blob: 90b29327ba4d2026f12b87e9979cd377cbe27908 [file] [log] [blame]
# Copyright (C) 2020-2022 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Early optimisation of a TensorFlow Lite based network graph, using the rewrite_graph module
# to do the traversal of the graph.
import math
import uuid
import numpy as np
from . import fp_math
from . import rewrite_graph
from . import scaling
from .api import NpuRoundingMode
from .data_type import BaseType
from .data_type import DataType
from .debug_database import DebugDatabase
from .errors import UnsupportedFeatureError
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .graph_optimiser_util import bypass_memory_only_ops
from .graph_optimiser_util import calc_explicit_padding
from .graph_optimiser_util import convert_depthwise_to_conv
from .graph_optimiser_util import convert_to_lut
from .graph_optimiser_util import fix_sg_input_output
from .graph_optimiser_util import memory_only_ops
from .graph_optimiser_util import move_splitsliceread_to_consumer
from .graph_optimiser_util import needed_total_padding
from .graph_optimiser_util import set_ifm_ofm_op_shapes
from .graph_optimiser_util import set_tensor_equivalence
from .numeric_util import clamp_sigmoid
from .numeric_util import round_away_zero
from .operation import create_activation_function
from .operation import ExplicitScaling
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .operation import Padding
from .operation_util import create_add_nop
from .operation_util import create_avgpool_nop
from .operation_util import get_pad_values_from_input
from .scaling import quantise_scale
from .shape4d import Shape4D
from .softmax import SoftMax
from .tensor import check_quantized_tens_scaling_equal
from .tensor import create_const_tensor
from .tensor import create_equivalence_id
from .tensor import QuantizationParameters
from .tensor import Tensor
from .tensor import TensorPurpose
from .tflite_mapping import optype_to_builtintype
passthrough_nodes = (Op.Identity,)
def create_avg_pool_for_concat(concat_op, name, ifm, ifm_shape: Shape4D, write_offset: Shape4D):
"""Creates an average pool for the given concat op/input feature map"""
ofm = concat_op.ofm
avgpool_op = create_avgpool_nop(name)
avgpool_op.inputs = [ifm]
avgpool_op.outputs = [ofm]
avgpool_op.write_offset = write_offset
avgpool_op.write_shape = ifm_shape
ofm.ops.append(avgpool_op)
DebugDatabase.add_optimised(concat_op, avgpool_op)
avgpool_op.ifm_shapes.append(ifm_shape)
avgpool_op.ofm_shapes.append(concat_op.ofm_shapes[0])
avgpool_op.memory_function = Op.ConcatSliceWrite
return avgpool_op
def remove_passthrough_tensor(tens, arch, nng):
if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
assert len(tens.ops[0].inputs) == 1
tens = tens.ops[0].inputs[0]
return tens
def rewrite_concat_ops(op, arch):
if not op.run_on_npu or not op.type.is_concat_op():
return
axis_4D = 0
ofm = op.ofm
ofm.ops = []
offset = 0
unfuse_activation_function(op)
if op.type == Op.Pack:
# Pack is also referred to as Stack
axis = int(op.attrs["axis"])
if axis < 0: # Convert to positive axis
axis = len(op.inputs[0].shape) + 1 + axis
desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]
axis_4D = axis + (4 - len(desired_shape))
for idx, inp in enumerate(op.inputs):
op.ifm_shapes[idx] = Shape4D(desired_shape)
op.type = Op.PackReshaped
inputs, axis = op.get_concat_inputs_axis()
for idx, inp in enumerate(inputs):
if op.type != Op.PackReshaped:
op.ifm_shapes[idx] = Shape4D(inp.shape)
if axis >= 0:
axis_4D = axis + (4 - len(inp.shape))
else:
axis_4D = axis
write_offset = [0, 0, 0, 0]
write_offset[axis_4D] = offset
concat_end = offset + op.ifm_shapes[idx][axis_4D]
create_avg_pool_for_concat(
op, op.name + str(idx) + "_avgpool", inp, op.ifm_shapes[idx], Shape4D.from_list(write_offset)
)
offset = concat_end
assert ofm.shape[axis] == offset
return op
def rewrite_split_ops(tens, arch, nng):
if len(tens.ops) == 1 and tens.ops[0].type.is_split_op() and tens.ops[0].type != Op.Unpack:
split_op = tens.ops[0]
# Not supported so leave it and run on CPU
if not split_op.run_on_npu:
return tens
inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()
tens.ops = []
new_op = Operation(Op.SplitSliceRead, split_op.name)
new_op.inputs = [inp]
ofm_shape_idx = 0
if None in (offset_end, offset_start):
read_shape = None
else:
# the read shape is relative to each start offset
read_shape = [oe - os for oe, os in zip(offset_end, offset_start)]
# For Split the offset cannot be extracted from the tensor so it has to
# be calculated from the index of the output tensor
if axis is not None:
# Get the start and end of the split
offset_start = [0] * 4
axis_4D_list = split_op.attrs.get("split_axis_4D", None) # Present for UnpackReshaped and some StridedSlice
for idx, out in enumerate(outputs):
if axis_4D_list is not None:
axis_4D = axis_4D_list[idx]
else:
split_op.ofm_shapes[idx] = Shape4D(out.shape)
if axis >= 0:
axis_4D = axis + (4 - len(out.shape))
else:
axis_4D = axis
if out == tens:
ofm_shape_idx = idx
read_shape = split_op.ofm_shapes[idx]
break
offset_start[axis_4D] += split_op.ofm_shapes[idx][axis_4D]
new_op.read_offsets[0] = Shape4D.from_list(offset_start, 0)
new_op.read_shapes[0] = read_shape
new_op.run_on_npu = True
new_op.set_output_tensor(tens)
new_op.ifm_shapes.append(Shape4D(inp.shape))
new_op.ofm_shapes.append(split_op.ofm_shapes[ofm_shape_idx])
DebugDatabase.add_optimised(split_op, new_op)
return tens
def remove_SplitSliceRead(op, arch):
if op.type == Op.SplitSliceRead:
# Check if it is possible to put the SplitSliceRead on the tensor consumer, or if an avgpool need to be inserted
if (
len(op.ofm.consumer_list) == 1
and op.ofm.consumer_list[0] is not None
and op.ofm.consumer_list[0].run_on_npu
and op.ofm.consumer_list[0].type not in memory_only_ops
and op.ofm_shapes[0] == Shape4D.from_list(op.ofm.shape)
):
# SplitSliceRead can be performed by tensor consumer
cons_op = op.ofm.consumer_list[0]
move_splitsliceread_to_consumer(op, cons_op)
else:
avgpool_op = create_avgpool_nop(op.name + "_avgpool")
avgpool_op.add_input_tensor(op.ifm)
avgpool_op.outputs = [op.ofm]
op.ofm.ops.remove(op)
op.ofm.ops.append(avgpool_op)
avgpool_op.ifm_shapes.append(op.ifm_shapes[0])
avgpool_op.ofm_shapes.append(op.ofm_shapes[0])
avgpool_op.read_offsets[0] = op.read_offsets[0]
avgpool_op.read_shapes[0] = op.read_shapes[0]
op.ifm.consumer_list.remove(op)
DebugDatabase.add_optimised(op, avgpool_op)
def calc_padding_and_skirt(padding_type, kernel, input_shape, explicit_padding):
k_w, k_h = kernel.dilated_wh()
s_x, s_y = kernel.stride
ypad = needed_total_padding(int(input_shape.height), int(s_y), int(k_h))
xpad = needed_total_padding(int(input_shape.width), int(s_x), int(k_w))
if padding_type == Padding.SAME:
left_pad = (xpad + 0) // 2
right_pad = (xpad + 1) // 2
top_pad = (ypad + 0) // 2
bottom_pad = (ypad + 1) // 2
elif padding_type == Padding.VALID:
left_pad = 0
right_pad = 0
top_pad = 0
bottom_pad = 0
elif padding_type == Padding.EXPLICIT:
