blob: f0afcf8f714b4dc0d4febd0b3c8530de2ce76967 [file] [log] [blame]
Tim Hall79d07d22020-04-27 18:20:16 +01001# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16
17
18# Description:
19# Early optimisation of the network graph, using the rewrite_graph module to do the traversal of the graph. These are
20# split into two parts optimise_graph_a and optimise_graph_b.
21
22from .nn_graph import Operation, NpuBlockType, Tensor
23from . import rewrite_graph
24from .data_type import BaseType, DataType
25import numpy as np
26import math
27from .numeric_util import round_up_divide
28
29passthrough_nodes = set(("Identity",))
30
31
32def remove_passthrough_tensor(tens, arch):
33 if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
34 assert len(tens.ops[0].inputs) == 1
35 tens = tens.ops[0].inputs[0]
36 return tens
37
38
39def rewrite_concat(tens, arch):
40 if len(tens.ops) == 1 and tens.ops[0].is_concat_op():
41 concat_op = tens.ops[0]
42 if tens != concat_op.outputs[0]:
43 return tens # don't attempt to rewrite the min/max outputs of QuantizedConcat
44
45 # Not supported so leave it and run on CPU
46 if not concat_op.run_on_npu:
47 return tens
48
49 inputs, axis = concat_op.get_concat_inputs_axis()
50
51 tens.ops = []
52 offset = 0
53 for idx, inp in enumerate(inputs):
54 new_op = Operation("ConcatSliceWrite", concat_op.name + str(idx))
55 new_op.inputs = [inp]
56 new_op.outputs = [tens]
57 new_op.attrs["concat_axis"] = axis
58 new_op.attrs["concat_start"] = offset
59 offset += inp.shape[axis]
60 new_op.attrs["concat_end"] = offset
61 new_op.run_on_npu = True
62 tens.ops.append(new_op)
63 assert tens.shape[axis] == offset
64
65 return tens
66
67
68def rewrite_split(tens, arch):
69
70 if len(tens.ops) == 1 and tens.ops[0].is_split_op():
71 split_op = tens.ops[0]
72
73 # Not supported so leave it and run on CPU
74 if not split_op.run_on_npu:
75 return tens
76
77 inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()
78
79 tens.ops = []
80 new_op = Operation("SplitSliceRead", split_op.name)
81 new_op.inputs = [inp]
82 new_op.outputs = [tens]
83
84 # For Split the offset cannot be extracted from the tensor so it has to
85 # be calculated from the index of the output tensor
86 if axis != None:
87 # Get the start and end of the split
88 offset_start = [0] * len(tens.shape)
89 offset_end = [0] * len(tens.shape)
90 for out in outputs:
91 if out == tens:
92 break
93 offset_start[axis] += out.shape[axis]
94
95 offset_end[axis] = offset_start[axis] + tens.shape[axis]
96
97 new_op.attrs["split_start"] = offset_start
98 new_op.attrs["split_end"] = offset_end
99 new_op.run_on_npu = True
100 tens.ops.append(new_op)
101
102 return tens
103
104
105def needed_total_padding(input_size, stride, filter_size):
106 out_size = (input_size + stride - 1) // stride
107 needed_input = (out_size - 1) * stride + filter_size
108 total_padding = max(0, needed_input - input_size)
109 return total_padding
110
111
112def calc_padding_and_skirt(padding_type, kernel_size, stride, input_dims):
113 ypad = needed_total_padding(int(input_dims[1]), int(stride[1]), int(kernel_size[0]))
114 xpad = needed_total_padding(int(input_dims[2]), int(stride[2]), int(kernel_size[1]))
115 if padding_type == b"SAME":
116 left_pad = (xpad + 0) // 2
117 right_pad = (xpad + 1) // 2
118 top_pad = (ypad + 0) // 2
119 bottom_pad = (ypad + 1) // 2
120 elif padding_type == b"VALID":
121 left_pad = 0
122 right_pad = 0
123 top_pad = 0
124 bottom_pad = 0
125 else:
126 assert 0, "Unknown padding"
127 padding = (top_pad, left_pad, bottom_pad, right_pad)
128 skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
129 return padding, skirt
130
131
132def fixup_conv2d_backprop(op, arch):
133 if op.type == "Conv2DBackpropInput":
134 # flip the inputs
135 op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
136 op.type = "Conv2DBackpropInputSwitched"
137
138 return op
139
140
141def fixup_fully_connected_input(op, arch):
142 if op.type == "FullyConnectedAct":
143 inp = op.inputs[0]
144 weights = op.inputs[1]
145
146 n_in_elems = weights.shape[-2]
147 elms = inp.elements()
148 batch_size = elms // n_in_elems
149 assert batch_size * n_in_elems == elms
150
151 desired_shape = [batch_size, n_in_elems]
152 if inp.shape != desired_shape:
153 # mismatch, insert a reshape to fix this.
