blob: 80f2c2791d26da6c8946765323e0f938bc8a17dc [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# NPU performance estimation functions to estimate performance of a Pass and CascadedPass. Uses a model that takes the
# maximum of the 'cycles required for bandwidth' and 'cycles required for computing'.
#
# Called during scheduling to evaluate different proposals, as well as post-scheduling to provide a final performance
# estimate.
from enum import auto
from enum import IntEnum
import numpy as np
from . import numeric_util
from .architecture_features import Accelerator
from .architecture_features import Block
from .data_type import DataType
from .nn_graph import PassPlacement
from .nn_graph import SchedulerRewrite
from .operation import NpuBlockType
from .operation import Op
from .shared_buffer_allocation import is_acc_40bits_used
from .tensor import MemArea
from .tensor import shape_num_elements
from .tensor import TensorBlockTraversal
from .tensor import TensorFormat
from .tensor import TensorPurpose
def rolling_buffer_dims_from_passes(arch, ps1, block_config_ps1, ps2, block_config_ps2):
ofm_block = Block(block_config_ps2[-3], block_config_ps2[-4], block_config_ps2[-1])
kernel = ps2.primary_op.kernel
if ps2.npu_block_type in set((NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct)):
op = ps2.primary_op
ifm_block_depth = arch.calc_ifm_block_depth(op.ifm.shape[-1], op.ifm.dtype.size_in_bits())
else:
ifm_block_depth = block_config_ps2[-1]
ifm_block = arch.get_ifm_block_size(ifm_block_depth, ofm_block, kernel, arch.ofm_block_max)
# The performed height calculation is for worst case
height = numeric_util.round_up(ifm_block.height + block_config_ps1[0], block_config_ps1[0])
width = ifm_block.width
return [height, width]
class PassCycles(IntEnum):
Npu = 0
Cpu = auto()
SramAccess = auto()
DramAccess = auto()
OnChipFlashAccess = auto()
OffChipFlashAccess = auto()
Total = auto()
Size = auto()
def display_name(self):
return (
"NPU",
"CPU",
"SRAM Access",
"DRAM Access",
"On-chip Flash Access",
"Off-chip Flash Access",
"Total",
"Size",
)[self.value]
def identifier_name(self):
return (
"npu",
"cpu",
"sram_access",
"dram_access",
"on_chip_flash_access",
"off_chip_flash_access",
"total",
"size",
)[self.value]
@staticmethod
def all():
return (
PassCycles.Npu,
PassCycles.Cpu,
PassCycles.SramAccess,
PassCycles.DramAccess,
PassCycles.OnChipFlashAccess,
PassCycles.OffChipFlashAccess,
PassCycles.Total,
)
class MacCount(IntEnum):
NeuralNetworkMacs = 0
HardwareMacs = auto()
Size = auto()
def display_name(self):
return ("Neural Network Macs", "Hardware Macs", "Size")[self.value]
def identifier_name(self):
return ("nn_macs", "hardware_macs", "size")[self.value]
@staticmethod
def all():
return (MacCount.NeuralNetworkMacs, MacCount.HardwareMacs)
class BandwidthDirection(IntEnum):
Read = 0
Write = auto()
Size = auto()
def display_name(self):
return self.name
def identifier_name(self):
return self.name.lower()
@staticmethod
def all():
return (BandwidthDirection.Read, BandwidthDirection.Write)
def make_bandwidth_array():
return np.zeros((MemArea.Size, TensorPurpose.Size, BandwidthDirection.Size))
def make_macs_array():
return np.zeros(MacCount.Size, np.int)
def make_cycles_array():
return np.zeros(PassCycles.Size)
def make_metrics_arrays():
return (make_bandwidth_array(), make_macs_array(), make_cycles_array())
def get_n_blocks_and_area(
ifm_brick_size, ifm_height_width, orig_skirt, clamped_skirt, block_config, min_block_size, strides
):
ifm_block_config = (block_config[0] * strides[1], block_config[1] * strides[2])
n_normal_blocks = []
remainder_size = []
for i in range(2):
non_skirt_dim = ifm_height_width[i] - orig_skirt[i] - orig_skirt[2 + i]
n_blocks = non_skirt_dim // ifm_block_config[i]
n_normal_blocks.append(n_blocks)
remainder_dim = numeric_util.round_up(
((non_skirt_dim - n_blocks * ifm_block_config[i] - 1) // strides[i + 1]) + 1, min_block_size[i]
)
remainder_size.append(remainder_dim)