# Padding is specified in a PAD operator which has been bypassed.
top, left, bottom, right = explicit_padding
top_pad, bottom_pad = calc_explicit_padding(int(input_shape.height), int(s_y), int(k_h), int(top), int(bottom))
left_pad, right_pad = calc_explicit_padding(int(input_shape.width), int(s_x), int(k_w), int(left), int(right))
elif padding_type == Padding.TILE:
# The values in the explicit padding only represent the "direction" in which to pad
top_pad, left_pad, bottom_pad, right_pad = explicit_padding
else:
raise UnsupportedFeatureError(f"Unsupported padding = {padding_type} for padding calculation")
padding = (top_pad, left_pad, bottom_pad, right_pad)
skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
return padding, skirt
def calc_upscaled_padding_and_skirt(padding_type, kernel_size, stride, input_shape, upscaling_factor):
kernel_height, kernel_width = kernel_size[0], kernel_size[1]
if padding_type == Padding.SAME:
ypad = needed_total_padding(int(input_shape.height) * upscaling_factor, int(stride[1]), int(kernel_height))
xpad = needed_total_padding(int(input_shape.width) * upscaling_factor, int(stride[2]), int(kernel_width))
right_pad = max(((xpad + 1) // upscaling_factor) - 1, 0)
bottom_pad = max(((ypad + 1) // upscaling_factor) - 1, 0)
left_pad = max(kernel_width - 1 - right_pad, 0)
top_pad = max(kernel_height - 1 - bottom_pad, 0)
elif padding_type == Padding.VALID:
right_pad = max(kernel_width - 2, 0)
bottom_pad = max(kernel_height - 2, 0)
left_pad = kernel_width - 1
top_pad = kernel_height - 1
else:
raise UnsupportedFeatureError(f"Unsupported padding = {padding_type} for up-scaled padding calculation")
padding = (top_pad, left_pad, bottom_pad, right_pad)
skirt = padding
return padding, skirt
def fixup_conv2d_backprop(op, arch, nng):
if op.type == Op.Conv2DBackpropInput:
# flip the inputs
op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
op.type = Op.Conv2DBackpropInputSwitchedBias
op.ifm_resampling_mode = resampling_mode.TRANSPOSE
# Update strides
op.attrs.update({"stride_w": 1, "stride_h": 1, "strides": (1, 1, 1, 1)})
return op
# Convert the op to an elementwise add
def convert_resize_1x1_to_add(op):
op.type = Op.Add # original_type will stay as Op.ResizeBilinear or Op.ResizeNearestNeighbor
op.name = op.name + "_add"
# Create an input tensor filled with zeros
shape = op.ofm_shapes[0].as_list()
tens = Tensor(shape, op.inputs[0].dtype, op.inputs[1].name + "_add")
tens.values = np.zeros(shape, tens.dtype.as_numpy_type())
tens.quantization = QuantizationParameters(0.0, 255.0)
tens.quantization.scale_f32 = 1.0
tens.quantization.zero_point = 0
tens.consumer_list = [op]
tens_op = op.inputs[1].ops[0]
tens_op.set_output_tensor(tens)
# Set the add inputs
op.inputs[1] = op.inputs[0]
op.inputs[0] = tens
op.set_ifm_ofm_shapes()
return op
# Convert ResizeNearestNeightbor with align corners to a depthwise convolution. The IFM will already have been upscaled
# apart from the final x2 scaling which will be done as part of this operation. The kernel contains a single coefficient
# to select the appropriate nearest neighbor value
def convert_resizenn_ac_to_depthwise_conv(op, upscale_factor):
ifm = op.ifm
ofm = op.ofm
output_depth = ofm.shape[-1]
dw_op_attrs = {
"padding": Padding.VALID,
"stride_h": 1,
"stride_w": 1,
"strides": (1, 1, 1, 1),
"depth_multiplier": 1,
"channel_multiplier": 1,
"dilation_h_factor": 1,
"dilation_w_factor": 1,
"dilation": (1, 1, 1, 1),
}
# change resizebilinear to depthwise
op.type = Op.DepthwiseConv2DBias
op.attrs.update(dw_op_attrs)
op.set_input_tensor(ifm, 0) # ifm tensor index
op.activation = None
# add input resample to resize by x2
op.ifm_resampling_mode = resampling_mode.NEAREST
# don't care about the rounding mode as it is nearest neighbor
# setup weight tensor
weight_quant = QuantizationParameters()
weight_quant.scale_f32 = 1.0 # no scaling as only a single non-zero coeff to select the desired value
weight_quant.zero_point = 0
weight_quant.quant_dim = 0
ofm_dtype = ofm.dtype
if ofm_dtype == DataType.uint8:
weight_value_dtype = np.uint8
weight_quant.quant_min = 0
weight_quant.quant_max = (1 << ofm_dtype.bits) - 1
else:
if ofm_dtype == DataType.int8:
weight_value_dtype = np.int8
else:
assert ofm_dtype == DataType.int16
weight_value_dtype = np.int16
weight_quant.quant_min = -(1 << (ofm_dtype.bits - 1))
weight_quant.quant_max = (1 << (ofm_dtype.bits - 1)) - 1
weight_shape = [upscale_factor, upscale_factor, output_depth, output_depth] # HWIO
# the single non-zero coefficient used to select the desired value needs to be placed in the 'centre value', which
# is calculated by finding the 'centre position' ('*' in the diagram below) and then choosing the 'value' that is
# below-and-right (i.e. next) to it (D).
# 0---1---2
# | A | B |
# 1---*---+
# | C | D |
# 2---+---+
weight_values = [0] * (upscale_factor * upscale_factor)
centre_coeff = (upscale_factor // 2) * upscale_factor + (upscale_factor // 2)
weight_values[centre_coeff] = 1
# add weight tensor, this will discard the size tensor of the resize op
op.set_input_tensor(
create_const_tensor(
"weights",
weight_shape,
ofm.dtype,
np.array(weight_values).reshape(weight_shape),
value_dtype=weight_value_dtype,
quantization=weight_quant,
),
1, # inputs tensor weight index
)
# setup bias tensor by assign None and then call the fix-up function to create a suitable tensor.
# need to append the bias tensor as resize ops only have 2 inputs
assert len(op.inputs) == 2
op.inputs.append(None)
fixup_bias_tensors(op, None, None, DataType.int32)
# finally update the shape incase we've change the tensor shapes or connections
op.set_ifm_ofm_shapes()
return op
# Convert ResizeBilinear/NearestNeighbor to a number of 1x1 average pools with nearest neighbor x2 upscaling and one
# final average pool with a kernel size that depends upon the resize ops upscaling factor (x2, x4 or x8). The maximum
# upscale factor is limited to x8 because of the limit 8x8 kernel size limit for average pool with padding.
def convert_resize_to_upscale_and_average_pool(op):
pre_op = op
outputs = op.outputs
dtype = op.ifm.dtype
op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 1, 1, 1)})
op.attrs["padding"] = Padding.SAME # doesn't really matter as the kernel is 1x1
op.ifm_resampling_mode = resampling_mode.NEAREST
upscaled_shape = np.array(op.ifm_shapes[0].get_hw_as_list())
# Get upscale factor that was calculated in the supported operators check
upscale_factor = op.attrs["upscale_factor"]
# Calculate how many times 2x2 upscaling needs to be performed
# Force the result of round to be an integer. This is because the behaviour of rounding numpy.float64 values changed
# between different versions of numpy. This consistency ensures that the kernel dimensions are kept integral
n = int(np.log2(upscale_factor))
# Perform x2 upscaling n-1 times
scaled_op = pre_op
for count in range(n - 1):
if count > 0:
scaled_op = op.clone(f"_{count}")
scaled_op.inputs[0] = pre_op.outputs[0]
# Nearest neighbor x2 upscaling
upscaled_shape = upscaled_shape * 2
shape = op.ofm_shapes[0].as_list()
shape[1:3] = upscaled_shape
out_tens = Tensor(shape, dtype, f"{op.outputs[0].name}_{count}")
out_tens.quantization = op.outputs[0].quantization.clone()
scaled_op.set_output_tensor(out_tens)
pre_op = scaled_op
scaled_op.set_ifm_ofm_shapes()
# Last x2 upscaling
if n > 1:
scaled_op = op.clone(f"_{n-1}")
scaled_op.inputs[0] = pre_op.outputs[0]
if scaled_op.original_type == Op.ResizeBilinear:
if scaled_op.attrs["align_corners"]:
# no padding
scaled_op.attrs["padding"] = Padding.VALID
else:
# padding to the right and bottom (limits average pool to 8x8 kernel)
scaled_op.attrs["padding"] = Padding.EXPLICIT
scaled_op.attrs["explicit_padding"] = [0, 0, upscale_factor - 1, upscale_factor - 1]
# kernal size dependent on the upscaling factor
scaled_op.attrs.update({"ksize": (1, upscale_factor, upscale_factor, 1)})
else: # Op.ResizeNearestNeighbor
if scaled_op.attrs["align_corners"]:
# use depthwise conv to select the correct value
scaled_op = convert_resizenn_ac_to_depthwise_conv(scaled_op, upscale_factor)
else:
