blob: 933302f51ef002f131ad564de2713e42b3478ba1 [file] [log] [blame]
Jonas Ohlsson45e653d2021-07-26 16:13:12 +02001# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16# Description:
17# The TFLiteSupportedOperators class which is a collection of all TFLite supported operators and parameter checks.
18from collections import defaultdict
19
20import numpy as np
21
22from .data_type import DataType
23from .operation import Op
24from .operation import Padding
25from .supported_operators_util import docstring_format_args
26from .supported_operators_util import list_formatter
27from .tensor import check_quantized_tens_scaling_equal
28from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
29from .tflite_mapping import optype_to_builtintype
30
31
32def _optype_formatter(op_list):
33 # Convert internal op types to external names
34 output = map(optype_to_builtintype, op_list)
35 # Remove UNKNOWNs
36 output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
37 return list_formatter(output)
38
39
40class TFLiteSupportedOperators:
41 # Categorised lists of supported operators
42 npu_pre_ops = set((Op.SplitSliceRead,))
43 convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
44 depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
45 transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
46 convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
47 max_pooling_ops = Op.op_set(Op.is_maxpool_op)
48 avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
49 pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
50 resizing_ops = set((Op.ResizeBilinear,))
51 fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
52 mac_main_ops = (
53 # RNN/LSTM/GRU
54 set((Op.BlockLSTM,))
55 # conv/depthwiseconv/transposeconv
56 | convolution_like_ops
57 # pooling
58 | pooling_ops
59 # resizing/upscaling
60 | resizing_ops
61 # FC layers
62 | fc_vector_products
63 # Mean (converts to depthwise conv)
64 | set((Op.Mean,))
65 )
66 unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
67 binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
68 binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
69 binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
70 binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
71 elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
72 pad_ops = set((Op.Pad,))
73 supported_int32_tensor_ops = (
74 set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
75 )
76
77 relu_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Clip,))
78 activation_ops = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.Softmax, Op.HardSwish))
79 npu_post_ops = (
80 # activation functions
81 activation_ops
82 # concatenation write direction
83 | set((Op.ConcatSliceWrite,))
84 # Quantization
85 | set((Op.Quantize,))
86 )
87 split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
88 concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +020089 memory_only_ops = set((Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims,)) | concat_ops | split_ops
Jonas Ohlsson45e653d2021-07-26 16:13:12 +020090 per_axis_quant_ops = convolution_like_ops # per-axis/channel quantization only currently supported for conv ops
91 supported_fused_activations = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.LUT,))
92 supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
93 # Supported data types
94 supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
95 supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
96 supported_bias_dtypes = set((DataType.int32, DataType.int64))
97 supported_pad_dtypes = set((DataType.int32, DataType.int64))
98 # Defined ranges for allowed values:
99 tens_dim_range = (1, 65535)
100 stride_range = (1, 3)
101 dilation_range = (1, 2)
102 dilated_height_range = (1, 64)
103 dilated_product_range = (1, 64 * 64)
104 weights_limit = 127 * 65536
105 filter_range = (1, 8)
106 filter_height_range = (1, 256)
107 filter_product_range = (1, 256 * 256)
108 mean_kernel_product = 64 * 64
109 mean_kernel_product_int8 = 16 * 16
110 mean_kernel_product_avgpool = 256 * 256
111
112 def __init__(self):
113 # Setup the generic constraints. Note: the order matters
114 self.generic_constraints = []
115 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dtype)
116 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_int32_ops)
117 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dimension)
118 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_quant_per_axis)
