blob: 23135f8aeb65565e76b037ceb1d3cdd422acdb43 [file] [log] [blame]
Tim Hall79d07d22020-04-27 18:20:16 +01001# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16
17
18# Description:
19# The SupportedOperators class which is a collection of all supported operators and parameter checks.
20
21from .data_type import BaseType
22
23
24class SupportedOperators:
25 def __init__(self):
26 # Categorised lists of supported operators
27 self.npu_pre_ops = set(("QuantizedResizeBilinear", "SplitSliceRead"))
28 self.convolution_ops = set(("Conv2DBiasAct", "Conv2D", "QuantizedConv2D", "Conv2DBackpropInputSwitched"))
29 self.depthwise_convolution_ops = set(
30 ("DepthwiseConv2dBiasAct", "DepthwiseConv2dNative", "QuantizedDepthwiseConv2D")
31 )
32 self.max_pooling_ops = set(("QuantizedMaxPool", "MaxPool", "MaxPoolAct"))
33 self.avg_pooling_ops = set(("QuantizedAvgPool", "AvgPool", "AvgPoolAct"))
34 self.pooling_ops = self.max_pooling_ops | self.avg_pooling_ops
35 self.fc_vector_products = set(("QuantizedMatMul", "MatMul", "FullyConnectedAct"))
36 self.mac_main_ops = (
37 # convolutions
38 self.convolution_ops
39 # depth-wise convolutions
40 | self.depthwise_convolution_ops
41 # pooling
42 | self.pooling_ops
43 # FC layers
44 | self.fc_vector_products
45 # RNN/LSTM/GRU
46 | set(("BlockLSTM"))
47 )
48 self.elem_wise_main_ops = set(
49 (
50 # element-wise
51 "AddAct",
52 "MulAct",
53 "SubAct",
54 "QuantizedAdd",
55 "QuantizedSub",
56 "QuantizedMul",
57 "Mul",
58 "Add",
59 "Sub",
60 "Minimum",
61 "Maximum",
62 )
63 )
64 self.activation_ops = set(
65 ("QuantizedRelu", "QuantizedRelu1", "QuantizedRelu6", "Relu", "Relu6", "ReluN1To1", "Sigmoid", "Tanh")
66 )
67 self.npu_post_ops = (
68 # activation functions
69 self.activation_ops
70 # concatenation write direction
71 | set(("ConcatSliceWrite"))
72 # bias add and batch norm
73 | set(("QuantizedBiasAdd", "Requantize", "QuantizedBatchNorm", "BiasAdd", "FusedBatchNorm"))
74 )
75 self.split_ops = set(("Split", "StridedSlice", "Slice", "UnpackReshaped", "Unpack"))
76 self.concat_ops = set(("Concat", "ConcatV2", "QuantizedConcat", "ConcatTFLite", "PackReshaped", "Pack"))
77 self.memory_only_ops = (
78 set(("Squeeze", "Reshape", "QuantizedReshape", "ExpandDims")) | self.concat_ops | self.split_ops
79 )
80 self.supported_fused_activations = set(("Relu", "Relu6", "ReluN1To1", "Tanh", "Sigmoid"))
81 self.supported_operators = (
82 self.npu_pre_ops | self.mac_main_ops | self.elem_wise_main_ops | self.npu_post_ops | self.memory_only_ops
83 )
84 # Setup supported operator restriction checkers
85 self.supported_operator_restrictions = {}
86 self.supported_operator_restrictions.update(
87 {op: self.check_convolution_restrictions for op in self.convolution_ops}
88 )
89 self.supported_operator_restrictions.update(
90 {op: self.check_depthwise_convolution_restrictions for op in self.depthwise_convolution_ops}
91 )
92 self.supported_operator_restrictions.update({op: self.check_pooling_restrictions for op in self.pooling_ops})
93 self.supported_operator_restrictions.update(
94 {op: self.check_vector_product_restrictions for op in self.fc_vector_products}
95 )
96 self.supported_operator_restrictions.update(
97 {op: self.check_element_wise_restrictions for op in self.elem_wise_main_ops}
98 )
99 self.supported_operator_restrictions.update(
100 {op: self.check_memory_only_restrictions for op in self.memory_only_ops}
101 )
102
103 def is_operator_supported(self, op):
104 if op.type not in self.supported_operators:
105 return False
106 if not self.check_generic_restrictions(op):
107 return False
108 if op.type in self.supported_operator_restrictions:
109 return self.supported_operator_restrictions[op.type](op)
110 return True
111
112 def check_generic_restrictions(self, op):
113 # check fully defined shapes
114 for t in op.inputs + op.outputs:
115 if not t.has_fully_defined_shape():
116 print("Warning:", op, "has inputs/outputs of undefined shape, placing on CPU")
117 return False
118
119 # check data type
120 tensors = [t for t in op.get_ifm_ifm2_weights_ofm() if t is not None]