# Keep 1x1 kernel and average pool, this applies both when
# half-pixel-centers is True and False. Calculations are the
# same in the reference.
pass
scaled_op.outputs = outputs
scaled_op.outputs[0].ops = [scaled_op]
scaled_op.set_ifm_ofm_shapes()
return op
def convert_resizebilinear_to_depthwise_convolutions(op, half_pixel_centers=True):
def _compute_interpolation_values(index, input_size, output_size):
scale = input_size / output_size
scaled_value = (index + 0.5 * half_pixel_centers) * scale - 0.5 * half_pixel_centers
lower_bound = max(np.floor(scaled_value), 0)
return scaled_value, lower_bound
def _compute_kernels(input_height, input_width, output_height, output_width):
kernels = []
for y in (1, 2):
for x in (1, 2):
sv_h, lb_h = _compute_interpolation_values(y, input_height, output_height)
sv_w, lb_w = _compute_interpolation_values(x, input_width, output_width)
# Interpolation values calculated for (x, y) = ([1, 2], [1, 2]) will always generalize to the whole
# input for upscale = 2 and input sizes >= 2x2 and be in the correct order for going left-to-right,
# top-to-bottom - same as the depthwise convolution strides across each tile
kernel = np.zeros((2, 2))
kernel[1, 1] = (1 - (sv_h - lb_h)) * (1 - (sv_w - lb_w))
kernel[0, 1] = (sv_h - lb_h) * (1 - (sv_w - lb_w))
kernel[1, 0] = (1 - (sv_h - lb_h)) * (sv_w - lb_w)
kernel[0, 0] = (sv_h - lb_h) * (sv_w - lb_w)
kernel *= 16
kernels.append(kernel)
return kernels
def _build_convolutions(op, kernels):
dw_op_attrs = {
"padding": Padding.TILE,
"stride_h": 1,
"stride_w": 1,
"strides": (1, 1, 1, 1),
"depth_multiplier": 1,
"channel_multiplier": 1,
"dilation_h_factor": 1,
"dilation_w_factor": 1,
"dilation": (1, 1, 1, 1),
}
ifm = op.ifm
ofm = op.ofm
ofm.ops = []
elem_size = 2 if ofm.dtype == DataType.int16 else 1
n, h, w, c = ifm.shape
_, _, ow, _ = ofm.shape
intermediate_tens = Tensor(ifm.shape, ifm.dtype, "intermediate_tens")
intermediate_tens.quantization = op.outputs[0].quantization.clone()
avgpool_op = op
avgpool_op.name = "rb_init_avgpool"
avgpool_op.type = Op.AvgPool
avgpool_op.attrs["padding"] = Padding.VALID
avgpool_op.attrs["stride_w"] = 1
avgpool_op.attrs["stride_h"] = 1
avgpool_op.attrs["filter_width"] = 1
avgpool_op.attrs["filter_height"] = 1
avgpool_op.attrs["strides"] = [1, 1, 1, 1]
avgpool_op.attrs["ksize"] = [1, 1, 1, 1]
avgpool_op.add_input_tensor(ifm)
avgpool_op.set_output_tensor(intermediate_tens)
avgpool_op.set_ifm_ofm_shapes()
dw_conv = Operation(Op.DepthwiseConv2DBias, "depthwise_conv")
dw_conv._original_type = Op.ResizeBilinear
dw_conv.write_shape = Shape4D(n, h, w, c)
dw_conv.write_offset = Shape4D(0, 0, 0, 0)
# Set the output rounding mode. Resize bilinear requires rounding away from zero. Therefore, we need to
# adjust the accumulated value by a "small" amount before applying natural rounding. The "small" amount
# should be big enough to cause a x.5 to be rounded correctly but small enough not to cause smaller
# values to be incorrectly rounded
ofm.quantization.next_after = True
dw_conv.rounding_mode = NpuRoundingMode.NATURAL
# Double height and width stride to write the output of each of the four depthwise convolutions below
# interleaved with each other when combined with OFM tile base offsets.
dw_conv.ofm_stride_multiplier = [1, 2, 2] # C/H/W
# Choose tile padding direction - pad by 1 with edge values in two direction.
# For example, TL (top left) will pad top and left in H/W-plane in all channels.
directions = [[1, 1, 0, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1]] # TL, TR, BL, BR
for i in (0, 1):
for j in (0, 1):
index = i * 2 + j
dw_conv.name = f"depthwise_conv_{index}"
dw_op_attrs["explicit_padding"] = directions[index]
dw_conv.attrs.update(dw_op_attrs)
# This will offset the start of the write by modifying the Tile 0 base address
dw_conv.tile_base_offsets_ofm[0] = (i * ow + j) * c * elem_size
ofm.ops.append(dw_conv)
dw_conv.outputs = [ofm]
kernel = kernels[index]
shape = [2, 2, 1, c]
kernel = np.dstack([kernel] * c)
quant = QuantizationParameters()
quant.zero_point = 0
quant.scale_f32 = 1.0 / 16
dw_conv.inputs = []
dw_conv.add_input_tensor(intermediate_tens)
dw_conv.add_input_tensor(
create_const_tensor(
"weights",
shape,
intermediate_tens.dtype,
np.array(kernel).reshape(shape),
value_dtype=np.int8,
quantization=quant,
),
)
# setup bias tensor by assign None and then call the fix-up function to create a suitable tensor.
# need to append the bias tensor as resize ops only have 2 inputs
assert len(dw_conv.inputs) == 2
dw_conv.inputs.append(None)
fixup_bias_tensors(dw_conv, None, None, dtype=DataType.int32)
dw_conv.set_ifm_ofm_shapes()
dw_conv = dw_conv.clone(f"_{index}")
return op
_, input_height, input_width, _ = op.ifm.shape
_, output_height, output_width, _ = op.ofm.shape
kernels = _compute_kernels(input_height, input_width, output_height, output_width)
op = _build_convolutions(op, kernels)
return op
def fixup_resize(op, arch, nng):
if op.type.is_resize_op() and op.run_on_npu:
if op.ifm_shapes[0] == op.ofm_shapes[0]:
# Bypass the resize op which is essentially a NOP
op.inputs = op.inputs[:1]
op.type = Op.Identity
elif op.ifm_shapes[0].height == 1 and op.ifm_shapes[0].width == 1:
convert_resize_1x1_to_add(op)
elif op.type == Op.ResizeBilinear and op.attrs.get("half_pixel_centers", False):
convert_resizebilinear_to_depthwise_convolutions(op)
else:
convert_resize_to_upscale_and_average_pool(op)
return op
def convert_nop_split_to_identity(op, arch, nng):
if op.type == Op.Split and op.attrs.get("num_splits") == 1:
# the list comprehension should return a list with a single tensor
# if it shouldn't, remove_passthrough_tensor will fail appropriately
op.inputs = [i for i in op.inputs if i.shape == op.outputs[0].shape]
op.type = Op.Identity
return op
def rewrite_fully_connected_input(op: Operation, arch, nng):
if op.type == Op.FullyConnected:
new_shape = op.ifm.get_shape_as_2d(op.weights.shape[-2])
assert new_shape is not None, "Tensor can not be reshaped to 2D"
op.ifm_shapes[0] = new_shape
if op.ifm_shapes[0].batch > 1 and op.ofm_shapes[0].batch == 1:
# If IFM is batching then also make sure OFM is batching
h, w = op.ofm_shapes[0].height, op.ofm_shapes[0].width
op.ofm_shapes[0] = Shape4D([h * w, 1, 1, op.ofm_shapes[0].depth])
return op
def convert_batched_fc_shape(op, arch, nng):
if op.type == Op.FullyConnected:
# Check if the first dimension indicates batching
if op.ifm_shapes[0].batch > 1:
batching_split = {4: (2, 2), 8: (2, 4), 16: (4, 4)}
n = op.ifm_shapes[0].batch
h, w = batching_split.get(n, (1, n))
op.ifm_shapes[0] = Shape4D([1, h, w, op.ifm_shapes[0].depth])
# Reshape Weights to be 4D. IO becomes HWIO
weight_tensor = op.inputs[1]
weight_tensor.values = np.expand_dims(np.expand_dims(weight_tensor.values, axis=0), axis=0)
weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
n = op.ofm_shapes[0].batch
h, w = batching_split.get(n, (1, n))
op.ofm_shapes[0] = Shape4D([1, h, w, op.ofm_shapes[0].depth])
return op
def unfuse_activation_function(op):
if op.type == Op.ConcatTFLite and op.run_on_npu and op.activation is not None:
act_op = Operation(op.activation.op_type, op.name + op.activation.op_type.name)
op.activation = None
out_tens = op.outputs[0]
intermediate_tens = out_tens.clone("_act_intermediate")
act_op.set_output_tensor(out_tens)
act_op.add_input_tensor(intermediate_tens)
op.set_output_tensor(intermediate_tens)
act_op.set_ifm_ofm_shapes()
def rewrite_stridedslice_output(op, arch, nng):
if not op.run_on_npu or op.type != Op.StridedSlice:
return op
new_axis_mask = op.attrs["new_axis_mask"]
shrink_axis_mask = op.attrs["shrink_axis_mask"]
if shrink_axis_mask == 0 and new_axis_mask == 0:
return op
axis_4D = [0] * len(op.outputs)
for idx, out_tens in enumerate(op.outputs):
output_shape = list(out_tens.shape)
if shrink_axis_mask != 0:
n = 0
axis = 0
while shrink_axis_mask:
prev_mask = shrink_axis_mask
n += 1
shrink_axis_mask &= shrink_axis_mask - 1
axis = int(math.log2(prev_mask - shrink_axis_mask))
output_shape = output_shape[:axis] + [1] + output_shape[axis:]