# this will actually calculate reads into the edge padding.
# there are four cases in total, handling the edges that will not fill a complete block.
# 0000000001
# 0000000001
# 0000000001
# 0000000001
# 0000000001
# 0000000001
# 2222222223
total_blocks = 0
total_area = 0
block_setup = (
(n_normal_blocks[0] * n_normal_blocks[1], block_config),
(1 * n_normal_blocks[1], (remainder_size[0], block_config[1])),
(n_normal_blocks[0] * 1, (block_config[0], remainder_size[1])),
(1 * 1, remainder_size),
)
for n_blocks, block_size in block_setup:
if block_size[0] == 0 or block_size[1] == 0:
continue
read_dims = [0, 0]
for i in range(2):
read_dims[i] = (
numeric_util.round_up(clamped_skirt[i], ifm_brick_size[i + 1])
+ block_size[i] * strides[i + 1]
+ numeric_util.round_up(clamped_skirt[2 + i], ifm_brick_size[i + 1])
)
assert n_blocks >= 0
total_blocks += n_blocks
total_area += n_blocks * read_dims[0] * read_dims[1]
assert total_blocks >= 1
return total_blocks, total_area, block_setup
def get_ifm_block_depth(npu_block_type, ifm_depth, ifm_elemwidth, block_traversal, ofm_blk_depth):
ifm_blk_depth = ofm_blk_depth
if npu_block_type == NpuBlockType.ConvolutionMxN or npu_block_type == NpuBlockType.ReduceSum:
if ifm_elemwidth == 16 or block_traversal == TensorBlockTraversal.PartKernelFirst:
ifm_blk_depth = 16
elif ifm_elemwidth == 8:
ifm_blk_depth = 32
else:
ifm_blk_depth = 8
return min(ifm_depth, ifm_blk_depth)
def estimate_output_cycles(
arch, npu_block_type, primary_op, num_elems, ifm_tensor, ofm_tensor, ifm2_tensor, use_acc_40bits=False
):
faf = None if primary_op.activation is None else primary_op.activation.op_type
if npu_block_type == NpuBlockType.ElementWise and ifm_tensor.dtype == DataType.int32:
if ifm2_tensor is None:
# Unary op
output_perf_index = 0
else:
# Binary op
output_perf_index = 1
elif primary_op.type == Op.Mul and ofm_tensor.dtype == DataType.int32:
output_perf_index = 2
elif primary_op.type == Op.Mul or (
npu_block_type
in (
NpuBlockType.ConvolutionMxN,
NpuBlockType.ConvolutionDepthWise,
NpuBlockType.Pooling,
NpuBlockType.ReduceSum,
NpuBlockType.VectorProduct,
)
and use_acc_40bits
):
output_perf_index = 3
elif primary_op.type in (Op.Add, Op.Sub):
input_scale = ifm_tensor.quantization.scale_f32
input2_scale = ifm2_tensor.quantization.scale_f32
output_scale = ofm_tensor.quantization.scale_f32
if "resizebilinear" in primary_op.attrs:
output_scale = input2_scale
if None in (input_scale, input2_scale, output_scale) or input_scale == input2_scale:
# Simple Add/Sub
output_perf_index = 4
else:
# Advanced Add/Sub
output_perf_index = 5
elif primary_op.type.is_maxpool_op():
output_perf_index = 6
else:
output_perf_index = 7
if faf in (Op.Sigmoid, Op.Tanh, Op.LUT):
activation_perf_index = 0
elif faf in (Op.Relu, Op.Relu6, Op.ReluN1To1):
activation_perf_index = 1
else:
activation_perf_index = 2
cycle_per_elem = max(
arch.output_cycles_per_elem[output_perf_index], arch.activation_cycles_per_elem[activation_perf_index]
)
return num_elems * cycle_per_elem
def estimate_conv_pooling_cycles(
arch, npu_block_type, primary_op, block_config: Block, block_traversal, kernel_dims, ifm_tensor, ofm_tensor
):
ofm_ublock = Block(arch.config.ofm_ublock.width, arch.config.ofm_ublock.height, arch.config.ofm_ublock.depth)
ifm_tens_shape = numeric_util.full_shape(4, ifm_tensor.shape, 1)
