blob: 77501210570b23b955d53ed7745ac4743ecd0172 [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Conversion from high level command to NpuOperation
from enum import IntEnum
from typing import List
from typing import Optional
from .api import NpuActivation
from .api import NpuActivationOp
from .api import NpuAddressRange
from .api import NpuBlockOperation
from .api import NpuBlockTraversal
from .api import NpuConv2DOperation
from .api import NpuConvDepthWiseOperation
from .api import NpuDataType
from .api import NpuDmaOperation
from .api import NpuElementWiseOp
from .api import NpuElementWiseOperation
from .api import NpuFeatureMap
from .api import NpuKernel
from .api import NpuLayout
from .api import NpuOperation
from .api import NpuPadding
from .api import NpuPoolingOp
from .api import NpuPoolingOperation
from .api import NpuQuantization
from .api import NpuResamplingMode
from .api import NpuRoundingMode
from .api import NpuShape3D
from .api import NpuTileBox
from .architecture_features import ArchitectureFeatures
from .data_type import DataType
from .high_level_command_stream import Box
from .high_level_command_stream import Command
from .high_level_command_stream import CommandType
from .high_level_command_stream import DMA
from .high_level_command_stream import NpuStripe
from .operation import Kernel
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .tensor import MemType
from .tensor import Tensor
from .tensor import TensorBlockTraversal
from .tensor import TensorFormat
from .tensor import TensorPurpose
unary_elementwise_ops = set((NpuElementWiseOp.ABS, NpuElementWiseOp.LRELU, NpuElementWiseOp.CLZ,))
class BasePointerIndex(IntEnum):
WeightTensor = 0 # base address index for the Weight tensor
ScratchTensor = 1 # base address index for the Scratch_tensor in the TensorArena
ScratchFastTensor = 2 # base address for the Scratch_fast_tensor
Mem2Mem = (1 << 8) | (3 << 0) # base address slot for memory 2 memory transfer
dtype_map = {
DataType.uint8: NpuDataType.UINT8,
DataType.int8: NpuDataType.INT8,
DataType.uint16: NpuDataType.UINT16,
DataType.int16: NpuDataType.INT16,
DataType.int32: NpuDataType.INT32,
}
block_traversal_map = {
TensorBlockTraversal.DepthFirst: NpuBlockTraversal.DEPTH_FIRST,
TensorBlockTraversal.PartKernelFirst: NpuBlockTraversal.PART_KERNEL_FIRST,
}
# Maps an elementwise op type to an elementwise_mode enum value used by NPU_OP_ELEMENTWISE
elementwise_op_map = {
Op.Mul: NpuElementWiseOp.MUL,
Op.Add: NpuElementWiseOp.ADD,
Op.Sub: NpuElementWiseOp.SUB,
Op.Minimum: NpuElementWiseOp.MIN,
Op.Maximum: NpuElementWiseOp.MAX,
Op.LeakyRelu: NpuElementWiseOp.LRELU,
Op.Abs: NpuElementWiseOp.ABS,
Op.CLZ: NpuElementWiseOp.CLZ,
Op.SHR: NpuElementWiseOp.SHR,
Op.SHL: NpuElementWiseOp.SHL,
}
def to_npu_kernel(kernel: Kernel) -> NpuKernel:
"""Converts the given internally used kernel object to NpuKernel (of public API)"""
return NpuKernel(
kernel.width, kernel.height, kernel.stride.x, kernel.stride.y, kernel.dilation.x, kernel.dilation.y
)
def to_kernel(kernel: Optional[NpuKernel]) -> Kernel:
"""Converts the given public API object to Kernel (used internally)"""
if kernel is None:
return Kernel(1, 1)
return Kernel(kernel.width, kernel.height, kernel.stride_x, kernel.stride_y, kernel.dilation_x, kernel.dilation_y)
def ifm_ifm2_correct_order(ifm_shape: List[int], ifm2_shape: List[int]) -> bool:
if ifm_shape == []:
# Scalar needs to be in IFM2
return False
if ifm2_shape == []:
return True
for ifm, ifm2 in zip(ifm_shape, ifm2_shape):
if ifm != ifm2 and ifm == 1:
# Broadcasted FM needs to be in IFM2
return False
return True
def get_rounding_mode(op: Operation) -> NpuRoundingMode:
"""Specifies type of rounding to be used"""
rounding_mode = NpuRoundingMode.TFL
if op.type == Op.ResizeBilinear:
rounding_mode = NpuRoundingMode.TRUNCATE
elif (
op.type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise)
and op.ifm.dtype == DataType.int16
):
rounding_mode = NpuRoundingMode.NATURAL
elif op.type.is_avgpool_op() and op.memory_function == Op.ConcatSliceWrite and op.kernel.elements_wh() == 1:
rounding_mode = NpuRoundingMode.NATURAL
rounding_mode = op.attrs.get("rounding_mode", rounding_mode)
return rounding_mode
def create_padding(cmd: NpuStripe, primary_op: Operation) -> NpuPadding:
if primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
return NpuPadding(top=0, left=0, bottom=0, right=0)
explicit_padding = list(primary_op.attrs["explicit_padding"]) # (top, left, bottom, right)
