blob: 594158c1065f3770080f4145fa3032420d3dd843 [file] [log] [blame]
// Copyright (c) 2023-2024, ARM Limited.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "verify_utils.h"
#include <nlohmann/json.hpp>
#include <algorithm>
#include <cfloat>
#include <map>
#include <string>
namespace tosa
{
NLOHMANN_JSON_SERIALIZE_ENUM(DType,
{
{ DType::DType_UNKNOWN, "UNKNOWN" },
{ DType::DType_BOOL, "BOOL" },
{ DType::DType_INT4, "INT4" },
{ DType::DType_INT8, "INT8" },
{ DType::DType_INT16, "INT16" },
{ DType::DType_INT32, "INT32" },
{ DType::DType_INT48, "INT48" },
{ DType::DType_FP16, "FP16" },
{ DType::DType_BF16, "BF16" },
{ DType::DType_FP32, "FP32" },
{ DType::DType_FP8E4M3, "FP8E4M3" },
{ DType::DType_FP8E5M2, "FP8E5M2" },
})
} // namespace tosa
namespace TosaReference
{
NLOHMANN_JSON_SERIALIZE_ENUM(VerifyMode,
{
{ VerifyMode::Unknown, "UNKNOWN" },
{ VerifyMode::Exact, "EXACT" },
{ VerifyMode::Ulp, "ULP" },
{ VerifyMode::DotProduct, "DOT_PRODUCT" },
{ VerifyMode::FpSpecial, "FP_SPECIAL" },
{ VerifyMode::ReduceProduct, "REDUCE_PRODUCT" },
{ VerifyMode::AbsError, "ABS_ERROR" },
{ VerifyMode::Relative, "RELATIVE" },
})
void from_json(const nlohmann::json& j, UlpVerifyInfo& ulpInfo)
{
j.at("ulp").get_to(ulpInfo.ulp);
}
void from_json(const nlohmann::json& j, DotProductVerifyInfo& dotProductInfo)
{
j.at("s").get_to(dotProductInfo.setNumber);
j.at("ks").get_to(dotProductInfo.kernelSize);
}
void from_json(const nlohmann::json& j, ReduceProductVerifyInfo& reduceProduceInfo)
{
j.at("n").get_to(reduceProduceInfo.numberOfProducts);
}
void from_json(const nlohmann::json& j, AbsErrorVerifyInfo& absErrorInfo)
{
if (j.contains("lower_bound"))
{
j.at("lower_bound").get_to(absErrorInfo.lowerBound);
}
if (j.contains("normal_divisor"))
{
j.at("normal_divisor").get_to(absErrorInfo.normalDivisor);
}
if (j.contains("bound_as_magnitude"))
{
j.at("bound_as_magnitude").get_to(absErrorInfo.boundAsMagnitude);
}
if (j.contains("bound_addition"))
{
j.at("bound_addition").get_to(absErrorInfo.boundAddition);
}
}
void from_json(const nlohmann::json& j, RelativeVerifyInfo& rInfo)
{
j.at("max").get_to(rInfo.max);
j.at("scale").get_to(rInfo.scale);
}
void from_json(const nlohmann::json& j, VerifyConfig& cfg)
{
j.at("mode").get_to(cfg.mode);
j.at("data_type").get_to(cfg.dataType);
cfg.ulpInfo.ulp = 0;
if (j.contains("ulp_info"))
{
j.at("ulp_info").get_to(cfg.ulpInfo);
}
cfg.dotProductInfo.setNumber = 0;
cfg.dotProductInfo.kernelSize = 0;
if (j.contains("dot_product_info"))
{
j.at("dot_product_info").get_to(cfg.dotProductInfo);
}
cfg.reduceProductInfo.numberOfProducts = 0;
if (j.contains("reduce_product_info"))
{
j.at("reduce_product_info").get_to(cfg.reduceProductInfo);
}
cfg.absErrorInfo.lowerBound = 0;
cfg.absErrorInfo.normalDivisor = 1;
cfg.absErrorInfo.boundAsMagnitude = false;
cfg.absErrorInfo.boundAddition = 0;
if (j.contains("abs_error_info"))
{
j.at("abs_error_info").get_to(cfg.absErrorInfo);
}
cfg.relativeInfo.max = 0;
cfg.relativeInfo.scale = 0;
if (j.contains("relative_info"))
{
j.at("relative_info").get_to(cfg.relativeInfo);
}
}
std::optional<VerifyConfig> parseVerifyConfig(const char* tensorName, const char* json)
{
if (!tensorName)
return std::nullopt;
auto jsonCfg = nlohmann::json::parse(json, nullptr, /* allow exceptions */ false);
if (jsonCfg.is_discarded())
{
WARNING("[Verifier] Invalid json config.");
return std::nullopt;
}
if (!jsonCfg.contains("tensors"))
{
WARNING("[Verifier] Missing tensors in json config.");
return std::nullopt;
}
const auto& tensors = jsonCfg["tensors"];
if (!tensors.contains(tensorName))
if (!tensors.contains(tensorName))
{
WARNING("[Verifier] Missing tensor %s in json config.", tensorName);
