight_scales]
else:
assert False, str(ifm_dtype) + " not implemented"
# quantise all of the weight scales into (scale_factor, shift)
if ifm_dtype == DataType.int16:
quantised_scales = [reduced_quantise_scale(scale) for scale in scales]
else:
quantised_scales = [quantise_scale(scale) for scale in scales]
for _, shift in quantised_scales:
assert shift >= 16
# pack the biases and scales
tens.compressed_values = []
if len(quantised_scales) == 1:
# If only 1 quantised scale is used, repeat that value for the length of the biases
quantised_scales = [quantised_scales[0]] * len(biases)
assert len(quantised_scales) == len(biases)
for i, bias in enumerate(biases):
tens.compressed_values.append(pack_bias_and_scale(bias, *quantised_scales[i]))
tens.element_size_bytes = 10
# Figure out if we need padded storage (extra whole elements)
padding = (len(tens.compressed_values) * tens.element_size_bytes) % 16
if padding != 0:
padding = 16 - padding
# This adds enough padding to allow over-reads
while padding > 0:
tens.compressed_values.append(pack_bias_and_scale(0, 0, 0))
padding = padding - tens.element_size_bytes
tens.storage_shape = [len(tens.compressed_values)]
def update_pass_weight_and_scale_tensors(nng, arch):
def find_npu_usage_of_tensor(tens):
# TODO: This function is identical to the one in mark_tensors.py. A common version should be used.
for op in tens.consumers():
if op.type == "DMA":
return find_npu_usage_of_tensor(op.outputs[0])
if "npu_block_type" in op.attrs:
return op.attrs["npu_block_type"]
return NpuBlockType.Default
for sg in nng.subgraphs:
for ps in sg.passes:
if ps.weight_tensor is not None:
npu_usage_of_tensor = find_npu_usage_of_tensor(ps.weight_tensor)
if npu_usage_of_tensor == NpuBlockType.ConvolutionDepthWise:
ps.weight_tensor.quant_values = np.transpose(ps.weight_tensor.quant_values, (0, 1, 3, 2))
ps.weight_tensor.shape = ps.weight_tensor.storage_shape = ps.weight_tensor.bandwidth_shape = list(
ps.weight_tensor.quant_values.shape
)
ps.weight_tensor.weight_transpose_depthwise = True
needs_dma = len(ps.weight_tensor.ops) == 1 and ps.weight_tensor.ops[0].type == "DMA"
if ps.cascade.strategy == SchedulingStrategy.WeightStream and needs_dma:
ofm_depth_step = ps.block_config[-1]
else:
ofm_depth_step = ps.weight_tensor.shape[-1]
compress_weights(
ps.weight_tensor,
arch,
npu_usage_of_tensor,
Block(ps.block_config[-3], ps.block_config[-4], ps.block_config[-1]),
ofm_depth_step,
)
# Update source tensor
if len(ps.weight_tensor.ops) == 1 and ps.weight_tensor.ops[0].type == "DMA":
src_tens = ps.weight_tensor.ops[0].inputs[0]
src_tens.shape = ps.weight_tensor.shape
src_tens.weight_transpose_depthwise = ps.weight_tensor.weight_transpose_depthwise
src_tens.quant_values = ps.weight_tensor.quant_values
src_tens.compressed_values = ps.weight_tensor.compressed_values
src_tens.storage_shape = [1, 1, 1, ps.weight_tensor.weight_compressed_offsets[-1]]
src_tens.brick_size = ps.weight_tensor.brick_size
src_tens.weight_compression_scales = ps.weight_tensor.weight_compression_scales
src_tens.weight_compressed_offsets = ps.weight_tensor.weight_compressed_offsets
if ps.scale_tensor is not None:
rescale_for_faf = False
activation_ops = set(("Sigmoid", "Tanh"))
if (ps.ops[-1].type in activation_ops) and (ps.npu_block_type != NpuBlockType.ElementWise):
rescale_for_faf = True
calc_scales_and_pack_biases(ps.scale_tensor, arch, ps.block_config[3], rescale_for_faf)