# Check if this is for horizontal ifm streaming
if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
explicit_padding[0] = cmd.pad_top
explicit_padding[2] = cmd.pad_bottom
# Indexing from end since a 1x1 Avgpool might have been added with non 4-dimensional input/output,
# because of activation function needed to be fused.
if cmd.ifm_box.start_coord[-2] > 0:
explicit_padding[1] = 0
if cmd.ifm_box.end_coord[-2] < cmd.ifm_tensor.shape[-2]:
explicit_padding[3] = 0
return NpuPadding(
top=explicit_padding[0], left=explicit_padding[1], bottom=explicit_padding[2], right=explicit_padding[3]
)
def get_region(tens: Tensor, arch: ArchitectureFeatures) -> int:
if arch.feature_map_storage_mem_area == arch.fast_storage_mem_area:
base_ptr_idx_map = {
MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
MemType.Scratch: BasePointerIndex.ScratchTensor,
MemType.Scratch_fast: BasePointerIndex.ScratchTensor,
}
else:
base_ptr_idx_map = {
MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
MemType.Scratch: BasePointerIndex.ScratchTensor,
MemType.Scratch_fast: BasePointerIndex.ScratchFastTensor,
}
return int(base_ptr_idx_map[tens.mem_type])
def get_upscale(op: Operation) -> NpuResamplingMode:
upscale = NpuResamplingMode.NONE
if op.type == Op.ResizeBilinear:
# perform nearest neighbor upscale
upscale = NpuResamplingMode.NEAREST
elif op.type == Op.Conv2DBackpropInputSwitchedBias:
# perform insert zero upscale
upscale = NpuResamplingMode.TRANSPOSE
return upscale
def get_ifm_depth(npu_block_type: NpuBlockType, ifm_box: Box, ofm_box: Box) -> int:
if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
shape = ifm_box.get_size_shape()
else:
shape = ofm_box.get_size_shape()
return shape[-1]
def use_zero_point_0(ps, tens: Tensor, is_ifm_tensor: bool) -> bool:
"""Checks if quantization should use 0 as zero point"""
if tens.dtype == DataType.int32 and is_ifm_tensor:
return True
if ps.primary_op.type not in (Op.AvgPool, Op.ResizeBilinear, Op.CLZ, Op.SHL):
return False
fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
forced_ofm_quantization = ps.primary_op.forced_output_quantization
use_0 = (
(ps.primary_op.activation is None or forced_ofm_quantization is not None)
and (ps.primary_op.memory_function != Op.ConcatSliceWrite)
and not fused_quantize
)
return use_0
def get_ifm_or_ifm2_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
"""Gets quantization for IFM/IFM2"""
if tens.quantization is None:
return None
if use_zero_point_0(ps, tens, True):
zero_point = 0
else:
zero_point = int(tens.quantization.zero_point)
return NpuQuantization(scale_f32=tens.quantization.scale_f32, zero_point=zero_point)
def get_ofm_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
"""Gets quantization for OFM"""
op = ps.primary_op
# Check if operation's output quantization is should be used instead of the output tensor's quantization
# (used in LUTs)
ofm_quant = op.forced_output_quantization if op.forced_output_quantization is not None else tens.quantization
if ofm_quant is None:
return None
if use_zero_point_0(ps, tens, False):
zero_point = 0
else:
zero_point = int(ofm_quant.zero_point)
return NpuQuantization(scale_f32=ofm_quant.scale_f32, zero_point=zero_point)
def create_feature_map(tens: Tensor, box: Box, arch: ArchitectureFeatures) -> NpuFeatureMap:
"""Creates feature map with common fields populated"""
fm = NpuFeatureMap()
fm.region = get_region(tens, arch)
fm.data_type = dtype_map[tens.dtype]