119 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf)
120 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf_type)
121
122 # Setup specific constraints. Note: the order matters
123 self.specific_constraints = defaultdict(list)
124
125 # Conv-like checks:
126 for op_type in TFLiteSupportedOperators.convolution_like_ops:
127 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
128 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilation_range)
129 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_height_range)
130 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_product_range)
131 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
132 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
133 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_limit)
134 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
135 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
136 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
137 # Depthwise Conv specific checks:
138 for op_type in TFLiteSupportedOperators.depthwise_convolution_ops:
139 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depth_multiplier)
140 # Transpose Conv specific checks:
141 for op_type in TFLiteSupportedOperators.transpose_convolution_ops:
142 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_stride)
143 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_same)
144 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_valid)
145
146 # Pooling checks:
147 for op_type in TFLiteSupportedOperators.pooling_ops:
148 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
149 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
150 # AVG pooling specific checks:
151 for op_type in TFLiteSupportedOperators.avg_pooling_ops:
152 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_range)
153 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range_valid_pad)
154 self.specific_constraints[op_type].append(
155 TFLiteSupportedOperators.constraint_filter_product_range_valid_pad
156 )
157 # MAX pooling specific checks:
158 for op_type in TFLiteSupportedOperators.max_pooling_ops:
159 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range)
160 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_product_range)
161
162 # Resizing specific checks:
163 for op_type in TFLiteSupportedOperators.resizing_ops:
164 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize)
165
166 # Vector Product specific checks:
167 for op_type in TFLiteSupportedOperators.fc_vector_products:
168 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
169 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
170 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
171 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
172
173 # Element-wise checks:
174 for op_type in TFLiteSupportedOperators.elem_wise_main_ops:
175 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_elemwise_batch_size)
176 # Binary Min/Max specific checks:
177 for op_type in TFLiteSupportedOperators.binary_elem_wise_min_max_ops:
178 self.specific_constraints[op_type].append(
179 TFLiteSupportedOperators.constraint_matching_quantization_parameters
180 )
181 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
182 # Binary Add/Mul/Sub specific checks:
183 for op_type in TFLiteSupportedOperators.binary_elem_wise_add_mul_sub:
184 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
185 # Binary Shift specific checks:
186 for op_type in TFLiteSupportedOperators.binary_elem_wise_shift_ops:
187 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_inputs_int32)
188 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
189
190 # SHL specific checks:
191 self.specific_constraints[Op.SHL].append(TFLiteSupportedOperators.constraint_output_int32)
192
193 # CLZ specific checks:
194 self.specific_constraints[Op.CLZ].append(TFLiteSupportedOperators.constraint_output_int32)
195
196 # StridedSlice specific checks:
197 self.specific_constraints[Op.StridedSlice].append(
198 TFLiteSupportedOperators.constraint_stridedslice_stride_values
199 )
200
201 # Pad specific checks:
202 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_shape)
203 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_padding_dimensions)
204 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_type)
205
206 # Mean specific checks:
207 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_avgpool)
208 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product)
209 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_int8)