ofm_tens_shape = numeric_util.full_shape(4, ofm_tensor.shape, 1)
if (
arch.config.ofm_ublock.height == 2
and npu_block_type
in (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise, NpuBlockType.VectorProduct)
and ofm_tens_shape[1] == 1
# Optimisation only applies for even width tensors
and ofm_tens_shape[2] % 2 == 0
and kernel_dims[0] == 1
):
ofm_ublock.width = 4
ofm_ublock.height = 1
block_config.height = 1
num_ublk = (
numeric_util.round_up_divide(block_config.width, ofm_ublock.width)
* (block_config.height // ofm_ublock.height)
* (block_config.depth // ofm_ublock.depth)
)
num_ofm_blk = 0
total_cycles = 0
num_elems_blk = block_config.width * block_config.height * block_config.depth
use_acc_40bits = is_acc_40bits_used(npu_block_type, ifm_tensor, ofm_tensor)
sub_kernel_limits = arch.sub_kernel_limits[npu_block_type]
n_sub_kernels_y = numeric_util.round_up_divide(kernel_dims[0], sub_kernel_limits[0])
n_sub_kernels_x = numeric_util.round_up_divide(kernel_dims[1], sub_kernel_limits[1])
sub_kernel_x = [
min((kernel_dims[1] - i * sub_kernel_limits[1]), sub_kernel_limits[1]) for i in range(n_sub_kernels_x)
]
sub_kernel_y = [
min((kernel_dims[0] - i * sub_kernel_limits[0]), sub_kernel_limits[0]) for i in range(n_sub_kernels_y)
]
sub_kernel_size = (x * y for y in sub_kernel_y for x in sub_kernel_x)
ifm_blk_depth = get_ifm_block_depth(
npu_block_type, ifm_tens_shape[3], ifm_tensor.dtype.size_in_bits(), block_traversal, block_config.depth
)
cycles_dpu_blk = 0
for num_kernel_elems in sub_kernel_size:
if npu_block_type == NpuBlockType.Pooling:
cycles = max(4, num_kernel_elems) * num_ublk
if ifm_tensor.dtype.size_in_bits() == 16 and arch.accelerator_config != Accelerator.Ethos_U55_32:
cycles *= 2
elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
cycles = 4 * numeric_util.round_up_divide(num_kernel_elems, 4) * num_ublk
if ifm_tensor.dtype.size_in_bits() == 16:
cycles *= 2
elif (
(npu_block_type == NpuBlockType.ConvolutionMxN and block_traversal != TensorBlockTraversal.PartKernelFirst)
or npu_block_type == NpuBlockType.VectorProduct
or npu_block_type == NpuBlockType.ReduceSum
):
cycles = 4 * num_kernel_elems * num_ublk * numeric_util.round_up_divide(ifm_tens_shape[3], ifm_blk_depth)
else:
assert block_traversal == TensorBlockTraversal.PartKernelFirst
divider = 2 if ifm_tensor.dtype.size_in_bits() == 16 else 4
cycles = 4 * (
numeric_util.round_up_divide(num_kernel_elems, divider)
* numeric_util.round_up_divide(ifm_blk_depth, 8)
* num_ublk
* numeric_util.round_up_divide(ifm_tens_shape[3], ifm_blk_depth)
)
cycles_dpu_blk += cycles
cycles_dpu_blk /= arch.ncores
num_ofm_blk = (
numeric_util.round_up_divide(ofm_tens_shape[1], block_config.height)
* numeric_util.round_up_divide(ofm_tens_shape[2], block_config.width)
* numeric_util.round_up_divide(ofm_tens_shape[3], block_config.depth)
)
cycles_output_blk = estimate_output_cycles(
arch, npu_block_type, primary_op, num_elems_blk, ifm_tensor, ofm_tensor, None, use_acc_40bits
)
if cycles_dpu_blk > cycles_output_blk:
total_cycles = cycles_dpu_blk * num_ofm_blk + cycles_output_blk
else:
total_cycles = cycles_output_blk * num_ofm_blk + cycles_dpu_blk
return total_cycles
def estimate_memory_bandwidth(arch, mem_area, direction, tensor, block_size: Block, replace_bw=None):
if tensor.format not in (TensorFormat.NHWC, TensorFormat.NHCWB16):