154 reshape_name = op.name + "_reshape"
155 new_shape_tens = Tensor([1], DataType.int32, reshape_name + "_shape")
156 new_shape_tens.values = np.array(desired_shape)
157 new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
158 new_shape_tens.ops = [new_shape_tens_const]
159 new_shape_tens_const.outputs = [new_shape_tens]
160
161 reshape_op = Operation("Reshape", reshape_name)
162 reshape_op.inputs = [inp, new_shape_tens]
163 reshape_op.attrs["new_shape"] = desired_shape
164 reshape_out = inp.clone("_reshaped")
165 reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
166 reshape_out.ops = [reshape_op]
167 reshape_op.outputs = [reshape_out]
168
169 op.inputs[0] = reshape_out
170
171 return op
172
173
174def fixup_pack_input(op, arch):
175 if op.type == "Pack":
176 # Pack is also referred to as Stack
177 # Requires the rewrite_concat function to be called on the op afterwards
178 axis = int(op.attrs["axis"])
179 desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]
180
181 # Construct 1 shape tensor to be used by all inserted reshape ops
182 new_shape_name = op.name + "_reshape_shape"
183 new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
184 new_shape_tens.values = np.array(desired_shape)
185 new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
186 new_shape_tens.ops = [new_shape_tens_const]
187 new_shape_tens_const.outputs = [new_shape_tens]
188
189 for idx, inp in enumerate(op.inputs):
190 reshape_name = op.name + str(idx) + "_reshape"
191 reshape_op = Operation("Reshape", reshape_name)
192 reshape_op.inputs = [inp, new_shape_tens]
193 reshape_op.attrs["new_shape"] = desired_shape
194 reshape_out = inp.clone("_reshaped")
195 reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
196 reshape_out.ops = [reshape_op]
197 reshape_op.outputs = [reshape_out]
198
199 op.inputs[idx] = reshape_out
200
201 op.type = "PackReshaped"
202
203 return op
204
205
206def fixup_unpack_output(tens, arch):
207 op = tens.ops[0]
208 if op.type in set(("Unpack", "StridedSlice")):
209 # Unpack is also referred to as Unstack
210 # Requires the rewrite_split function to be called on the op afterwards
211 if op.type == "StridedSlice":
212 shrink_axis_mask = op.attrs["shrink_axis_mask"]
213 if shrink_axis_mask == 0:
214 # Equal Rank StridedSlice, no need to insert reshape
215 return tens
216
217 # Only allow shrinking 1 axis for now
218 assert shrink_axis_mask & (shrink_axis_mask - 1) == 0
219 assert len(tens.shape) == (len(op.inputs[0].shape) - 1)
220
221 axis = int(math.log2(shrink_axis_mask))
222 op.attrs["shrink_axis_mask"] = 0
223 else:
224 axis = int(op.attrs["axis"])
225 op.type = "UnpackReshaped"
226
227 desired_shape = tens.shape[:axis] + [1] + tens.shape[axis:]
228
229 # Construct 1 shape tensor to be used by all inserted reshape ops
230 new_shape_name = op.name + "_reshape_shape"
231 new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
232 new_shape_tens.values = np.array(tens.shape)
233 new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
234 new_shape_tens.ops = [new_shape_tens_const]
235 new_shape_tens_const.outputs = [new_shape_tens]
236