assert len(out_tens.shape) == (len(op.inputs[0].shape) - n)
op.attrs["shrink_axis_mask"] = 0
if axis >= 0:
axis_4D[idx] = axis + (4 - len(output_shape))
else:
axis_4D[idx] = axis
op.ofm_shapes[idx] = Shape4D(output_shape)
elif new_axis_mask != 0:
n = 0
axis = 0
while new_axis_mask:
prev_mask = new_axis_mask
n += 1
new_axis_mask &= new_axis_mask - 1
axis = int(math.log2(prev_mask - new_axis_mask))
output_shape = output_shape[:axis] + output_shape[(axis + 1) :]
new_axis_mask >>= 1
assert len(out_tens.shape) == (len(op.inputs[0].shape) + n)
op.attrs["new_axis_mask"] = 0
if axis >= 0:
axis_4D[idx] = axis + (4 - len(output_shape))
else:
axis_4D[idx] = axis
op.ofm_shapes[idx] = Shape4D(output_shape)
op.attrs["split_axis_4D"] = axis_4D
return op
def rewrite_unpack_output(op, arch, nng):
tens = op.outputs[0]
if op.run_on_npu and op.type == Op.Unpack:
# Unpack is also referred to as Unstack
axis = int(op.attrs["axis"])
if axis < 0: # Convert to positive axis
axis = len(op.inputs[0].shape) + 1 + axis
op.type = Op.UnpackReshaped
desired_output_shape = tens.shape[:axis] + [1] + tens.shape[axis:]
axis_4D = axis + (4 - len(desired_output_shape))
op.attrs["split_axis_4D"] = [axis_4D] * len(op.outputs)
for idx, out_tens in enumerate(op.outputs):
op.ofm_shapes[idx] = Shape4D(desired_output_shape)
return op
def add_padding_fields(op, arch, nng):
if op.run_on_npu:
if "padding" in op.attrs:
input_shape = op.ifm_shapes[0]
output_shape = op.ofm_shapes[0]
if op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op():
kernel_size = op.inputs[1].shape[:2]
elif op.type.is_pool_op() or op.type.npu_block_type == NpuBlockType.ReduceSum:
kernel_size = op.attrs["ksize"][1:3]
else:
raise UnsupportedFeatureError(f"Unknown operation that uses padding: {optype_to_builtintype(op.type)}")
if op.type == Op.Conv2DBackpropInputSwitchedBias:
upscaling_factor = output_shape.height // input_shape.height
padding, skirt = calc_upscaled_padding_and_skirt(
op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape, upscaling_factor
)
else:
padding, skirt = calc_padding_and_skirt(
op.attrs["padding"],
op.kernel,
input_shape,
op.attrs.get("explicit_padding"),
)
op.attrs["explicit_padding"] = padding
op.attrs["skirt"] = skirt
return op
def reorder_depthwise_weights(op, arch, nng):
if op.type.is_depthwise_conv2d_op():
weight_tensor = op.inputs[1]
weight_tensor.values = np.transpose(weight_tensor.values, (0, 1, 3, 2))
weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
weight_tensor.weight_transpose_depthwise = True
return op
def optimise_strided_conv(op, arch, nng):
if op.type != Op.Conv2DBias or op.op_index != 0:
return op
stride_x, stride_y = op.get_kernel_stride()
weight_tensor = op.weights
ifm_shape = op.ifm_shapes[0]
if (
stride_x == 2
and ifm_shape.depth <= 4
and ifm_shape.width % 2 == 0
and weight_tensor is not None
and weight_tensor.shape[1] >= 2
):
k_w, _ = op.get_kernel_size()
curr_padding_x = needed_total_padding(ifm_shape.width, 2, k_w)
optimised_padding_x = needed_total_padding(ifm_shape.width // 2, 1, (k_w + 1) // 2)
if curr_padding_x != optimised_padding_x:
# Horizontal padding would become different after optimisation; this would not work
return op
# IFM
op.ifm_shapes[0] = Shape4D([ifm_shape.batch, ifm_shape.height, ifm_shape.width // 2, ifm_shape.depth * 2])
# Weights
weight_shape = weight_tensor.shape
if weight_shape[1] % 2 != 0:
weight_shape[1] = weight_shape[1] + 1
padded_array = np.zeros(weight_shape)
for i in range(weight_shape[0]):
padded_array[i] = np.vstack(
[
weight_tensor.values[i],
np.full((1, weight_shape[2], weight_shape[3]), weight_tensor.quantization.zero_point),
]
)
weight_tensor.values = padded_array
weight_shape[1] //= 2
weight_shape[2] *= 2
weight_tensor.values = np.reshape(weight_tensor.values, weight_shape)
weight_tensor.set_all_shapes(weight_shape)
# If multiple copies of the weights are used, we could avoid
# them having the same address by changing the value_id
weight_tensor.value_id = uuid.uuid4()
# Strides
stride_x = 1
op.attrs.update({"stride_w": stride_x, "stride_h": stride_y, "strides": (1, stride_y, stride_x, 1)})
return op
def convert_conv_to_fc(op, arch, nng):
# Conv 1x1 can be equivalent to Fully Connected.
# By representing certain convs as fully connected layers, Vela can better determine wether or not to use
# caching/double buffering for the weights.
# (Weights dont need to be reloaded for convs when IFM H and W are 1)
if op.type == Op.Conv2DBias:
h = op.ifm_shapes[0].height
w = op.ifm_shapes[0].width
kh, kw, _, _ = op.inputs[1].shape
if h == 1 and w == 1 and kh == 1 and kw == 1:
# Overwrite this op as a Fully Connected Op
op.name += "_fc"
op.type = Op.FullyConnected
op.attrs = {
"weights_format": 0,
}
# Reshape Weights to be 2D. HWIO becomes just IO (as H and W are 1, they can just be dropped)
weight_tensor = op.inputs[1]
weight_tensor.values = weight_tensor.values.squeeze(axis=(0, 1))
weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
DebugDatabase.add_optimised(op, op)
return op
def fixup_relus_with_differing_ifm_ofm_scaling(op, arch, nng):
if op.run_on_npu and op.type.is_relu_op():
ifm = op.inputs[0]
ofm = op.outputs[0]
# Relu with differing IFM and OFM scaling cannot be fused with another primary op
# and requires its own to be inserted
if not check_quantized_tens_scaling_equal(ifm, ofm):
# Override this op with its own primary op (avgpool)
relu_fused_op = create_avgpool_nop(op.name + "_avgpool")
# And fuse the original activation function to it
relu_fused_op.activation = create_activation_function(op.type)
# Add explicit rescaling
rescale = ifm.quantization.scale_f32 / ofm.quantization.scale_f32
multiplier, shift = scaling.quantise_scale(rescale)
relu_fused_op.explicit_scaling = ExplicitScaling(False, [shift], [multiplier])
# Tidy up and assign the ifm and ofm to the new op
ifm.consumer_list.remove(op)
relu_fused_op.add_input_tensor(ifm)
relu_fused_op.set_output_tensor(ofm)
relu_fused_op.set_ifm_ofm_shapes()
op = relu_fused_op
return op
def convert_softmax(op, arch, nng):
if op.type == Op.Softmax and op.run_on_npu:
softmax = SoftMax(op)
op = softmax.get_graph()
return op
def convert_prelu(op, arch, nng):
if op.type == Op.Prelu:
ifm, alpha, ofm = op.get_ifm_ifm2_ofm()
if None in (ifm, alpha, ofm):
return op
if alpha.values is not None:
# If const alpha check for possible optimisations
alpha_zp = alpha.quantization.zero_point
alpha_scale = alpha.quantization.scale_f32
# If all alpha values are the same the PReLU can be converted to LeakyRelu
alpha_min = (alpha.values.min().astype(np.int) - alpha_zp) * alpha_scale
alpha_max = (alpha.values.max().astype(np.int) - alpha_zp) * alpha_scale
if alpha_min == alpha_max:
# or even a Relu
if alpha_min == 0:
new_op = Op.Relu
else:
new_op = Op.LeakyRelu
op.attrs["alpha"] = alpha_min
# setup alpha_scaling for bit exact result
ifm_scale = ifm.quantization.scale_f32
ofm_scale = ofm.quantization.scale_f32
alpha_scale, alpha_shift = scaling.elementwise_mul_scale(ifm_scale, alpha_scale, ofm_scale)
op.attrs["alpha_scaling"] = (alpha.values.min() - alpha_zp, alpha_scale, alpha_shift)
# Change op type
op.type = new_op
op.name = op.name.replace("Prelu", new_op.name)
del op.inputs[1] # Remove alpha tensor
return op
elif alpha_max < 1:
# If alpha_max is less than 1 convert PReLU to Max(alpha * IFM, identity * IFM)
# Multiply with alpha tensor
mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
mul_alpha.add_input_tensor(ifm)
mul_alpha.add_input_tensor(alpha)
fm_alpha = ofm.clone(op.name + "_alpha", set_unique=True)
mul_alpha.set_output_tensor(fm_alpha)
mul_alpha.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, mul_alpha)
if check_quantized_tens_scaling_equal(ifm, ofm):
# No scaling is needed
fm_id = ifm
else:
# Add multiplication with identity
mul_identity = Operation(Op.Mul, op.name + "_mul_identity")
mul_identity.add_input_tensor(ifm)
# Create const tensor containing identity as scalar
quantization = ifm.quantization.clone()
quantization.scale_f32 = np.float32(1)
quantization.zero_point = 0