if tens.format == TensorFormat.NHWC:
fm.layout = NpuLayout.NHWC
elif tens.format == TensorFormat.NHCWB16:
fm.layout = NpuLayout.NHCWB16
else:
assert 0, "Incorrect tensor format"
height_0, height_1, width_0, addresses = tens.addresses_for_rolling_buffer(box.start_coord, box.end_coord)
for idx, addr in enumerate(addresses):
if addr is None:
addresses[idx] = 0
fm.tiles = NpuTileBox(
height_0=height_0, height_1=height_1, width_0=width_0, addresses=[int(addr) for addr in addresses]
)
strides = tens.get_strides()
fm.strides = NpuShape3D(height=int(strides[2]), width=int(strides[3]), depth=int(strides[1]))
return fm
def create_weights(weight_tensor: Tensor, weight_box: Box, arch: ArchitectureFeatures) -> List[NpuAddressRange]:
"""Returns address ranges for weights"""
weights = []
stream_index = weight_tensor.compressed_stream_index_from_coord(weight_box.start_coord)
weight_substream_offsets = weight_tensor.compressed_values_substream_offsets[stream_index]
substreams = len(weight_substream_offsets) - 1 # Offset list must terminate with full stream length
# Extract weight substream offsets and calculate their lengths
assert len(weight_substream_offsets) > 1 and (weight_substream_offsets[0] == 0)
weight_addr = weight_tensor.address_for_coordinate(weight_box.start_coord)
region = get_region(weight_tensor, arch)
for core in range(substreams):
address = weight_addr + weight_substream_offsets[core]
length = weight_substream_offsets[core + 1] - weight_substream_offsets[core]
addr_range = NpuAddressRange(region, int(address), int(length))
weights.append(addr_range)
return weights
def create_biases(
weight_tensor: Tensor, scale_tensor: Tensor, weight_box: Box, arch: ArchitectureFeatures
) -> List[NpuAddressRange]:
"""Returns address ranges for biases"""
biases = []
stream_index = weight_tensor.compressed_stream_index_from_coord(weight_box.start_coord)
scale_substream_offsets = scale_tensor.compressed_values_substream_offsets[stream_index]
substreams = len(scale_substream_offsets) - 1 # Offset list must terminate with full stream length
# Extract scale substream offsets and calculate their lengths
assert len(scale_substream_offsets) > 1 and (scale_substream_offsets[0] == 0)
scale_addr = scale_tensor.address_for_coordinate(weight_box.start_coord[-1:])
region = get_region(scale_tensor, arch)
for core in range(substreams):
address = scale_addr + scale_substream_offsets[core]
length = scale_substream_offsets[core + 1] - scale_substream_offsets[core]
addr_range = NpuAddressRange(region, int(address), int(length))
biases.append(addr_range)
return biases
def create_npu_activation(op: Operation) -> NpuActivation:
"""Creates fused activation function"""
if op.activation is None:
return NpuActivation(NpuActivationOp.NONE_OR_RELU)
faf = op.activation.op_type
act_op = NpuActivationOp.NONE_OR_RELU
if faf == Op.Tanh:
act_op = NpuActivationOp.TANH
elif faf == Op.Sigmoid:
act_op = NpuActivationOp.SIGMOID
elif faf == Op.LUT:
act_op = NpuActivationOp.TABLE_LOOKUP
elif not faf.is_relu_op():
raise Exception("Unsupported fused_activation_function = " + faf.name)
act = NpuActivation(act_op)
act.min = op.activation.min
act.max = op.activation.max
act.lookup_table_index = op.activation.lut_index
return act
def set_common_op_fields(npu_op: NpuBlockOperation, cmd: NpuStripe, arch: ArchitectureFeatures):
"""Sets common fields of the given operation"""
ps = cmd.ps