237 for idx, out_tens in enumerate(op.outputs):
238 reshape_name = op.name + str(idx) + "_reshape"
239 reshape_op = Operation("Reshape", reshape_name)
240 reshape_op.outputs = [out_tens]
241 reshape_in = out_tens.clone("_reshaped")
242 reshape_in.shape = reshape_in.storage_shape = reshape_in.bandwidth_shape = desired_shape
243 reshape_in.ops = [op]
244 out_tens.ops = [reshape_op]
245 reshape_op.inputs = [reshape_in, new_shape_tens]
246
247 op.outputs[idx] = reshape_in
248
249 return tens
250
251
252def add_padding_fields(op, arch):
253 if "padding" in op.attrs:
254 if "Conv" in op.type:
255 kernel_size = op.inputs[1].shape[:2]
256 input_shape = op.inputs[0].shape
257 elif "Pool" in op.type:
258 kernel_size = op.attrs["ksize"][1:3]
259 input_shape = op.inputs[0].shape
260 elif op.type == "ExtractImagePatches":
261 kernel_size = op.attrs["ksizes"][1:3]
262 input_shape = op.inputs[0].shape
263 else:
264 assert 0, "Unknown operation that uses padding"
265
266 padding, skirt = calc_padding_and_skirt(op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape)
267 op.attrs["explicit_padding"] = padding
268 op.attrs["skirt"] = skirt
269 return op
270
271
272conv_op = set(("Conv2D", "QuantizedConv2D", "Conv2DBackpropInputSwitched", "Conv2DBiasAct"))
273fc_op = set(
274 (
275 "MatMul",
276 "QuantizedMatMul",
277 "BlockLSTM",
278 "RnnAct",
279 "UnidirectionalSequenceRnnAct",
280 "BidirectionalSequenceRnnAct",
281 "LstmAct",
282 "UnidirectionalSequenceLstmAct",
283 "BidirectionalSequenceLstmAct",
284 "FullyConnectedAct",
285 )
286)
287depthwise_op = set(("DepthwiseConv2dNative", "DepthwiseConv2dBiasAct",))
288pool_op = set(("AvgPool", "MaxPool", "QuantizedAvgPool", "QuantizedMaxPool", "AvgPoolAct", "MaxPoolAct"))
289elementwise_op = set(("AddAct", "MulAct", "SubAct", "Maximum", "Minimum", "LeakyRelu", "Abs"))
290activation_ops = set(("Relu", "Relu6", "ReluN1To1", "Sigmoid", "Tanh"))
291memory_only_ops = set(("Reshape",))
292
293# Check if the op can be reordered
294def get_prepend_op(op):
295 inp = op.inputs[0]
296 # The op should be reordered between prev_op and prep_op
297 prev_op = inp.ops[-1]
298 prep_op = None
299 while prev_op.type in memory_only_ops and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
300 prep_op = prev_op
301 inp = prev_op.inputs[0]
302 prev_op = inp.ops[-1]
303 if prev_op != None and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
304 return prep_op
305
306 return None
307
308
309def mark_npu_block_type(op, arch):
310 npu_block_type = NpuBlockType.Default
311 if op.type in conv_op:
312 npu_block_type = NpuBlockType.ConvolutionMxN
313 elif op.type in fc_op:
314 npu_block_type = NpuBlockType.VectorProduct
315 elif op.type in depthwise_op:
316 npu_block_type = NpuBlockType.ConvolutionDepthWise
317 elif op.type in pool_op:
318 npu_block_type = NpuBlockType.Pooling
319 elif op.type in elementwise_op:
320 npu_block_type = NpuBlockType.ElementWise
321
322 op.attrs["npu_block_type"] = npu_block_type
323 return op
324
325
326def convert_depthwise_to_conv(op, arch):
327 # Depthwise is equivalent to a single conv2d if the ifm depth is 1 and
328 # the ofm depth equals the depth multipler.
