blob: 06de0d9af983ef776786cad8e1c072a7a773e864 [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Contains data types used in the external API for code generation
from enum import auto
from enum import Enum
from typing import List
from typing import NamedTuple
from typing import Optional
from typing import Tuple
class NpuElementWiseOp(Enum):
"""
Elementwise operation
"""
ADD = auto()
SUB = auto()
MUL = auto()
ABS = auto()
MIN = auto()
MAX = auto()
LRELU = auto() # Leaky relu
CLZ = auto() # Number leading zeros
SHR = auto() # Rounded right-shift
SHL = auto() # Bitwise shift-left
class NpuPoolingOp(Enum):
"""
Pooling operation
"""
MAX = auto()
AVERAGE = auto()
REDUCE_SUM = auto()
class NpuActivationOp(Enum):
"""
Activation function
"""
NONE_OR_RELU = auto() # Clamps output using min/max
TANH = auto()
SIGMOID = auto()
TABLE_LOOKUP = auto() # Performs table look-up, using the provided table lookup index
class NpuRoundingMode(Enum):
"""
Available rounding modes
"""
TFL = auto() # TensorFlow Lite rounding
TRUNCATE = auto() # Truncate towards zero
NATURAL = auto() # Round to nearest with x.5 rounded up, towards +infinity
class NpuLayout(Enum):
"""
Tensor layout of feature maps
"""
NHWC = auto()
NHCWB16 = auto()
def __str__(self):
return self.name
class NpuResamplingMode(Enum):
"""
Resampling mode
"""
NONE = auto() # No resampling is performed
NEAREST = auto() # 2x2 insert nearest
TRANSPOSE = auto() # 2x2 transpose
class NpuBlockTraversal(Enum):
"""
Block-traversal of weights
"""
DEPTH_FIRST = auto()
PART_KERNEL_FIRST = auto()
class NpuDataType(Enum):
"""
Supported data types in feature maps
"""
UINT8 = 8, False, auto()
INT8 = 8, True, auto()
UINT16 = 16, False, auto()
INT16 = 16, True, auto()
INT32 = 32, True, auto()
def is_signed(self) -> bool:
"""Checks if this data type is signed or unsigned"""
return self.value[1]
def size_in_bits(self) -> int:
""" Size of the data type in bits"""
return self.value[0]
def size_in_bytes(self) -> int:
""" Size of the data type in bytes"""
return self.value[0] // 8
def min_value(self) -> int:
"""Minimum value of this type"""
if self.is_signed():
return -(1 << (self.size_in_bits() - 1))
else:
return 0
def max_value(self) -> int:
"""Maximum value of this type"""
if self.is_signed():
return (1 << (self.size_in_bits() - 1)) - 1
else:
return (1 << self.size_in_bits()) - 1
def __str__(self):
return self.name
__repr__ = __str__
class NpuAddressRange(NamedTuple):
"""
Address range
"""
region: int # Memory region, a value between 0 and 7
address: int # Address, offset from the region's base address
length: int # The length of the range, in bytes
def __str__(self):
return f"(region={self.region}, address={hex(self.address)}, length={self.length})"
class NpuTileBox(NamedTuple):
"""
Specifies the addresses and dimensions of the tiles of a feature map.
A feature map can use 1 to 4 tiles
"""
height_0: int # The height of tile 0
height_1: int # The height of tile 1, 0 if unused
width_0: int # the width of tile 0, and tile 2 (if used)
addresses: List[int] # A list of 4 addresses, set unused addresses to 0
class NpuShape3D(NamedTuple):
"""
Shape of (part of) a feature map
"""
height: int
width: int
depth: int
class NpuQuantization(NamedTuple):
"""
Quantization parameters
"""
scale_f32: Optional[float]
zero_point: int
class NpuPadding(NamedTuple):
"""
Padding to be applied to a convolution operation
"""
top: int
left: int
bottom: int
right: int
class NpuActivation:
"""
Activation function, fused with NPU operations
"""
def __init__(self, op_type: NpuActivationOp):
self.op_type = op_type # The activation operation to be performed
# min/max are optional
self.min: Optional[float] = None # E.g. set to 0.0 for RELU
self.max: Optional[float] = None # E.g. set to 6.0 for RELU6
# Table lookup index, only applicable for TABLE_LOOKUP activation, 0-7
self.lookup_table_index: int = 0
class NpuFeatureMap:
"""
Basic information about IFM, IFM2, OFM
"""
def __init__(self):
self.data_type: NpuDataType = NpuDataType.UINT8
# The memory region, a value 0-7
self.region: int = 0
# Shape of the feature map
self.shape: NpuShape3D = NpuShape3D(height=0, width=0, depth=0)
# The tiles that comprise the feature map. In the normal case when only 1 tile is used,
# height_0 == self.shape.height, height_1 is 0, width_0 == self.shape.width, addresses[1:] are set to 0
self.tiles: NpuTileBox = NpuTileBox(height_0=0, height_1=0, width_0=0, addresses=[0, 0, 0, 0])