210
211 def is_operator_supported(self, op):
212 ext_type = optype_to_builtintype(op.type)
213 if op.type not in TFLiteSupportedOperators.supported_operators:
214 if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
215 print(f"Info: {ext_type} '{op.name}' is a CPU only op")
216 return False
217
218 for constraint in self.generic_constraints + self.specific_constraints[op.type]:
219 valid, extra = constraint(op)
220 if not valid:
221 print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
222 print(f" - {constraint.__doc__}")
223 if extra:
224 print(f" {extra}")
225 return False
226
227 return True
228
229 @classmethod
230 @docstring_format_args([list_formatter(supported_op_dtypes)])
231 def constraint_tens_dtype(cls, op):
232 "Tensors must be of type: {}"
233 valid = True
234 extra = []
235 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
236 if not tensors:
237 tensors = [tens for tens in op.inputs if tens]
238 for tens in tensors:
239 if tens.dtype not in cls.supported_op_dtypes:
240 valid = False
241 extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
242 return valid, ", ".join(extra)
243
244 @classmethod
245 @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
246 def constraint_tens_int32_ops(cls, op):
247 "Tensors which are int32 are only valid when op type is: {}"
248 valid = True
249 extra = []
250 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
251 if not tensors:
252 tensors = [tens for tens in op.inputs if tens]
253 for tens in tensors:
254 if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
255 valid = False
256 extra.append(tens.name)
257 extra = ", ".join(extra)
258 return valid, f"Op has int32 tensor(s): {extra}"
259
260 @classmethod
261 @docstring_format_args(tens_dim_range)
262 def constraint_tens_dimension(cls, op):
263 "Tensor dimensions must be in the range [{}, {}]"
264 tens_min, tens_max = cls.tens_dim_range
265 valid = True
266 extra = []
267 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
268 if not tensors:
269 tensors = [tens for tens in op.inputs if tens]
270 for tens in tensors:
271 if not all(tens_min <= dim <= tens_max for dim in tens.shape):
272 valid = False
273 extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
274 return valid, ", ".join(extra)
275
276 @classmethod
277 @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
278 def constraint_tens_quant_per_axis(cls, op):
279 "Per-axis quantization is only supported for the following op types: {}"
280 valid = True
281 extra = []
282 if op.type not in cls.per_axis_quant_ops:
283 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
284 for tens in tensors:
285 if tens.quantization.is_per_axis():
286 valid = False
287 extra.append(tens.name)
288 return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)
289
290 @classmethod
291 @docstring_format_args([_optype_formatter(supported_fused_activations)])
292 def constraint_faf(cls, op):
293 "The fused activation function (if present) must be one of type: {}"
294 if op.activation is None:
295 res = True, "Op has no fused activation function"
296 else:
297 faf = op.activation.op_type
298 valid = faf in cls.supported_fused_activations
299 res = valid, f"Op has its fused activation function as: {faf}"
300 return res
301
302 @classmethod
303 @docstring_format_args([list_formatter(supported_faf_dtypes)])
304 def constraint_faf_type(cls, op):
305 "If a fused activation function is present, the Output tensor must be one of type: {}"
306 if op.activation is None:
307 res = True, "Op has no fused activation function"
308 else:
309 valid = op.ofm.dtype in cls.supported_faf_dtypes
310 ext_type = optype_to_builtintype(op.activation.op_type)
311 res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
312 return res
313
314 @classmethod
315 @docstring_format_args(stride_range)
316 def constraint_stride_range(cls, op):
317 "Stride values for both width and height must be in the range [{}, {}]"
318 w, h = op.get_kernel_stride()
319 stride_min, stride_max = cls.stride_range
320 valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
321 return valid, f"Op has stride WxH as: {w}x{h}"
322
323 @classmethod
324 @docstring_format_args(dilation_range)
325 def constraint_dilation_range(cls, op):
326 "Dilation factor values for both width and height must be in the range [{}, {}]"
327 w, h = op.get_kernel_dilation()
328 dilation_min, dilation_max = cls.dilation_range
329 valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