329 # If those conditions are true, then we can perform a simple
330 # switch of the operator type (and weight order)
331
332 if ("DepthwiseConv2d" in op.type) and (op.attrs["depth_multiplier"] != 1):
333 ifm_tensor = op.inputs[0]
334 weight_tensor = op.inputs[1]
335 ofm_tensor = op.outputs[0]
336 if (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"]):
337 # Change op type to Conv2d
338 op.type = op.type.replace("DepthwiseConv2d", "Conv2D")
339 del op.attrs["channel_multiplier"]
340 del op.attrs["depth_multiplier"]
341
342 weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
343 weight_tensor.shape = weight_tensor.storage_shape = weight_tensor.bandwidth_shape = list(
344 weight_tensor.quant_values.shape
345 )
346 else:
347 print(
348 "Error: Unsupported DepthwiseConv2d with depth_multiplier = {0}, "
349 "ifm channels = {1}, ofm channels = {2}".format(
350 op.attrs["depth_multiplier"], ifm_tensor.shape[3], ofm_tensor.shape[3]
351 )
352 )
353 assert False
354 return op
355
356
357# Reorder activation op if it's after the memory only operations
358def fixup_act_reorder(op, arch):
359 if op.type in activation_ops:
360 prep_op = get_prepend_op(op)
361 if prep_op != None:
362 act_op = op.clone("_reordered")
363 act_op.inputs = [prep_op.inputs[0]]
364 act_op_out = act_op.inputs[0].clone("_acted")
365 act_op_out.quantization = op.outputs[0].quantization.clone()
366 act_op_out.ops = [act_op]
367 act_op.outputs = [act_op_out]
368 prep_op.inputs[0] = act_op_out
369 prep_op.outputs[0].quantization = act_op_out.quantization.clone()
370
371 # Mark the op so that it will be removed as passthrough later on
372 op.type = "Identity"
373 return op
374
375
376def convert_mul_max_to_abs_or_lrelu(op, arch):
377 """Whenever there is a subgraph with this topology:
378
379 Input X For X = -1 or X > 0
380 | \ / This subgraph can be replaced with either
381 | Mul an Abs (if X = -1) or a LeakyReLU (if X > 0)
382 | /
383 Max
384 """
385
386 if op.type == "Maximum":
387 # finds the Mul input(s) to the Max
388 muls = [i for i in op.inputs if i.ops[0].type == "MulAct"]
389 if len(muls) == 1:
390 mul = muls[0].ops[0]
391 elif len(muls) == 2:
392 # In the case both inputs are Muls, find the one with the same input as the Max
393 mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
394 else:
395 # No Mul inputs
396 return op
397
398 # make sure the Mul doesn't have any other consumers
399 if len(mul.outputs[0].consumers()) != 1:
400 return op
401 # make sure the Mul doesn't have a faf
402 if mul.attrs["fused_activation_function"]:
403 return op
404
405 # finds the branched input that goes to both the Max and the Mul
406 shared = set(op.inputs) & set(mul.inputs)
407 if len(shared) == 1:
408 shared_in = shared.pop()
409 # find the constant scalar input to the Mul
410 const_tens = (set(mul.inputs) - {shared_in}).pop()
411 # check that it is a scalar
412 if const_tens.shape != []:
413 return op
414 const = const_tens.ops[0]
415 # check that it is a constant
416 if const.type != "Const":
417 return op
418 else:
419 return op
420
421 val = const.outputs[0].values
422 if val >= 0:
423 new_op = "LeakyRelu"
424 op.attrs["alpha"] = val
425 elif val == -1:
426 new_op = "Abs"
427 else:
428 return op
429
430 op.type = op.type.replace("Maximum", new_op)
431 op.name = op.name.replace("Maximum", new_op)
432 op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op)
433 op.inputs = [shared_in]
434 return op
435
436
437def supported_operator_check(op, arch):
438 op.run_on_npu = arch.supported_operators.is_operator_supported(op)
439 return op
440
441
442def optimise_graph_a(nng, arch, verbose_graph=False):
443 if verbose_graph:
444 nng.print_graph()
445
446 op_rewrite_list = [
447 # mark block type and check if the operations are supported
448 mark_npu_block_type,
449 supported_operator_check,
450 # then do any rewrites of supported operators
451 convert_depthwise_to_conv,
452 fixup_fully_connected_input,
453 fixup_pack_input,
454 fixup_conv2d_backprop,
455 fixup_act_reorder,
456 add_padding_fields,
457 mark_npu_block_type,
458 # convert_mul_max_to_abs_or_lrelu # TODO: enable optimisation once quantisation issues are resolved
459 ]
460
461 for idx, sg in enumerate(nng.subgraphs):
462 # rewrite graph pass
463 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
464 sg, arch, [fixup_unpack_output,], op_rewrite_list, rewrite_unsupported=False
465 )
466
467 for idx, sg in enumerate(nng.subgraphs):
468 # remove passthrough tensors
469 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [remove_passthrough_tensor,], [])
470
471 if verbose_graph:
472 nng.print_graph()
473 return nng
474
475def optimise_graph_b(nng, arch, verbose_graph=False):
476 if verbose_graph:
477 nng.print_graph()
478
479 for idx, sg in enumerate(nng.subgraphs):
480 # combined rewrite graph pass
481 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [rewrite_concat, rewrite_split,], [])
482
483 if verbose_graph:
484 nng.print_graph()
485 return nng