return tensor.bandwidth() if replace_bw is None else replace_bw
# Estimate memory transfer efficiency by calculating the burst length
# this is related to data format, block shape, and tensor shape, etc.
max_burst_len = 32 if mem_area == MemArea.Sram else 128
burst_len = 0
elem_size = tensor.dtype.size_in_bytes()
is_ifm = direction == BandwidthDirection.Read
tens = tensor.clone()
if not tens.avoid_NHCWB16:
tens.set_format(TensorFormat.NHCWB16, arch)
if tens.format == TensorFormat.NHCWB16:
if tens.get_strides()[1] == block_size.depth:
burst_len = elem_size * block_size.depth * block_size.width
elif is_ifm:
burst_len = 16 * elem_size * block_size.width
else:
burst_len = 16 * elem_size * block_size.width * arch.ncores
else:
assert tens.format == TensorFormat.NHWC
if is_ifm:
if tens.get_strides()[3] == block_size.depth:
burst_len = elem_size * block_size.depth * block_size.width
else:
burst_len = elem_size * block_size.depth
else:
if block_size.depth <= 16 and tens.get_strides()[3] == block_size.depth:
burst_len = elem_size * block_size.depth * block_size.width
else:
burst_len = min(64, 16 * elem_size * arch.ncores, block_size.depth * elem_size)
burst_len = min(max_burst_len, burst_len)
bw = tens.bandwidth() if replace_bw is None else replace_bw
return bw * (max_burst_len / burst_len)
def performance_metrics_for_pass(arch, ps, block_config=None, rewrite_list=[], force_outputs_to_fast_storage=False):
if block_config is None:
block_config = ps.block_config
bws = make_bandwidth_array()
macs = make_macs_array()
cycles = make_cycles_array()
blocks = 0
ifm_read_multiple = 1
weight_read_multiple = 0
if ps.placement in set((PassPlacement.MemoryOnly, PassPlacement.StartupInit)):
return bws, macs, cycles, blocks, ifm_read_multiple, weight_read_multiple # nothing real happening in this pass
min_block_size = arch.min_block_sizes[ps.npu_block_type]
skirt = (0, 0, 0, 0)
explicit_padding = (0, 0, 0, 0)
primary_op = ps.primary_op
replacement_read_bws = {}
ofm_block = Block(block_config[1], block_config[0], block_config[3])
ifm_block = Block(block_config[1], block_config[0], block_config[3])
if ps.placement == PassPlacement.Cpu:
cycles[PassCycles.Cpu] = arch.cpu_cycle_estimate(ps.ops[0])
elif primary_op:
skirt = primary_op.attrs.get("skirt", skirt)
explicit_padding = primary_op.attrs.get("explicit_padding", explicit_padding)
assert primary_op.type.npu_block_type == ps.npu_block_type
npu_block_type = primary_op.type.npu_block_type
block_traversal = TensorBlockTraversal.Default
ifm_tensor, _, weight_tensor, ofm_tensor = ps.get_primary_op_ifm_ifm2_weights_ofm()
ifm_tensor_shape = numeric_util.full_shape(4, ifm_tensor.shape, 1)
if npu_block_type in set(
(
NpuBlockType.ConvolutionMxN,
NpuBlockType.ConvolutionDepthWise,
NpuBlockType.Pooling,
NpuBlockType.ReduceSum,
)
):
# extent the ifm to full dimension
ifm_tensor_brick_size = tuple(numeric_util.full_shape(4, list(ifm_tensor.brick_size), 1))
ifm_tensor_bandwidth_shape = numeric_util.full_shape(4, ifm_tensor.bandwidth_shape, 1)
batch_size = ifm_tensor_shape[0]
ifm_depth = ifm_tensor_bandwidth_shape[3]