one = create_const_tensor("one_const", [], ifm.dtype, [1], quantization=quantization)
mul_identity.add_input_tensor(one)
# Make sure that fm_id is allocated to a different address than fm_alpha
fm_id = ofm.clone(op.name + "_id", set_unique=True)
mul_identity.set_output_tensor(fm_id)
mul_identity.set_ifm_ofm_shapes()
# Combine scaled and alpha multiplied values
max_op = Operation(Op.Maximum, op.name + "_max")
max_op.add_input_tensor(fm_alpha)
max_op.add_input_tensor(fm_id)
max_op.set_output_tensor(ofm)
max_op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, max_op)
ifm.consumer_list.remove(op)
return max_op
# Catch all PReLU conversion for the cases that could not be optimised above
no_scale_quant = ifm.quantization.clone()
no_scale_quant.scale_f32 = None
no_scale_quant.zero_point = 0
zero = create_const_tensor("zero_const", [], ifm.dtype, [0], quantization=no_scale_quant)
# Select values < 0
min_op = Operation(Op.Minimum, op.name + "_min")
min_op.add_input_tensor(ifm)
min_op.add_input_tensor(zero)
fm_negative = ifm.clone(op.name + "_negative", set_unique=True)
min_op.set_output_tensor(fm_negative)
min_op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, min_op)
# and multiply with alpha tensor
mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
mul_alpha.add_input_tensor(fm_negative)
mul_alpha.add_input_tensor(alpha)
fm_alpha = ofm.clone(op.name + "_negative_alpha", set_unique=True)
mul_alpha.set_output_tensor(fm_alpha)
mul_alpha.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, mul_alpha)
# Select (and scale) values > 0
relu_op = Operation(Op.Relu, op.name + "_relu")
relu_op.add_input_tensor(ifm)
fm_scaled = ofm.clone(op.name + "_positive_scaled", set_unique=True)
relu_op.set_output_tensor(fm_scaled)
relu_op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, relu_op)
# Add scaled and alpha multiplied values (without scaling)
add_op = Operation(Op.Add, op.name + "_add")
add_op.explicit_scaling = ExplicitScaling(False, shift=[0], multiplier=[1]) # No scaling
add_op.add_input_tensor(fm_alpha)
add_op.add_input_tensor(fm_scaled)
add_op.set_output_tensor(ofm)
add_op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, add_op)
ifm.consumer_list.remove(op)
op = add_op
return op
def convert_mul_max_to_abs_or_lrelu(op, arch, nng):
r"""Whenever there is a subgraph with this topology:
Input X For X = -1 or X > 0
| \ / This subgraph can be replaced with either
| Mul an Abs (if X = -1) or a LeakyReLU (if X > 0)
| /
Max
"""
if op.type == Op.Maximum:
# finds the Mul input(s) to the Max
muls = [i for i in op.inputs if i.ops[0].type == Op.Mul]
if len(muls) == 1:
mul = muls[0].ops[0]
elif len(muls) == 2:
# In the case both inputs are Muls, find the one with the same input as the Max
mul_ifms = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1]
if len(mul_ifms):
mul = mul_ifms[0].ops[0]
else:
# Not using same input
return op
else:
# No Mul inputs
return op
# make sure the Mul doesn't have any other consumers
mul_ofm = mul.outputs[0]
if len(mul_ofm.consumers()) != 1:
return op
# make sure the Mul doesn't have a fused activation function
if mul.activation:
return op
ifm, ofm = op.get_ifm_ofm()
if ifm is None or ofm is None:
return op
if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
return op
if not check_quantized_tens_scaling_equal(ifm, ofm) or not check_quantized_tens_scaling_equal(ifm, mul_ofm):
# rewrite to LeakyRelu currently only makes sense if the quantization is identical
return op
# finds the branched input that goes to both the Max and the Mul
shared = set(op.inputs) & set(mul.inputs)
if len(shared) == 1:
shared_in = shared.pop()
# find the constant scalar input to the Mul
const_tens = (set(mul.inputs) - {shared_in}).pop()
# check that it is a scalar
if const_tens.shape != []:
return op
const = const_tens.ops[0]
# check that it is a constant
if const.type != Op.Const:
return op
# Remove the Mul from the shared input's consumers
shared_in.consumer_list.remove(mul)
else:
return op
val = const.outputs[0].values
if val >= 0:
new_op = Op.LeakyRelu
op.attrs["alpha"] = val
# to produce bit exact results, the alpha is not enough;
# save additional scaling info in attr "alpha_scale", to be used as input
# to the LUT construction
alpha_scalar = const_tens.values - const_tens.quantization.zero_point
mul_ifm_scale = np.double(ifm.quantization.scale_f32)
mul_ifm2_scale = np.double(const_tens.quantization.scale_f32)
mul_ofm_scale = np.double(mul_ofm.quantization.scale_f32)
alpha_scale, alpha_shift = scaling.elementwise_mul_scale(mul_ifm_scale, mul_ifm2_scale, mul_ofm_scale)
op.attrs["alpha_scaling"] = (alpha_scalar, alpha_scale, alpha_shift)
elif val == -1:
new_op = Op.Abs
else:
return op
op.type = new_op
op.name = op.name.replace("Maximum", new_op.name)
op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op.name)
op.inputs = [shared_in]
op.set_ifm_ofm_shapes()
# Record optimisation in debug database
DebugDatabase.add_optimised(op, op)
return op
def convert_hardswish_to_lut(op, arch, nng):
if op.type == Op.HardSwish:
ifm, ofm = op.get_ifm_ofm()
# Generate the LUT
ifm_scale = np.double(ifm.quantization.scale_f32)
ofm_scale = np.double(ofm.quantization.scale_f32)
zp_in = ifm.quantization.zero_point
zp_out = ofm.quantization.zero_point
ifm_scale_hires = (1 / 128) * ifm_scale
relu_multiplier = np.double(3 / 32768)
out_scale, out_shift = scaling.quantise_scale(ifm_scale_hires / ofm_scale)
relu_scale, relu_shift = scaling.quantise_scale(ifm_scale_hires / relu_multiplier)
# Use 16bit scale
out_scale_16 = fp_math.downscale_multiplier_int32_to_int16(out_scale)
relu_scale_16 = fp_math.downscale_multiplier_int32_to_int16(relu_scale)
values = []
ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
quantized_min = min(ix)
quantized_max = max(ix)
for x in ix:
input_value = x - zp_in
input_value_hires = input_value * 128
# Compute the input value on essentially the output scale, not shifted yet
input_value_preshift = fp_math.saturating_rounding_mul16(input_value_hires, out_scale_16)
# Compute the "relu-ish multiplier". This matches the code in TensorFlow Lite Micro kernel
relu_value = np.int16(input_value_hires)
if relu_shift < 31:
relu_value = fp_math.shift_left16(relu_value, 30 - relu_shift)
relu_value = fp_math.saturating_rounding_mul16(relu_value, relu_scale_16)
if relu_shift < 31:
relu_value = fp_math.shift_left16(relu_value, 1)
if relu_shift > 31:
relu_value = fp_math.rounding_divide_by_pot(relu_value, relu_shift - 31)
# Rescaled the value into a 16bit fixedpoint relu_value in [-1, 1]
# Now convert that to a 16bit fixedpoint value in [0, 1]
relu_value = (relu_value + (1 << 15)) >> 1
lut_result = fp_math.saturating_mul16(relu_value, input_value_preshift)
shift = 31 - out_shift
shift = -shift if shift < 0 else 0
# Finally apply the output shift
lut_result = fp_math.rounding_divide_by_pot(lut_result, shift) + zp_out
lut_result = min(quantized_max, max(quantized_min, lut_result))
values.append(lut_result)
return convert_to_lut(op, values, "hardswish")
return op
def convert_lrelu_to_mul_max(op, arch):
# Converts LeakyRelu to Max(alpha * IFM, identity * IFM)
# (the opposite of convert_mul_max_to_abs_or_lrelu)
ifm, ofm = op.get_ifm_ofm()
if ifm is None or ofm is None:
return op
alpha = np.float32(op.attrs["alpha"])
use_mul_max = 0 < alpha < 1
is_converted_prelu = "alpha_scaling" in op.attrs
if use_mul_max:
mul_ifm = ifm
new_op = Op.Maximum
else:
# Need to use a different approach for alpha < 0 or alpha > 1
no_scale_quant = ifm.quantization.clone()
no_scale_quant.scale_f32 = None
no_scale_quant.zero_point = 0
zero = create_const_tensor("zero_const", [], ifm.dtype, [0], quantization=no_scale_quant)
# Select values < 0
min_op = Operation(Op.Minimum, op.name + "_min")
min_op.add_input_tensor(ifm)
min_op.add_input_tensor(zero)
mul_ifm = ifm.clone(op.name + "_negative", set_unique=True)
if alpha < 0 and not is_converted_prelu:
# For negative alpha that is not from a converted PReLU we need to use
# int32 Mul below to perform the (negative) alpha scaling
mul_ifm.dtype = DataType.int32