op = ps.primary_op
in_shape = cmd.ifm_box.get_size_shape()
out_shape = cmd.ofm_box.get_size_shape()
ofm_height = out_shape[-3] if len(out_shape) >= 4 else 1
ofm_width = out_shape[-2] if len(out_shape) >= 2 else 1
ofm_depth = out_shape[-1] if len(out_shape) >= 1 else 1
ifm_height = in_shape[-3] if len(in_shape) >= 4 else 1
if op.type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
ifm_depth = in_shape[-1] if len(in_shape) >= 1 else 1
else:
ifm_depth = ofm_depth
npu_op.ifm = create_feature_map(cmd.ifm_tensor, cmd.ifm_box, arch)
npu_op.ifm.shape = NpuShape3D(height=ifm_height, width=cmd.ifm_tensor.shape[-2], depth=ifm_depth)
npu_op.ifm.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm_tensor)
npu_op.ofm = create_feature_map(cmd.ofm_tensor, cmd.ofm_box, arch)
npu_op.ofm.shape = NpuShape3D(height=ofm_height, width=ofm_width, depth=ofm_depth)
npu_op.ofm.quantization = get_ofm_quantization(ps, cmd.ofm_tensor)
if cmd.weight_tensor is not None:
npu_op.weights = create_weights(cmd.weight_tensor, cmd.weight_box, arch)
if cmd.scale_tensor is not None:
npu_op.biases = create_biases(cmd.weight_tensor, cmd.scale_tensor, cmd.weight_box, arch)
npu_op.activation = create_npu_activation(op)
npu_op.rounding_mode = get_rounding_mode(op)
npu_op.block_config = NpuShape3D(height=ps.block_config[0], width=ps.block_config[1], depth=ps.block_config[3])
if not op.type.is_elementwise_op():
npu_op.padding = create_padding(cmd, op)
npu_op.kernel = to_npu_kernel(op.kernel)
npu_op.ifm_upscale = get_upscale(op)
npu_op.fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
return npu_op
def create_npu_conv2d_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConv2DOperation:
"""Converts the command to NpuConv2DOperation"""
npu_op = NpuConv2DOperation()
set_common_op_fields(npu_op, cmd, arch)
if cmd.ps.primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
npu_op.block_traversal = NpuBlockTraversal.DEPTH_FIRST
else:
npu_op.block_traversal = block_traversal_map[cmd.weight_tensor.block_traversal]
return npu_op
def create_npu_conv_depthwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConvDepthWiseOperation:
"""Converts the command to NpuConvDepthWiseOperation"""
npu_op = NpuConvDepthWiseOperation()
set_common_op_fields(npu_op, cmd, arch)
return npu_op
def create_npu_pool_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuPoolingOperation:
"""Converts the command to NpuPoolingOperation"""
ps = cmd.ps
op = ps.primary_op
pool_op = NpuPoolingOp.AVERAGE
if op.type.is_maxpool_op():
pool_op = NpuPoolingOp.MAX
elif op.type.is_avgpool_op() or op.type == Op.ResizeBilinear:
pool_op = NpuPoolingOp.AVERAGE
elif op.type == Op.ReduceSum:
pool_op = NpuPoolingOp.REDUCE_SUM
else:
assert 0, f"Unknown pool type {op.type}"
npu_op = NpuPoolingOperation(pool_op)
set_common_op_fields(npu_op, cmd, arch)
# Pooling specific info
if op.type == Op.ResizeBilinear and "rescale" in op.attrs:
npu_op.rescale = op.attrs["rescale"]
return npu_op
def create_npu_elementwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuElementWiseOperation:
"""Converts the command to NpuElementWiseOperation"""
ps = cmd.ps
op = ps.primary_op
assert op.type in elementwise_op_map, f"Unknown elementwise type {op.type}"
elemwise_op = elementwise_op_map[op.type]
npu_op = NpuElementWiseOperation(elemwise_op)
if elemwise_op not in unary_elementwise_ops:
if not ifm_ifm2_correct_order(cmd.ifm_tensor.shape, cmd.ifm2_tensor.shape):