return std::nullopt;
}
const auto& namedTensor = tensors[tensorName];
return namedTensor.get<VerifyConfig>();
}
int64_t numElements(const std::vector<int32_t>& shape)
{
return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<int64_t>());
}
std::vector<int32_t> indexToPosition(int64_t index, const std::vector<int32_t>& shape)
{
std::vector<int32_t> pos;
for (auto d = shape.end() - 1; d >= shape.begin(); --d)
{
pos.insert(pos.begin(), index % *d);
index /= *d;
}
ASSERT_MSG(index == 0, "index too large for given shape")
return pos;
}
std::string positionToString(const std::vector<int32_t>& pos)
{
std::string str = "[";
for (auto d = pos.begin(); d < pos.end(); ++d)
{
str.append(std::to_string(*d));
if (pos.end() - d > 1)
{
str.append(",");
}
}
str.append("]");
return str;
}
DType mapToDType(tosa_datatype_t dataType)
{
static std::map<tosa_datatype_t, DType> typeMap = {
{ tosa_datatype_bool_t, DType_BOOL }, { tosa_datatype_int4_t, DType_INT4 },
{ tosa_datatype_int8_t, DType_INT8 }, { tosa_datatype_uint16_t, DType_UINT16 },
{ tosa_datatype_int16_t, DType_INT16 }, { tosa_datatype_int32_t, DType_INT32 },
{ tosa_datatype_int48_t, DType_INT48 }, { tosa_datatype_fp16_t, DType_FP16 },
{ tosa_datatype_bf16_t, DType_BF16 }, { tosa_datatype_fp32_t, DType_FP32 },
{ tosa_datatype_shape_t, DType_SHAPE }, { tosa_datatype_fp8e4m3_t, DType_FP8E4M3 },
{ tosa_datatype_fp8e5m2_t, DType_FP8E5M2 },
};
if (typeMap.count(dataType))
{
return typeMap[dataType];
}
return DType_UNKNOWN;
}
// Like const_exp2 but for use during runtime
double exp2(int32_t n)
{
if (n < -1075)
{
return 0.0; // smaller than smallest denormal
}
TOSA_REF_REQUIRE(n <= 1023, " Invalid exponent value (%d) in exp2", n);
return const_exp2(n);
}
int32_t ilog2(double v)
{
TOSA_REF_REQUIRE(0.0 < v && v < std::numeric_limits<double>::infinity(), " Value out of range (%g) in ilog2", v);
int32_t n = 0;
while (v >= 2.0)
{
v = v / 2.0;
n++;
}
while (v < 1.0)
{
v = v * 2.0;
n--;
}
return n;
}
static_assert(std::numeric_limits<float>::is_iec559,
"TOSA Reference Model has not been built with standard IEEE 754 32-bit float support; Bounds based "
"verification is invalid");
static_assert(std::numeric_limits<double>::is_iec559,
"TOSA Reference Model has not been built with standard IEEE 754 64-bit float support; Bounds based "
"verification is invalid");
template <typename OutType>
bool tosaCheckFloatBound(
OutType testValue, double referenceValue, double errorBound, double& resultDifference, std::string& resultWarning)
{
// Both must be NaNs to be correct
if (std::isnan(referenceValue) || std::isnan(testValue))
{
if (std::isnan(referenceValue) && std::isnan(testValue))
{
resultDifference = 0.0;
return true;
}
char buff[200];
snprintf(buff, 200, "Non-matching NaN values - ref (%g) versus test (%g).", referenceValue,
static_cast<double>(testValue));
resultWarning.assign(buff);
resultDifference = std::numeric_limits<double>::quiet_NaN();
return false;
}
// Check the errorBound
TOSA_REF_REQUIRE(errorBound >= 0.f, " Invalid error bound (%g)", errorBound);
// Make the sign of the reference value positive
// and adjust the test value appropriately.
if (referenceValue < 0)
{
referenceValue = -referenceValue;
testValue = -testValue;
}
// At this point we are ready to calculate the ULP bounds for the reference value.
double referenceMin, referenceMax;
// If the reference is infinity e.g. the result of an overflow the test value must
// be infinity of an appropriate sign.
if (std::isinf(referenceValue))
{
// We already canonicalized the input such that the reference value is positive
// so no need to check again here.