min_op.set_output_tensor(mul_ifm)
min_op.set_ifm_ofm_shapes()
new_op = Op.Add
op.explicit_scaling = ExplicitScaling(False, shift=[0], multiplier=[1]) # No scaling
DebugDatabase.add_optimised(op, min_op)
# Add multiplication with alpha
mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
mul_alpha.add_input_tensor(mul_ifm)
# Create const tensor containing alpha as scalar
quantization = ifm.quantization.clone()
quantization.min = 0
quantization.max = alpha * (quantization.quant_max - quantization.quant_min)
quantization.zero_point = 0
alpha_dtype = mul_ifm.dtype
if is_converted_prelu:
# The LeakyRelu was the result from convert_prelu and the scaling is provided
scalar, alpha_scale, alpha_shift = op.attrs["alpha_scaling"]
mul_alpha.explicit_scaling = ExplicitScaling(False, [alpha_shift], [alpha_scale])
elif alpha == 0 or np.isinf(1 / alpha):
# Handling of alpha near or at zero
quantization.scale_f32 = np.float32(1)
scalar = 0
else:
quantization.scale_f32 = alpha
if alpha_dtype == DataType.int32:
# When the datatype is int32 (alpha negative) we need to do the scaling with the multiplication
scalar, _ = scaling.elementwise_mul_scale(ifm.quantization.scale_f32, alpha, ofm.quantization.scale_f32)
else:
scalar = 1
alpha_tens = create_const_tensor(
op.name + "_alpha_scalar", [1], alpha_dtype, [scalar], alpha_dtype.as_numpy_type(), quantization=quantization
)
mul_alpha.add_input_tensor(alpha_tens)
fm_alpha = ofm.clone(op.name + "_alpha", set_unique=True)
mul_alpha.set_output_tensor(fm_alpha)
mul_alpha.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, mul_alpha)
if not use_mul_max:
relu_op = Operation(Op.Relu, op.name + "_relu")
relu_op.add_input_tensor(ifm)
fm_id = ofm.clone(op.name + "_positive_scaled", set_unique=True)
relu_op.set_output_tensor(fm_id)
relu_op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, relu_op)
elif check_quantized_tens_scaling_equal(ifm, ofm):
# No identity multiplication is needed
fm_id = ifm
else:
# Add multiplication with identity
mul_identity = Operation(Op.Mul, op.name + "_mul_identity")
mul_identity.add_input_tensor(ifm)
# Create const tensor containing identity as scalar
quantization = ifm.quantization.clone()
quantization.min = 0
quantization.max = quantization.quant_max - quantization.quant_min
quantization.scale_f32 = np.float32(1)
quantization.zero_point = 0
identity_tens = create_const_tensor(
op.name + "_id_scalar", [], ifm.dtype, [1], np.uint8, quantization=quantization
)
mul_identity.add_input_tensor(identity_tens)
# Make sure that fm_id is allocated to a different address than fm_alpha
fm_id = ofm.clone(op.name + "_id", set_unique=True)
mul_identity.set_output_tensor(fm_id)
mul_identity.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, mul_identity)
# Convert LeakyRelu to Max, add the results of the multiplication(s) as inputs
op.type = new_op
op.name = op.name.replace("LeakyRelu", new_op.name)
op.inputs = []
ifm.consumer_list.remove(op)
op.add_input_tensor(fm_alpha)
op.add_input_tensor(fm_id)
op.set_ifm_ofm_shapes()
DebugDatabase.add_optimised(op, op)
return op
def convert_to_lut8(op, fn, fn_name):
# Converts op to a no-op + int8/uint8 LUT which is generated with the given function.
# fn is a function(real) -> real
ifm, ofm = op.get_ifm_ofm()
if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
return op
# Generate the LUT
ifm_scale = np.double(ifm.quantization.scale_f32)
ofm_scale = np.double(ofm.quantization.scale_f32)
zp_in = ifm.quantization.zero_point
zp_out = ofm.quantization.zero_point
values = []
ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
quantized_min = min(ix)
quantized_max = max(ix)
for x in ix:
x_real = ifm_scale * (x - zp_in)
y_real = fn(x_real)
lut_result = round_away_zero(zp_out + y_real / ofm_scale)
lut_result = min(quantized_max, max(quantized_min, lut_result))
values.append(lut_result)
return convert_to_lut(op, values, fn_name)
def convert_lrelu_to_lut(op, arch):
ifm, ofm = op.get_ifm_ofm()
# Generate the LUT
alpha = op.attrs["alpha"]
ifm_scale = np.double(ifm.quantization.scale_f32)
ofm_scale = np.double(ofm.quantization.scale_f32)
zp_in = ifm.quantization.zero_point
zp_out = ofm.quantization.zero_point
identity_scale, identity_shift = scaling.elementwise_mul_scale(ifm_scale, 1, ofm_scale)
alpha_scalar = 1
alpha_scale, alpha_shift = scaling.elementwise_mul_scale(ifm_scale, alpha, ofm_scale)
if "alpha_scaling" in op.attrs:
# The LeakyRelu was the result from convert_mul_max_to_abs_or_lrelu
alpha_scalar, alpha_scale, alpha_shift = op.attrs["alpha_scaling"]
values = []
ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
quantized_min = min(ix)
quantized_max = max(ix)
for x in ix:
if x < zp_in:
lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(
alpha_scalar * (x - zp_in), alpha_scale, alpha_shift
)
else:
lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(x - zp_in, identity_scale, identity_shift)
lut_result = min(quantized_max, max(quantized_min, lut_result))
values.append(lut_result)
return convert_to_lut(op, values, "lrelu")
def convert_lrelu(op, arch, nng):
# Converts LeakyRelu to a LUT based solution if possible, otherwise a mul + max
if op.type != Op.LeakyRelu:
return op
ifm, ofm = op.get_ifm_ofm()
if ifm is None or ofm is None:
return op
alpha = op.attrs["alpha"]
if alpha == 0:
# When alpha is 0 the opertion can be converted to a ReLU
op.type = Op.Relu
op.name = op.name.replace("LeakyRelu", op.type.name)
return op
if ifm.dtype in (DataType.uint8, DataType.int8) and ifm.dtype == ofm.dtype:
# use LUT for int8/uint8
return convert_lrelu_to_lut(op, arch)
if check_quantized_tens_scaling_equal(ifm, ofm) and ifm.dtype == ofm.dtype == DataType.int16 and alpha > 0:
# use LeakyRelu unmodified for int16 with equal input/output scaling and positive alpha
return op
return convert_lrelu_to_mul_max(op, arch)
def convert_tanh_sigmoid_to_lut(op, arch, nng):
# Converts int8/uint8 Sigmoid and Tanh to a LUT based solution
if op.type == Op.Sigmoid:
return convert_to_lut8(op, clamp_sigmoid, "sigmoid")
elif op.type == Op.Tanh:
return convert_to_lut8(op, math.tanh, "tanh")
return op
def remove_memory_only_ops(op, arch):
if op.run_on_npu and op.type in memory_only_ops:
bypass_memory_only_ops(op)
def fuse_activation_function_with_prev(op, arch, nng):
# if op is a no-op: attempts to move the activation function to the preceding op
if not op.attrs.get("is_nop", False) or op.activation is None:
return op
ifm, ofm = op.get_ifm_ofm()
if ifm is None or ofm is None:
return op
# finds the input(s) to the operation
prev_op = ifm.ops[0]
# Note: the below checks on prev_op require that a first optimize pass on the full graph has been performed
fuse = (
prev_op.run_on_npu
and prev_op.type.npu_block_type != NpuBlockType.Default
and len(ifm.ops) == 1
and len(prev_op.outputs[0].consumers()) == 1
and prev_op.activation is None
)
if op.activation_lut is not None and arch.shram_reserved_unused_banks == 0:
# TODO: if SHRAM LUT space is shared with SHRAM ACC (32, 64 MAC),
# LUT currently only works correctly for elementwise ops
fuse = False
if not fuse:
return op
# Move the fused activation function + corresponding info to prev_op
prev_op.activation = op.activation
prev_op.forced_output_quantization = op.forced_output_quantization
if op.activation_lut is not None:
prev_op.set_activation_lut(op.activation_lut)
# Bypass op
prev_op.set_output_tensor(ofm)
DebugDatabase.add_optimised(op, prev_op)
return op
def _leading_pad_ok(leading_pad, stride, kernel_size):
# If kernel size // 2 > stride, then (left, top) padding must be a multiple of stride,
# otherwise replacing PAD by hardware padding would iterate the wrong IFM rows/columns
max_size = kernel_size // 2
return leading_pad == max_size or max_size <= stride or leading_pad % stride == 0
def replace_pad_by_hw_pad(op: Operation, arch, nng):
"""
Tries to completely remove a PAD operator by using hardware padding.
E.g. a PAD operation that pads 1, followed by a CONV with VALID padding and kernel size 3
is rewritten such that the PAD is removed, and the CONV uses SAME padding.