self.quantization: Optional[NpuQuantization]
self.layout: NpuLayout = NpuLayout.NHWC
# x/y/c strides used by the NPU when traversing the feature map, if None, vela will use default strides
self.strides: Optional[NpuShape3D] = None
class NpuKernel:
"""
Kernel information for NPU operations
"""
def __init__(self, w: int, h: int, stride_x: int = 1, stride_y: int = 1, dilation_x: int = 1, dilation_y: int = 1):
assert stride_x > 0 and stride_y > 0
assert dilation_x > 0 and dilation_y > 0
self.width = w
self.height = h
self.stride_x = stride_x
self.stride_y = stride_y
self.dilation_x = dilation_x
self.dilation_y = dilation_y
class NpuOperationType(Enum):
"""
Type of NPU operation
"""
Dma = auto()
Conv2D = auto()
ConvDepthWise = auto()
Pooling = auto()
ElementWise = auto()
class NpuOperation:
"""
Base class for all NPU operations
"""
def __init__(self, op_type: NpuOperationType):
self.op_type = op_type
class NpuDmaOperation(NpuOperation):
"""
DMA operation
"""
def __init__(self, src: NpuAddressRange, dest: NpuAddressRange):
super().__init__(NpuOperationType.Dma)
self.src = src
self.dest = dest
# DMA channel, usually 0 (user channel)
self.channel: int = 0
# Channel mode, 0 = external, 1 = internal (should usually be 0)
self.mode: int = 0
class NpuBlockOperation(NpuOperation):
"""
Base class for operations which produce an OFM
"""
def __init__(self, op_type: NpuOperationType):
super().__init__(op_type)
self.ifm: Optional[NpuFeatureMap] = None
self.ifm2: Optional[NpuFeatureMap] = None
# The non-quantized scalar value in a binary elementwise operation. Only set if IFM2 is scalar
self.ifm2_scalar: Optional[float] = None
self.ofm: Optional[NpuFeatureMap] = None
self.kernel: Optional[NpuKernel] = None
# Weights, one element for each NPU core, empty if no weights are used.
# Must have been compressed using weight_compressor.encode_weights()
self.weights: List[NpuAddressRange] = []
# Biases, one element for each NPU core, empty if no bias is used.
# Must have been encoded using weight_compressor.encode_bias()
self.biases: List[NpuAddressRange] = []
self.padding: Optional[NpuPadding] = None
# Optional activation function to be applied
self.activation: Optional[NpuActivation] = None
# The block config is the unit of work in which the NPU generates the OFM.
# If the operation has weights, the depth of the block config must be the same as
# the ofm depth used in the call to weight_compressor.encode_weights()
# If set to None, vela will determine a suitable block size (can only be used if there are no weights)
# If block_config.width and height are set to -1, vela will determine suitable width/height
self.block_config: Optional[NpuShape3D] = None # OFM_BLK parameters
self.rounding_mode: NpuRoundingMode = NpuRoundingMode.TFL
# Set to True if the operations is fused with a Quantize operation (affects scaling)
self.fused_quantize: bool = False
# IFM upscaling to be applied
self.ifm_upscale: NpuResamplingMode = NpuResamplingMode.NONE
class NpuConv2DOperation(NpuBlockOperation):
"""
NPU_OP_CONV operation
"""
def __init__(self):
super().__init__(NpuOperationType.Conv2D)
# Block traversal must be consistent with the block_traversal parameter specified in
# weight_compressor.encode_weights()
self.block_traversal: NpuBlockTraversal = NpuBlockTraversal.PART_KERNEL_FIRST
class NpuConvDepthWiseOperation(NpuBlockOperation):
"""
NPU_OP_DEPTHWISE operation
"""
def __init__(self):
super().__init__(NpuOperationType.ConvDepthWise)
class NpuPoolingOperation(NpuBlockOperation):
"""
NPU_OP_POOL operation
"""
def __init__(self, pooling_op_type: NpuPoolingOp):
super().__init__(NpuOperationType.Pooling)
self.sub_op_type: NpuPoolingOp = pooling_op_type
# Set to a float value for ResizeBilinear operations (affects scaling), else to None
self.rescale: Optional[float] = None
class NpuElementWiseOperation(NpuBlockOperation):
"""
NPU_OP_ELEMENTWISE operation
"""
def __init__(self, elementwise_op_type: NpuElementWiseOp):
super().__init__(NpuOperationType.ElementWise)
self.sub_op_type: NpuElementWiseOp = elementwise_op_type
# Set to True for binary operators where IFM2 should be used as first operand
self.reversed_operands: bool = False
# Set to a tuple (scale, shift) for explicit rescale, else to None
self.rescale: Optional[Tuple] = None