330 return valid, f"Op has dilation factor WxH as: {w}x{h}"
331
332 @classmethod
333 @docstring_format_args(dilated_height_range)
334 def constraint_dilated_height_range(cls, op):
335 "Dilated kernel height must be in the range [{}, {}]"
336 h = op.kernel.area_height()
337 dilated_height_min, dilated_height_max = cls.dilated_height_range
338 valid = dilated_height_min <= h <= dilated_height_max
339 return valid, f"Op has dilated kernel height as: {h}"
340
341 @classmethod
342 @docstring_format_args(dilated_product_range)
343 def constraint_dilated_product_range(cls, op):
344 "Product of dilated kernel width and height must be in the range [{}, {}]"
345 product = op.kernel.area_width() * op.kernel.area_height()
346 dilated_product_min, dilated_product_max = cls.dilated_product_range
347 valid = dilated_product_min <= product <= dilated_product_max
348 return valid, f"Op has product of dilated kernel width and height as: {product}"
349
350 @staticmethod
351 def constraint_weights_type(op):
352 "Weight tensor must be 8-bit"
353 weights = op.weights
354 valid = weights.element_size() == 1
355 return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"
356
357 @staticmethod
358 def constraint_weights_const(op):
359 "Weight tensor must be constant"
360 weights = op.weights
361 valid = weights.values is not None
362 return valid, f"Tensor '{weights.name}' has non-constant values"
363
364 @classmethod
365 @docstring_format_args([weights_limit])
366 def constraint_weights_limit(cls, op):
367 "The sum of the weights cannot exceed {}"
368 weights = op.weights
369 values = weights.values.astype(np.int64) - weights.quantization.zero_point
370 limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
371 valid = limit <= cls.weights_limit
372 return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"
373
374 @classmethod
375 @docstring_format_args([list_formatter(supported_bias_dtypes)])
376 def constraint_bias_type(cls, op):
377 "Optional Bias tensor must be of type: {}"
378 bias = op.bias
379 if bias:
380 valid = bias.dtype in cls.supported_bias_dtypes
381 return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
382 return True, "Op has no bias tensor"
383
384 @staticmethod
385 def constraint_bias_40bit(op):
386 "Optional Bias tensor values must fit within 40-bits"
387 bias = op.bias
388 if bias and bias.dtype == DataType.int64 and bias.values is not None:
Tim Hall8ae29292021-07-28 16:52:03 +0100389 valid = all(len(bin(value)[2:]) <= 40 for value in bias.values)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200390 return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
391 return True, "Op has no bias tensor, or it fits in 40-bit"
392
393 @staticmethod
394 def constraint_batch_size(op):
395 "IFM Tensor batch size must be 1"
396 ifm = op.ifm
397 valid = ifm.shape[0] == 1
398 return valid, f"Tensor '{ifm.name}' has batch size: {ifm.shape[0]}"
399
400 @staticmethod
401 def constraint_depth_multiplier(op):
402 "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
403 depth_multiplier = op.attrs.get("depth_multiplier", 1)
404 if depth_multiplier > 1:
405 ifm_channels = op.ifm.shape[3]
406 ofm_channels = op.ofm.shape[3]
407 valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
408 extra = (
409 f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
410 f" and depth_multiplier={depth_multiplier}"
411 )
412 return valid, extra
413 return True, "Op has depth_multiplier=1"
414
415 @staticmethod
416 def constraint_tconv_stride(op):
417 "Stride values for both width and height must be 2"
418 w = op.kernel.stride.x
419 h = op.kernel.stride.y
420 valid = (w == 2) and (h == 2)
421 return valid, f"Op has stride WxH as: {w}x{h}"
422
423 @staticmethod
424 def constraint_tconv_same(op):
425 "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
426 if op.attrs["padding"] == Padding.SAME:
427 w = op.kernel.stride.x
428 h = op.kernel.stride.y
429 ifm_shape = op.ifm.shape
430 ofm_shape = op.ofm.shape
431 valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
432 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
433 return True, "Op has padding=VALID"
434
435 @staticmethod
436 def constraint_tconv_valid(op):
437 """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
438 minus difference between kernel size and stride"""
439 if op.attrs["padding"] == Padding.VALID:
440 s_w = op.kernel.stride.x
441 s_h = op.kernel.stride.y
442 k_w = op.kernel.width
443 k_h = op.kernel.height
444 ifm_shape = op.ifm.shape