# The scalar/broadcasted feature map has to be the ifm2 tensor so switch the ifms
cmd.ifm_tensor, cmd.ifm2_tensor = cmd.ifm2_tensor, cmd.ifm_tensor
cmd.ifm_box, cmd.ifm2_box = cmd.ifm2_box, cmd.ifm_box
npu_op.reversed_operands = True
npu_op.ifm2 = create_feature_map(cmd.ifm2_tensor, cmd.ifm2_box, arch)
npu_op.ifm2.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm2_tensor)
if cmd.ifm2_tensor.shape == []:
# scalar
assert cmd.ifm2_tensor.quant_values.size == 1
npu_op.ifm2_scalar = cmd.ifm2_tensor.values.item(0)
npu_op.ifm2.shape = NpuShape3D(height=0, width=0, depth=0)
else:
box_shp = cmd.ifm2_box.get_size_shape()
height = box_shp[-3] if len(box_shp) >= 3 else 1
npu_op.ifm2.shape = NpuShape3D(height=height, width=cmd.ifm2_tensor.shape[-2], depth=box_shp[-1])
set_common_op_fields(npu_op, cmd, arch)
# Check if output scale needs to be overridden
output_scale = None
if op.type == Op.Add and "resizebilinear" in op.attrs:
# Force output scale same as the input scale for
# resizebilinear 1x1 that is converted to add
output_scale = npu_op.ifm2.quantization.scale_f32
if op.type == Op.LeakyRelu:
output_scale = op.attrs["alpha"]
if op.type in (Op.Add, Op.Sub) and "rescale" in op.attrs:
npu_op.rescale = op.attrs.get("rescale")
if op.type in (Op.Add, Op.Mul, Op.Sub):
if op.activation is not None and op.activation.op_type in (Op.Sigmoid, Op.Tanh):
output_scale = 1 / 0x3000
if output_scale is not None:
npu_op.ofm.quantization = NpuQuantization(scale_f32=output_scale, zero_point=npu_op.ofm.quantization.zero_point)
return npu_op
def create_dma_op(cmd: DMA, arch: ArchitectureFeatures) -> NpuDmaOperation:
"""Converts the command to NpuDmaOperation"""
src_region = get_region(cmd.in_tensor, arch)
if cmd.out_tensor.purpose == TensorPurpose.LUT:
dest_region = BasePointerIndex.Mem2Mem
else:
dest_region = get_region(cmd.out_tensor, arch)
start_coord = cmd.box.start_coord
src_addr = cmd.in_tensor.address_for_coordinate(start_coord)
dest_addr = cmd.out_tensor.address_for_coordinate(start_coord)
if cmd.in_tensor.compressed_values is not None:
if cmd.out_tensor.purpose == TensorPurpose.FSBias:
sz = cmd.in_tensor.storage_size()
else:
stream_index = cmd.in_tensor.compressed_stream_index_from_coord(start_coord)
sz = cmd.in_tensor.size_of_compressed_stream(stream_index)
else:
sz = cmd.in_tensor.address_for_coordinate(cmd.box.end_coord, is_top_box=True) - src_addr
src = NpuAddressRange(src_region, int(src_addr), int(sz))
dest = NpuAddressRange(dest_region, int(dest_addr), int(sz))
return NpuDmaOperation(src, dest)
def convert_command_to_npu_op(cmd: Command, arch: ArchitectureFeatures) -> NpuOperation:
"""Converts the high level command to NpuOperation"""
if cmd.cmdtype == CommandType.DMA:
npu_op = create_dma_op(cmd, arch)
elif cmd.cmdtype == CommandType.NpuStripe:
npu_block_type = cmd.ps.primary_op.type.npu_block_type
if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct):
npu_op = create_npu_conv2d_op(cmd, arch)
elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
npu_op = create_npu_conv_depthwise_op(cmd, arch)
elif npu_block_type in (NpuBlockType.Pooling, NpuBlockType.ReduceSum):
npu_op = create_npu_pool_op(cmd, arch)
elif npu_block_type == NpuBlockType.ElementWise:
npu_op = create_npu_elementwise_op(cmd, arch)
else:
assert 0, f"Unknown command type {npu_block_type}"
# add a link to the high level command for debugging purposes
npu_op.cmd = cmd
return npu_op