# add in padding
ifm_tensor_shape[1] += explicit_padding[0] + explicit_padding[2] # height += top and bottom
ifm_tensor_shape[2] += explicit_padding[1] + explicit_padding[3] # width += left and right
strides = primary_op.attrs["strides"]
if npu_block_type != NpuBlockType.Pooling:
if npu_block_type == NpuBlockType.ReduceSum:
block_traversal = TensorBlockTraversal.DepthFirst
weight_tensor_shape = [1, 1, ifm_tensor.shape[3], ofm_tensor.shape[3]]
weight_tensor_bandwidth_shape = [0] * 4
weight_tensor_element_size = 0
weight_tensor_bandwidth_compression_scale = 0.0
else:
block_traversal = weight_tensor.block_traversal
weight_tensor_shape = weight_tensor.shape
weight_tensor_bandwidth_shape = weight_tensor.bandwidth_shape
weight_tensor_element_size = weight_tensor.element_size()
weight_tensor_bandwidth_compression_scale = weight_tensor.bandwidth_compression_scale
nn_ops = (
int(ofm_tensor.shape[0])
* int(ofm_tensor.shape[1])
* int(ofm_tensor.shape[2])
* int(weight_tensor_shape[0])
* int(weight_tensor_shape[1])
* int(weight_tensor_shape[2])
* int(weight_tensor_shape[3])
)
else:
weight_tensor_shape = [
primary_op.attrs["ksize"][1],
primary_op.attrs["ksize"][2],
1,
ifm_tensor_shape[3],
]
weight_tensor_bandwidth_shape = weight_tensor_shape
weight_tensor_element_size = 0
weight_tensor_bandwidth_compression_scale = 0.0
nn_ops = 0 # pooling doesn't count as NN ops
kernel_dims = weight_tensor_shape[:2]
sub_kernel_limits = arch.sub_kernel_limits[npu_block_type]
# count the sub kernels; the IFM block needs to be refetched for each of them
n_sub_kernels_y = numeric_util.round_up_divide(kernel_dims[0], sub_kernel_limits[0])
n_sub_kernels_x = numeric_util.round_up_divide(kernel_dims[1], sub_kernel_limits[1])
n_sub_kernels = n_sub_kernels_y * n_sub_kernels_x
clamped_skirt = list(skirt)
clamped_skirt[2] = min(clamped_skirt[2], sub_kernel_limits[0] - 1 - clamped_skirt[0])
clamped_skirt[3] = min(clamped_skirt[3], sub_kernel_limits[1] - 1 - clamped_skirt[1])
n_blocks, area, block_setup = get_n_blocks_and_area(
ifm_tensor_brick_size,
ifm_tensor_shape[1:3],
skirt,
clamped_skirt,
block_config,
min_block_size,
strides,
)
blocks = n_blocks * numeric_util.round_up_divide(weight_tensor_shape[3], ofm_block.depth)
n_weight_stages = numeric_util.round_up_divide(weight_tensor_bandwidth_shape[3], ofm_block.depth)
if npu_block_type == NpuBlockType.ConvolutionDepthWise or npu_block_type == NpuBlockType.Pooling:
n_weight_stages = 1 # force to no reread
ifm_tensor_bw = (
n_sub_kernels
* batch_size
* area
* ifm_depth
* n_weight_stages
* ifm_tensor.element_size()
* ifm_tensor.bandwidth_compression_scale
)
replacement_read_bws[ifm_tensor] = ifm_tensor_bw
ifm_read_multiple = n_weight_stages
replacement_read_bws[weight_tensor] = (
batch_size
* shape_num_elements(weight_tensor_bandwidth_shape)
* weight_tensor_element_size
* weight_tensor_bandwidth_compression_scale
* n_blocks
) # read once per block and batch
weight_read_multiple = n_blocks
n_kernel_xy = kernel_dims[0] * kernel_dims[1]
n_input_channels_at_a_time = block_config[2]
if npu_block_type == NpuBlockType.Pooling or block_traversal in set(