Converts tens1 -> PAD -> tens2 -> CONV to tens1 -> CONV
if both operations can be run on the NPU.
This is the most efficient way to implement PAD, but cannot be done for all pad sizes.
"""
if (
(op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op() or op.type.is_avgpool_op())
and op.type not in (Op.Conv2DBackpropInput, Op.Conv2DBackpropInputSwitchedBias)
and op.run_on_npu
and op.attrs["padding"] == Padding.VALID
):
pad_op = op.ifm.ops[0]
if pad_op.type != Op.Pad or not pad_op.run_on_npu:
return op
if pad_op.ifm.dtype != pad_op.ofm.dtype or not check_quantized_tens_scaling_equal(pad_op.ofm, pad_op.ifm):
return op
top, left, bottom, right = get_pad_values_from_input(pad_op.inputs[1].values)
k = op.kernel
k_w, k_h = k.dilated_wh()
# Check if the PAD operator can be replaced by hardware padding
if left > k_w // 2 or right > k_w // 2 or top > k_h // 2 or bottom > k_h // 2:
# Too much padding, it would require hardware padding to actually insert zeros
return op
if not _leading_pad_ok(top, k.stride.y, k_h) or not _leading_pad_ok(left, k.stride.x, k_w):
return op
if op.type.is_avgpool_op():
# For average pool, hardware padding can only be used if padding is 0 or kernel size / 2
for pad, k_size in (
(left, k_w),
(right, k_w),
(top, k_h),
(bottom, k_h),
):
if pad not in (0, k_size // 2):
return op
# Average pool is converted to depthwise, because NPU average pool + same padding
# has a special implementation that is different from PAD followed by average pool with
# valid padding.
k_w, k_h = op.kernel.width, op.kernel.height
ifm = op.ifm
# Remember other inputs
other_inputs = op.inputs[1:]
# Create a weight tensor, all weights are set to 1/(kernel width * kernel height)
quantization = QuantizationParameters(0.0, 255.0)
quantization.scale_f32 = 1.0 / (k_w * k_h)
quantization.zero_point = 0
shape = [k_h, k_w, 1, op.ofm.shape[-1]]
weights = np.full(shape, 1)
weight_tens = create_const_tensor(
op.name + "_weights",
shape,
op.ifm.dtype,
weights,
np.uint8,
purpose=TensorPurpose.Weights,
quantization=quantization,
)
weight_tens.values = weights
op.type = Op.DepthwiseConv2DBias
op.inputs = []
op.add_input_tensor(ifm)
op.add_input_tensor(weight_tens)
# Add bias tensor, all biases set to 0
op.inputs.append(None)
fixup_bias_tensors(op, arch, nng, DataType.int32)
# Add other inputs
op.inputs.extend(other_inputs)
op.rounding_mode = NpuRoundingMode.NATURAL
# Bypass the PAD operator
op.set_input_tensor(pad_op.ifm, 0)
# Adjust the padding attributes of the convolution operator
op.attrs["padding"] = Padding.EXPLICIT
op.attrs["explicit_padding"] = (top, left, bottom, right)
op.set_ifm_ofm_shapes()
return op
def convert_pad(op: Operation, arch, nng):
"""
Rewrites PAD operator to an average pool that copies the IFM to the OFM
+ up to 4 average pool operators that fill the OFM with zeros at the borders.
This is done as fall-back for the PAD operators that remain after replace_pad_by_hw_pad
"""
if op.type != Op.Pad or not op.run_on_npu:
return op
top, left, bottom, right = get_pad_values_from_input(op.inputs[1].values)
ifm = op.ifm
assert ifm is not None
ifm_shape = op.ifm_shapes[0]
ofm = op.ofm
assert ofm is not None
ofm.ops = []
ofm_shape = op.ofm_shapes[0]
# Average pool op that copies IFM to the right place inside the OFM
shp0 = Shape4D(0, 0, 0, 0)
shp_top = shp0.with_height(top)
avgpool_op = create_avg_pool_for_concat(op, op.name + "_main", ifm, ifm_shape, shp_top.with_width(left))
avgpool_op.activation = op.activation
quant = ofm.quantization
pad_value = quant.zero_point
# Add operations that fill the borders of the OFM
if top > 0:
shape = Shape4D(1, top, ofm_shape.width, ofm_shape.depth)
zero_tens = create_const_tensor(
op.name + "_top", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
)
# If top/bottom or left/right are equal, the const tensors can be allocated to the same address
zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
create_avg_pool_for_concat(op, op.name + "_top", zero_tens, shape, shp0)
if bottom > 0:
shape = Shape4D(1, bottom, ofm_shape.width, ofm_shape.depth)
zero_tens = create_const_tensor(
op.name + "_bottom",
shape.as_list(),
ofm.dtype,
shape.elements() * [pad_value],
np.uint8,
quantization=quant,
)
zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
create_avg_pool_for_concat(
op, op.name + "_bottom", zero_tens, shape, shp0.with_height(ofm_shape.height - bottom)
)
if left > 0:
shape = Shape4D(1, ifm_shape.height, left, ofm_shape.depth)
zero_tens = create_const_tensor(
op.name + "_left", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
)
zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
create_avg_pool_for_concat(op, op.name + "_left", zero_tens, shape, shp_top)
if right > 0:
shape = Shape4D(1, ifm_shape.height, right, ofm_shape.depth)
zero_tens = create_const_tensor(
op.name + "_right", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
)
zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
create_avg_pool_for_concat(
op, op.name + "_right", zero_tens, shape, shp_top.with_width(ofm_shape.width - right)
)
op.type = Op.ConcatTFLite
return avgpool_op
def fixup_bias_tensors(op, arch, nng, dtype=None):
if op.type.needs_bias() and op.bias is None:
# Op has no bias, add bias tensor filled with zeros
nr_biases = op.inputs[1].shape[-1]
bias_values = [0] * nr_biases
# The DataType of the bias tensor can be explicitly provided or deduced from the ifm
# DataType. Default is int32 bias for 8-bit ifms and int64 for int16 ifms.
# For int16 the selected bias DataType will have an impact on the scaling
# used when encoding the scales and biases later. The default mode will match the
# refence with reduced scaling for int64 bias.
# This means that in cases (in the graph optimiser) where DepthwiseConv2DBias
# is used to emulate average pool int32 bias should be selected for full precision
# int16 scaling.
if dtype is None:
dtype = DataType.int64 if op.ifm.dtype == DataType.int16 else DataType.int32
bias_tensor = create_const_tensor(op.name + "_bias", [nr_biases], dtype, bias_values)
op.set_input_tensor(bias_tensor, op.type.info.indices.biases[0])
return op
def fixup_asymmetric_weights(op, arch, nng):
if op.run_on_npu and (op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op()):
if op.ifm.dtype == DataType.int8:
if not np.all(op.weights.quantization.zero_point == 0):
print(f"Warning: {op.type} '{op.name}' has asymmetric weights, zero points have been adjusted.")
op.weights.quantization.zero_point *= 0
return op
def convert_mean_to_depthwise_conv_or_avgpool(op, arch, nng):
if op.type == Op.Mean and op.run_on_npu:
inp, axis = op.inputs
shape = inp.shape
ofm_shape = op.ofm.shape
dims = len(shape)
dims_ofm = len(ofm_shape)
# Height and width axes have different index depending on dimensions
if axis.shape == [] or axis.shape[0] == 1: # single axis
axis = int(axis.values) if len(axis.shape) == 0 else int(axis.values[0])
if dims in (2, 3):
if axis == 0:
h, w = shape[axis], 1
else:
h, w = 1, shape[axis]
else:
if axis == 1:
h, w = shape[axis], 1
else:
h, w = 1, shape[axis]
else: # multiple axes
axis = sorted(axis.values)
h, w = [shape[i] for i in axis]
# Set necessary depthwise attributes
op.attrs.update(
{
"padding": Padding.VALID,
"stride_h": 1,
"stride_w": 1,
"strides": (1, 1, 1, 1),
"depth_multiplier": 1,
"channel_multiplier": 1,
"dilation_h_factor": 1,
"dilation_w_factor": 1,
"dilation": (1, 1, 1, 1),
}
)
# Change op type
op.type = Op.DepthwiseConv2DBias
# Set IFM/OFM shapes after changing op type
op.set_ifm_ofm_shapes()
weight_scale, bias = 1, 0
ofmq, ifmq = op.ofm.quantization, inp.quantization
if ifmq.is_scaling_equal(ofmq):