121 if not tensors:
122 tensors = op.inputs
123 for t in tensors:
124 if not (t.dtype.type & BaseType.Int):
125 return False
126 if t.element_size() > 2 and op.type != "Requantize":
127 return False
128 # check size
129 if any(dim > 65536 for dim in t.shape):
130 return False
131
132 # check fused activations
133 if (
134 "fused_activation_function" in op.attrs
135 and op.attrs["fused_activation_function"] is not None
136 and op.attrs["fused_activation_function"] not in self.supported_fused_activations
137 ):
138 return False
139 return True
140
141 def check_convolution_restrictions(self, op):
142 # check stride
143 if op.attrs["stride_w"] > 2 or op.attrs["stride_h"] > 2:
144 return False
145
146 # check dilation
147 dilation_w_factor = op.attrs.get("dilation_w_factor", 1)
148 dilation_h_factor = op.attrs.get("dilation_h_factor", 1)
149 if dilation_w_factor > 2 or dilation_h_factor > 2:
150 return False
151
152 # check data type
153 ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()
154 if weight_tensor.element_size() > 1:
155 return False
156
157 # check kernel size
158 dilated_weight_w = weight_tensor.shape[0] + (weight_tensor.shape[0] - 1) * (dilation_w_factor - 1)
159 dilated_weight_h = weight_tensor.shape[1] + (weight_tensor.shape[1] - 1) * (dilation_h_factor - 1)
160 if (
161 dilated_weight_w > 64
162 or dilated_weight_h > 64
163 or dilated_weight_w * dilated_weight_h * weight_tensor.shape[2] > 127 * 65536
164 ):
165 return False
166
167 # check batch size
168 if ifm_tensor.shape[0] != 1:
169 return False
170 return True
171
172 def check_depthwise_convolution_restrictions(self, op):
173 # check depth
174 ifm_tensor, _, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
175 if op.attrs["depth_multiplier"] > 1 and not (
176 (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"])
177 ):
178 return False
179 return self.check_convolution_restrictions(op)
180
181 def check_pooling_restrictions(self, op):
182 # check stride
183 if op.attrs["stride_w"] > 2 or op.attrs["stride_h"] > 2:
184 return False
185
186 # check data type
187 ifm_tensor, _, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
188 if ifm_tensor.dtype != ofm_tensor.dtype:
189 return False
190
191 # check batch size
192 if ifm_tensor.shape[0] != 1:
193 return False
194
195 if op.type in self.avg_pooling_ops:
196 # check kernel size
197 if op.attrs["padding"] == b"SAME" and (op.attrs["filter_width"] > 8 or op.attrs["filter_height"] > 8):
198 return False
199 if op.attrs["padding"] == b"VALID" and (op.attrs["filter_width"] > 256 or op.attrs["filter_height"] > 256):
200 return False
201
202 if op.type in self.max_pooling_ops:
203 # check data type
204 if not ifm_tensor.dtype == ofm_tensor.dtype:
205 return False
206 # check kernel size
207 if op.attrs["filter_width"] > 256 or op.attrs["filter_height"] > 256: # any padding
208 return False
209 return True
210
211 def check_vector_product_restrictions(self, op):
212 # check data type
213 ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()
214 if weight_tensor.element_size() > 1:
215 return False
216
217 return True
218
219 def check_element_wise_restrictions(self, op):
220 # check data type
221 ifm_tensor, ifm2_tensor, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
222 if op.type in ("Minimum", "Maximum") and ifm_tensor.dtype != ofm_tensor.dtype:
223 return False
224
225 # check batch size
226 if (len(ifm_tensor.shape) > 2 and ifm_tensor.shape[0] != 1) or (
227 len(ifm2_tensor.shape) > 2 and ifm2_tensor.shape[0] != 1
228 ):
229 return False
230
231 # check scalar size
232 if (hasattr(ifm_tensor.values, "__len__") and len(ifm_tensor.values) > 1) or (
233 hasattr(ifm2_tensor.values, "__len__") and len(ifm2_tensor.values) > 1
234 ):
235 return False
236 return True
237
238 def check_memory_only_restrictions(self, op):
239 # check stride size
240 if op.type == "StridedSlice":
241 if len(op.inputs) > 3 and any(stride != 1 for stride in op.inputs[3].values):
242 return False
243 return True