(TensorBlockTraversal.PartKernelFirst, TensorBlockTraversal.DepthWise)
):
n_input_channels_at_a_time = numeric_util.round_up_divide(n_input_channels_at_a_time, 4)
n_kernel_xy = max(
n_kernel_xy, 4
) # need at least 4, as this is the minimum duty cycle for secondary accumulator writes
if weight_tensor is not None:
n_kernel_xy = numeric_util.round_up(n_kernel_xy, 4) # weights need to be read in blocks of 4
num_mac_ops = 0
for n_blocks_for_size, block_size in block_setup:
num_mac_ops += (
batch_size
* n_blocks_for_size
* block_size[0]
* block_size[1]
* numeric_util.round_up(weight_tensor_shape[2], n_input_channels_at_a_time)
* numeric_util.round_up(weight_tensor_shape[3], ofm_block.depth)
* n_kernel_xy
)
macs[MacCount.NeuralNetworkMacs] += nn_ops
macs[MacCount.HardwareMacs] += num_mac_ops
cycles[PassCycles.Npu] = estimate_conv_pooling_cycles(
arch, npu_block_type, primary_op, ofm_block, block_traversal, kernel_dims, ifm_tensor, ofm_tensor,
)
elif npu_block_type == NpuBlockType.VectorProduct:
nn_macs = (
ifm_tensor.shape[0]
* numeric_util.round_up(weight_tensor.shape[-2], block_config[2])
* numeric_util.round_up(weight_tensor.shape[-1], block_config[3])
)
num_mac_ops = nn_macs
block_traversal = weight_tensor.block_traversal
cycles[PassCycles.Npu] = estimate_conv_pooling_cycles(
arch, npu_block_type, primary_op, ofm_block, block_traversal, [1, 1], ifm_tensor, ofm_tensor,
)
macs[MacCount.NeuralNetworkMacs] += nn_macs
macs[MacCount.HardwareMacs] += num_mac_ops
blocks = 1 * numeric_util.round_up_divide(weight_tensor.shape[-1], ofm_block.depth)
non_zero_fraction = 1.0
if ifm_tensor.values is not None:
nz_vector = np.amax(ifm_tensor.values != 0, axis=0) # max across batch axis
non_zero_fraction = np.average(nz_vector)
replacement_read_bws[ifm_tensor] = ifm_tensor.bandwidth()
replacement_read_bws[weight_tensor] = weight_tensor.bandwidth() * non_zero_fraction
ifm_read_multiple = 1
weight_read_multiple = non_zero_fraction
elif npu_block_type == NpuBlockType.ElementWise:
# Work out how many elements we have and calculate performance.
cycles[PassCycles.Npu] = estimate_output_cycles(
arch, npu_block_type, primary_op, ofm_tensor.elements(), ps.ifm_tensor, ps.ofm_tensor, ps.ifm2_tensor
)
ifm_block_depth = get_ifm_block_depth(
npu_block_type, ifm_tensor_shape[3], ifm_tensor.dtype.size_in_bits(), block_traversal, ofm_block.depth
)
ifm_block = arch.get_ifm_block_size(ifm_block_depth, ofm_block, primary_op.kernel)
prev_npu_pass = next((npu_ps for npu_ps in ps.dag_predecessors if npu_ps.placement is PassPlacement.Npu), None)
if prev_npu_pass is None:
# cycles for DMA ops in first pass
dma_ops = (op for op in ps.ops if op.type == Op.DMA)
for dma_op in dma_ops:
mem_area = dma_op.attrs["source"]
for tens in dma_op.inputs:
cycles[PassCycles.Npu] += tens.storage_size() / arch.memory_bandwidths_per_cycle[mem_area]
# apply the desired rewrites
for rewrite_op, tens, _, _, _, ps_to_rewrite in rewrite_list:
if ps != ps_to_rewrite:
continue
if rewrite_op == SchedulerRewrite.Nop:
pass # these are fine, no bandwidth changes
elif rewrite_op in (SchedulerRewrite.ChangeTensorSubPurpose,):