referenceMin = std::numeric_limits<OutType>::infinity();
referenceMax = std::numeric_limits<OutType>::infinity();
}
else if (referenceValue == 0)
{
// For zero we require that the results match exactly with the correct sign.
referenceMin = 0;
referenceMax = 0;
}
else
{
// Scale by the number of ULPs requested by the user.
referenceMax = referenceValue + errorBound;
referenceMin = referenceValue - errorBound;
// Handle the overflow cases.
if (referenceMax > AccPrecision<OutType>::normal_max)
{
referenceMax = std::numeric_limits<OutType>::infinity();
}
if (referenceMin > AccPrecision<OutType>::normal_max)
{
referenceMin = std::numeric_limits<OutType>::infinity();
}
// And the underflow cases.
if (referenceMax < AccPrecision<OutType>::normal_min)
{
referenceMax = AccPrecision<OutType>::normal_min;
}
if (referenceMin < AccPrecision<OutType>::normal_min)
{
// Large error bounds could mean referenceMin is negative
referenceMin = std::min(0.0, referenceMin);
}
}
// And finally... Do the comparison.
double testValue64 = static_cast<double>(testValue);
bool withinBound = testValue64 >= referenceMin && testValue64 <= referenceMax;
resultDifference = testValue64 - referenceValue;
if (!withinBound)
{
char buff[300];
snprintf(buff, 300,
"value %.*g has a difference of %.*g compared to an error bound of +/- %.*g (range: %.*g <= ref %.*g "
"<= %.*g).",
DBL_DIG, testValue64, DBL_DIG, resultDifference, DBL_DIG, errorBound, DBL_DIG, referenceMin, DBL_DIG,
referenceValue, DBL_DIG, referenceMax);
resultWarning.assign(buff);
}
return withinBound;
}
template <typename OutType>
bool validateData(const double* referenceData,
const double* boundsData,
const OutType* implementationData,
const std::vector<int32_t>& shape,
const std::string& modeStr,
const void* cfgPtr,
double (*calcErrorBound)(double referenceValue, double boundsValue, const void* cfgPtr))
{
const size_t T = static_cast<size_t>(numElements(shape));
TOSA_REF_REQUIRE(T > 0, "Invalid shape for reference tensor");
TOSA_REF_REQUIRE(referenceData != nullptr, "Missing data for reference tensor");
TOSA_REF_REQUIRE(implementationData != nullptr, "Missing data for implementation tensor");
// NOTE: Bounds data tensor is allowed to be null as it may not be needed
TOSA_REF_REQUIRE(cfgPtr != nullptr, "Missing config for validation");
TOSA_REF_REQUIRE(calcErrorBound != nullptr, "Missing error bound function validation");
std::string warning, worstWarning;
double worstDifference = 0.0;
// Set to invalid index
size_t worstIndex = T;
bool compliant = true;
for (size_t i = 0; i < T; ++i)
{
double difference = 0.0;
double boundVal = (boundsData == nullptr) ? 0.0 : boundsData[i];
double errBound = calcErrorBound(referenceData[i], boundVal, cfgPtr);
bool valid = tosaCheckFloatBound(implementationData[i], referenceData[i], errBound, difference, warning);
if (!valid)
{
compliant = false;
if (std::isnan(difference) || std::abs(difference) > std::abs(worstDifference))
{
worstIndex = i;
worstDifference = difference;
worstWarning.assign(warning);
if (std::isnan(difference))
{
// Worst case is difference in NaN
break;
}
}
else if (std::abs(difference) == 0.0)
{
auto pos = indexToPosition(i, shape);
WARNING("[Verifier][%s] Invalid error bound, no difference found. Location: %s", modeStr.c_str(),
positionToString(pos).c_str());
return false;
}
}
}
if (!compliant)
{
auto pos = indexToPosition(worstIndex, shape);
WARNING("[Verifier][%s] Largest deviance at location %s: %s", modeStr.c_str(), positionToString(pos).c_str(),
worstWarning.c_str());
}
return compliant;
}
// Instantiate the needed check functions
template bool validateData(const double* referenceData,
const double* boundsData,
const float* implementationData,
const std::vector<int32_t>& shape,
const std::string& modeStr,
const void* cfgPtr,
double (*calcErrorBound)(double referenceValue, double boundsValue, const void* cfgPtr));
template bool validateData(const double* referenceData,
const double* boundsData,
const half_float::half* implementationData,
const std::vector<int32_t>& shape,
const std::string& modeStr,
const void* cfgPtr,
double (*calcErrorBound)(double referenceValue, double boundsValue, const void* cfgPtr));
} // namespace TosaReference