# Here we can just use a simple AvgPool with truncating rounding,
# as we're emulating simple integer division.
op.rounding_mode = NpuRoundingMode.TRUNCATE
op.type = Op.AvgPool
op.attrs.update({"ksize": (1, h, w, 1), "filter_height": h, "filter_width": w})
else:
op.rounding_mode = NpuRoundingMode.NATURAL
weight_scale = 1 / (h * w)
# Input zero point is adjusted after mean calculation, so we emulate that with a bias
bias = -ifmq.zero_point * h * w
fiq = ifmq.clone()
fiq.zero_point = 0
op.forced_input_quantization = fiq
# Change dimensions to 4
def extend_dims(dim, in_shape):
if dim < 4:
in_shape = [1] + in_shape
if dim == 2:
in_shape += [1]
return in_shape
if dims < 4 or dims_ofm < 4:
# Fix the ofm dimension when keep_dims is false
# e.g. IFM=1xHxWxC axis=2 OFM=1xHxC, the ofm_shape should be 1xHx1xC, not 1x1xHxC
if isinstance(axis, int) and dims_ofm + 1 == dims:
ofm_shape.insert(axis, 1)
elif isinstance(axis, list) and (dims_ofm + len(axis) == dims):
for i in axis:
ofm_shape.insert(i, 1)
shape = extend_dims(dims, shape)
dims_ofm = len(ofm_shape)
ofm_shape = extend_dims(dims_ofm, ofm_shape)
op.set_ifm_ofm_shapes()
# If height is greater than max kernel height, reshape from HxW to 1x(HxW)
weight_shape = None
if (h > 64 and op.type == Op.DepthwiseConv2DBias) or (h > 256 and op.type == Op.AvgPool):
# This can only happen and be done for multiple axes, and
# h * w <= 256 for DepthwiseConv2DBias
# h * w <= 4096 for AvgPool
# which is checked in supported ops
shape = [shape[0], 1, h * w, shape[3]]
op.ifm_shapes[0] = Shape4D(shape)
weight_shape = [1, h * w, shape[3], shape[0]]
if h > 256 and op.type == Op.AvgPool:
op.attrs.update({"ksize": (1, 1, h * w, 1), "filter_height": 1, "filter_width": h * w})
# If the AvgPool version is used, we don't need to do anything else
if op.type == Op.AvgPool:
return op
# Make unit weight tensor quantization
weight_quant = ifmq.clone()
weight_quant.min = 0
weight_quant.max = 255
weight_quant.scale_f32 = weight_scale
weight_quant.zero_point = 0
if weight_shape is None:
# Set weight shape to [H,W,C,B]
weight_shape = [h, w, shape[3], shape[0]]
# Add unit weight tensor
op.set_input_tensor(
create_const_tensor(
"weights",
weight_shape,
inp.dtype,
np.ones(weight_shape),
value_dtype=np.uint8,
quantization=weight_quant,
),
1,
)
op.weights.values = np.reshape(op.inputs[1].values, weight_shape)
# Add bias tensor
bias_shape = [shape[-1]]
op.inputs.append(create_const_tensor("bias", bias_shape, DataType.int32, np.ones(bias_shape) * bias))
return op
def optimise_quantize(op: Operation, arch, nng):
if op.type == Op.Quantize and op.run_on_npu:
ifm, ofm = op.get_ifm_ofm()
input_values = ifm.values
# Guard clause - input not const or no values to quantize
if ifm.ops[0].type != Op.Const or input_values is None:
return op
# Singular val in numpy array, convert to indexable array
if input_values.ndim == 0:
input_values = np.array([input_values])
# requantized int8 to int8 or int16 to int16
if ifm.dtype == ofm.dtype == DataType.int8 or ifm.dtype == ofm.dtype == DataType.int16:
# scale needs to use double precision to match TFLite reference kernel
effective_scale = np.float64(ifm.quantization.scale_f32) / np.float64(ofm.quantization.scale_f32)
effective_multiplier, effective_shift = quantise_scale(effective_scale)
requantized_vals = []
for val in input_values.flatten():
input_val = val - ifm.quantization.zero_point
ofm_val = fp_math.multiply_by_quantized_multiplier(input_val, effective_multiplier, effective_shift)
ofm_val += ofm.quantization.zero_point
clamped_ofm_value = max(min(ofm_val, ofm.quantization.quant_max), ofm.quantization.quant_min)
requantized_vals.append(clamped_ofm_value)
ofm.values = np.array(requantized_vals, ofm.dtype.as_numpy_type())
ofm.values.shape = input_values.shape
# Case: Float input - quantize to int
elif ifm.dtype.type == BaseType.Float:
quantized_vals = []
for val in input_values:
# Derive quantized value
quant_val = (val / ofm.quantization.scale_f32) + ofm.quantization.zero_point
clamped_quantized_val = np.clip(quant_val, ofm.quantization.quant_min, ofm.quantization.quant_max)
quantized_vals.append(clamped_quantized_val)
# Pass the statically calculated quant val to output tensor
ofm.values = np.array(quantized_vals, ofm.dtype.as_numpy_type())
# Unsupported data type
else:
return op
# Make quantize op const and disconnect from parent node
# Remove reference of the current quant op from the parent tensor's consumer list
ifm.consumer_list = [consumer for consumer in ifm.consumer_list if consumer.op_index != op.op_index]
# Clear any references to parent node
op.inputs = []
# Convert this quantize op to const
op.type = Op.Const
return op
def convert_shape_op_to_constant_tensor(op: Operation, arch, nng):
"""Static optimisation for SHAPE operator output value known at compile time"""
# Disconnect SHAPE operator from its parent and transform SHAPE OP into constant
if op.type == Op.Shape and op.run_on_npu:
ifm, ofm = op.get_ifm_ofm()
if len(ifm.shape) != ofm.shape[0]:
return op
# Remove reference of the current shape op from the parent tensor's consumer list
ifm.consumer_list = [consumer for consumer in ifm.consumer_list if consumer.op_index != op.op_index]
# Clear any references to parent node
op.inputs = []
# Convert this SHAPE op to const
op.type = Op.Const
DebugDatabase.add_optimised(op, op)
# Add size calculation to shape output tensors
ofm.values = np.array(ifm.shape)
return op
def supported_operator_check(op, arch, nng):
op.run_on_npu = arch.tflite_supported_operators.is_operator_supported(op)
return op
def tflite_optimise_graph(nng, arch):
# Compile time static optimisations
optimisation_list = [optimise_quantize, convert_shape_op_to_constant_tensor]
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[],
optimisation_list,
rewrite_unsupported=False,
)
# Pre-processing step
pre_process_list = [
supported_operator_check,
set_ifm_ofm_op_shapes,
]
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[],
pre_process_list,
rewrite_unsupported=False,
)
# Handle Concat Ops
for idx, sg in enumerate(nng.subgraphs):
rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [rewrite_concat_ops])
sg.refresh_after_modification()
# Handle Split Ops
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[],
[rewrite_unpack_output, rewrite_stridedslice_output, convert_nop_split_to_identity],
rewrite_unsupported=False,
)
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[rewrite_split_ops],
[],
rewrite_unsupported=False,
)
# Handle sg input output
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[],
[fix_sg_input_output],
rewrite_unsupported=False,
)
# Removal of memory only operators
for sg in nng.subgraphs:
rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_memory_only_ops])
sg.refresh_after_modification()
# Rewrite of operators
op_rewrite_list = [
set_tensor_equivalence,
convert_mean_to_depthwise_conv_or_avgpool,
convert_depthwise_to_conv,
convert_conv_to_fc,
convert_softmax,
convert_prelu,
convert_mul_max_to_abs_or_lrelu,
convert_lrelu,
optimise_strided_conv,
convert_hardswish_to_lut,
rewrite_fully_connected_input,
convert_batched_fc_shape,
fixup_conv2d_backprop,
fixup_relus_with_differing_ifm_ofm_scaling,
reorder_depthwise_weights,
fixup_resize,
fixup_bias_tensors,
fixup_asymmetric_weights,
convert_tanh_sigmoid_to_lut,
replace_pad_by_hw_pad,
]
for idx, sg in enumerate(nng.subgraphs):
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[],
op_rewrite_list,
rewrite_unsupported=False,
)
for idx, sg in enumerate(nng.subgraphs):
# remove passthrough tensors and attempt further optimizations
nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
nng,
sg,
arch,
[remove_passthrough_tensor],
[fuse_activation_function_with_prev, convert_pad, add_padding_fields],
)
# Removal of SplitSliceRead, need to be done after optimisation has been performed,
# since ifm/ofm_shapes are of importance to this function
for sg in nng.subgraphs:
rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_SplitSliceRead])
sg.refresh_after_modification()
# Make sure that const optimisations on subgraph outputs are handled correctly
for sg in nng.subgraphs:
for ofm in sg.output_tensors:
if ofm.is_const and ofm.ops[0].type_changed:
# Subgraph output cannot be const - insert a memory copy
op = ofm.ops[0]
ofm_clone = ofm.clone()
ofm_clone.values = ofm.values
ofm.values = None
np_dtype = ofm.dtype.as_numpy_type()
zero = create_const_tensor("zero", [1], ofm.dtype, [0], np_dtype, quantization=ofm.quantization)
memcpy = create_add_nop(f"{ofm.name}_copy")
memcpy.add_input_tensor(ofm_clone)
memcpy.add_input_tensor(zero)
memcpy.set_output_tensor(ofm)
memcpy.set_ifm_ofm_shapes()
op.set_output_tensor(ofm_clone)
DebugDatabase.add_optimised(op, memcpy)
return nng