445 ofm_shape = op.ofm.shape
446 height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
447 width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
448 valid = height_check and width_check
449 extra = (
450 f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
451 f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
452 )
453 return valid, extra
454 return True, "Op has padding=SAME"
455
456 @classmethod
457 @docstring_format_args(filter_range)
458 def constraint_filter_range(cls, op):
459 "Kernel filter values for both width and height must be in the range [{}, {}]"
460 if op.attrs["padding"] == Padding.SAME:
461 w = op.kernel.width
462 h = op.kernel.height
463 filter_min, filter_max = cls.filter_range
464 valid = (filter_min <= w <= filter_max) and (filter_min <= h <= filter_max)
465 return valid, f"Op has kernel filter WxH as: {w}x{h}"
466 return True, "Op has padding=VALID"
467
468 @classmethod
469 @docstring_format_args(filter_height_range)
470 def constraint_filter_height_range(cls, op):
471 "Kernel filter height must be in the range [{}, {}]"
472 h = op.kernel.height
473 filter_height_min, filter_height_max = cls.filter_height_range
474 valid = filter_height_min <= h <= filter_height_max
475 return valid, f"Op has kernel filter height as: {h}"
476
477 @classmethod
478 @docstring_format_args(filter_product_range)
479 def constraint_filter_product_range(cls, op):
480 "Product of kernel filter width and height must be in the range [{}, {}]"
481 product = op.kernel.elements_wh()
482 filter_product_min, filter_product_max = cls.filter_product_range
483 valid = filter_product_min <= product <= filter_product_max
484 return valid, f"Op has product of kernel filter width and height as: {product}"
485
486 @staticmethod
487 @docstring_format_args(filter_height_range)
488 def constraint_filter_height_range_valid_pad(op):
489 "VALID padding: Kernel filter height must be in the range [{}, {}]"
490 if op.attrs["padding"] == Padding.VALID:
491 return TFLiteSupportedOperators.constraint_filter_height_range(op)
492 return True, "Op has padding=SAME"
493
494 @staticmethod
495 @docstring_format_args(filter_product_range)
496 def constraint_filter_product_range_valid_pad(op):
497 "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
498 if op.attrs["padding"] == Padding.VALID:
499 return TFLiteSupportedOperators.constraint_filter_product_range(op)
500 return True, "Op has padding=SAME"
501
502 @staticmethod
503 def constraint_resize(op):
504 """The width and height of the IFM and OFM must match one of the following criteria:
505 IFM W and H must both be 1
506 IFM must match OFM
507 OFM W and H must be 2x IFM -1, if align_corners is True
508 OFM W and H must be 2x IFM, if align_corners is False"""
509 # Easier to start with False condition as very few cases result in a supported resize
510 valid = False
511 ifm_shape = op.ifm.shape
512 ofm_shape = op.ofm.shape
513 align_corners = op.attrs.get("align_corners", False)
514 if len(ifm_shape) == 4:
515 # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
516 if ((ifm_shape[1] == 1) and (ifm_shape[2] == 1)) or (ifm_shape == ofm_shape):
517 valid = True
518 else:
519 upscaled_shape = np.array(ifm_shape[1:3])
520 out_shape = np.array(ofm_shape[1:3])
521 while (upscaled_shape < out_shape).all():
522 upscaled_shape *= 2
523 if align_corners:
524 upscaled_shape -= 1
525 # Valid if OFM is 2x IFM (-1 for align corners)
526 if np.array_equal(out_shape, upscaled_shape):
527 valid = True
528 break
529 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"
530
531 @staticmethod
532 def constraint_pad_shape(op):
533 "The padding tensor must have the shape [3,2] or [4,2]"
534 valid = op.inputs[1].shape in ([3, 2], [4, 2])
535 return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"
536
537 @classmethod
538 @docstring_format_args([list_formatter(supported_pad_dtypes)])
539 def constraint_pad_type(cls, op):
540 "Pad tensor must be of type: {}"
541 pad_tensor = op.inputs[1]
542 valid = pad_tensor.dtype in cls.supported_pad_dtypes
543 return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"
544
545 @staticmethod
546 def constraint_padding_dimensions(op):
547 "The pad tensor can only pad width and height"
548 pad_tensor = op.inputs[1].values
549
550 valid = sum(pad_tensor[-1, :]) == 0
551 if valid and len(pad_tensor) > 3:
552 valid = sum(pad_tensor[0, :]) == 0
553 return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"
554
555 @staticmethod