if tens.purpose == TensorPurpose.FeatureMap:
bw = estimate_memory_bandwidth(
arch,
arch.fast_storage_mem_area,
BandwidthDirection.Read,
tens,
ifm_block,
replacement_read_bws[tens],
)
else:
bw = replacement_read_bws[tens]
bws[arch.fast_storage_mem_area][tens.purpose][BandwidthDirection.Read] += bw
replacement_read_bws[tens] = 0
for tens in ps.outputs:
if force_outputs_to_fast_storage:
bws[arch.fast_storage_mem_area][tens.purpose][BandwidthDirection.Write] += estimate_memory_bandwidth(
arch, arch.fast_storage_mem_area, BandwidthDirection.Write, tens, ofm_block
)
else:
bws[tens.mem_area][tens.purpose][BandwidthDirection.Write] += estimate_memory_bandwidth(
arch, tens.mem_area, BandwidthDirection.Write, tens, ofm_block
)
for tens in ps.intermediates:
bws[tens.mem_area][tens.purpose][BandwidthDirection.Write] += tens.bandwidth()
if tens in replacement_read_bws:
bw = replacement_read_bws[tens]
else:
bw = tens.bandwidth()
bws[tens.mem_area][tens.purpose][BandwidthDirection.Read] += bw
for tens in ps.inputs:
bws[tens.mem_area][tens.purpose][BandwidthDirection.Read] += estimate_memory_bandwidth(
arch, tens.mem_area, BandwidthDirection.Read, tens, ifm_block, replacement_read_bws.get(tens)
)
# quick build access counts for only current pass, even though these aren't the final numbers
update_summary_cycles(arch, bws, cycles)
return bws, macs, cycles, blocks, ifm_read_multiple, weight_read_multiple
def update_summary_cycles(arch, bws, cycles):
cycles[PassCycles.SramAccess] = np.sum(bws[MemArea.Sram]) / arch.memory_bandwidths_per_cycle[MemArea.Sram]
cycles[PassCycles.DramAccess] = np.sum(bws[MemArea.Dram]) / arch.memory_bandwidths_per_cycle[MemArea.Dram]
cycles[PassCycles.OnChipFlashAccess] = (
np.sum(bws[MemArea.OnChipFlash]) / arch.memory_bandwidths_per_cycle[MemArea.OnChipFlash]
)
cycles[PassCycles.OffChipFlashAccess] = (
np.sum(bws[MemArea.OffChipFlash]) / arch.memory_bandwidths_per_cycle[MemArea.OffChipFlash]
)
cycles[PassCycles.Total] = np.max(cycles[: PassCycles.Total])
return cycles
def collate_stats_for_cascaded_pass(arch, bws, macs, cycles):
return bws, macs, cycles
def performance_for_cascaded_pass(arch, cps):
total_bws = make_bandwidth_array()
total_macs = make_macs_array()
total_cycles = make_cycles_array()
for ps in cps.passes:
bws, macs, cycles, blocks, _, _ = performance_metrics_for_pass(arch, ps)
ps.bandwidths = bws
ps.macs = macs
ps.cycles = cycles
ps.n_blocks = blocks
total_bws += bws
total_macs += macs
total_cycles += cycles
bws, macs, cycles = collate_stats_for_cascaded_pass(arch, total_bws, total_macs, total_cycles)
cps.bandwidths = bws
cps.macs = macs
cps.cycles = cycles
return bws, macs, cycles
def calc_performance_for_network(nng, arch):
total_bws = make_bandwidth_array()
total_macs = np.zeros(MacCount.Size)
total_cycles = np.zeros(PassCycles.Size)
for sg in nng.subgraphs:
for cps in sg.cascaded_passes:
bws, macs, cycles = performance_for_cascaded_pass(arch, cps)
total_bws += bws
total_macs += macs
total_cycles += cycles
nng.bandwidths = total_bws
nng.macs = total_macs
nng.cycles = total_cycles