556 def constraint_stridedslice_stride_values(op):
557 "All Strides values must be 1"
558 strides = op.inputs[3]
559 valid = all(stride == 1 for stride in strides.values)
560 return valid, f"Op has strides values {strides.values}"
561
562 @staticmethod
563 def constraint_inputs_int32(op):
564 "Both Input data types must be int32"
565 ifm_dtype = op.ifm.dtype
566 ifm2_dtype = op.ifm2.dtype
567 valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
568 return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"
569
570 @staticmethod
571 def constraint_output_int32(op):
572 "OFM must be int32"
573 ofm_dtype = op.ofm.dtype
574 valid = ofm_dtype == DataType.int32
575 return valid, f"Op has ofm_dtype={ofm_dtype}"
576
577 @staticmethod
578 def constraint_matching_quantization_parameters(op):
579 "Both Input quantization parameters must match OFM quantization parameters"
580 valid = True
581 extra = []
582 if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
583 valid = False
584 extra.append(op.ifm.name)
585 if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
586 valid = False
587 extra.append(op.ifm2.name)
588 extra = ", ".join(extra)
589 return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"
590
591 @staticmethod
592 def constraint_elemwise_batch_size(op):
593 "Batch size must be 1 for Input tensors with more than 2 dimensions"
594 valid = True
595 extra = []
596 for tens in (op.ifm, op.ifm2):
597 # Unary ops have ifm2 as None
598 if tens is not None:
599 if (len(tens.shape) > 2) and (tens.shape[0] != 1):
600 valid = False
601 extra.append(tens.name)
602 extra = ", ".join(extra)
603 return valid, f"Op has invalid input tensors: {extra}"
604
605 @staticmethod
606 def constraint_broadcast_shapes(op):
607 "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
608 ifm_shape = op.ifm.shape
609 ifm2_shape = op.ifm2.shape if op.ifm2 else None
610 ofm_shape = op.ofm.shape
611 valid = True
612 if ifm_shape is not None and ifm2_shape is not None:
613 # align trailing dimensions
614 size = min(len(ifm_shape), len(ifm2_shape))
615 for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
616 mi = max(i, i2)
617 # Input dimensions should match or one should be of dimension 1
618 # Output dimension should match the largest input dimension, together
619 # with constraint_match_either_shapes ensures broadcast from only one input
620 if not (i == i2 or i == 1 or i2 == 1) or o != mi:
621 valid = False
622 break
623
624 return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"
625
626 @classmethod
627 @docstring_format_args([mean_kernel_product_avgpool])
628 def constraint_mean_height_width_product_avgpool(cls, op):
629 """Product of height and width can be at most {}"""
630 shape = op.inputs[0].shape
631 hi = 0 if len(shape) < 4 else 1
632 h, w = shape[hi : hi + 2]
633 max_prod = cls.mean_kernel_product_avgpool
634 return h * w <= max_prod, f"Product of height and width is {h * w}"
635
636 @classmethod
637 @docstring_format_args([mean_kernel_product])
638 def constraint_mean_height_width_product(cls, op):
639 """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
640 or keep_dims is True"""
641 ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
642 keep_dims = op.attrs.get("keep_dims")
643 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
644 if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
645 return True, ""
646 shape = op.inputs[0].shape
647 hi = 0 if len(shape) < 4 else 1
648 h, w = shape[hi : hi + 2]
649 max_prod = cls.mean_kernel_product
650 return h * w <= max_prod, f"Product of height and width is {h * w}"
651
652 @classmethod
653 @docstring_format_args([mean_kernel_product_int8])
654 def constraint_mean_height_width_product_int8(cls, op):
655 """Product of IFM height and width can be at most {} when the following are true:
656 IFM dimensions are 4,
657 Axis indices are 1 and 2,
658 keep_dims is set to True and
659 IFM datatype is int8"""
660 shape = op.ifm.shape
661 axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
662 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
663 # and constraint_mean_height_width_product
664 if (
665 len(shape) != 4
666 or op.ifm.dtype != DataType.int8
667 or not op.attrs.get("keep_dims")
668 or axis not in ([1, 2], [2, 1])
669 ):
670 return True, ""
671 hi = 0 if len(shape) < 4 else 1
672 h, w = shape[hi : hi + 2]
673 max_prod = cls.mean_kernel_product_int8
674 return h * w <= max_prod, f"Product of height and width is {h * w}"