blob: abb55eb64e929375b22595497347c8eda5e904ea [file] [log] [blame]
// Copyright (c) 2023-2024, ARM Limited.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "verify_utils.h"
#include <nlohmann/json.hpp>
#include <algorithm>
#include <cfloat>
#include <map>
namespace tosa
{
NLOHMANN_JSON_SERIALIZE_ENUM(DType,
{
{ DType::DType_UNKNOWN, "UNKNOWN" },
{ DType::DType_BOOL, "BOOL" },
{ DType::DType_INT4, "INT4" },
{ DType::DType_INT8, "INT8" },
{ DType::DType_INT16, "INT16" },
{ DType::DType_INT32, "INT32" },
{ DType::DType_INT48, "INT48" },
{ DType::DType_FP16, "FP16" },
{ DType::DType_BF16, "BF16" },
{ DType::DType_FP32, "FP32" },
})
} // namespace tosa
namespace TosaReference
{
NLOHMANN_JSON_SERIALIZE_ENUM(VerifyMode,
{
{ VerifyMode::Unknown, "UNKNOWN" },
{ VerifyMode::Exact, "EXACT" },
{ VerifyMode::Ulp, "ULP" },
{ VerifyMode::DotProduct, "DOT_PRODUCT" },
{ VerifyMode::FpSpecial, "FP_SPECIAL" },
{ VerifyMode::ReduceProduct, "REDUCE_PRODUCT" },
{ VerifyMode::AbsError, "ABS_ERROR" },
})
void from_json(const nlohmann::json& j, UlpVerifyInfo& ulpInfo)
{
j.at("ulp").get_to(ulpInfo.ulp);
}
void from_json(const nlohmann::json& j, DotProductVerifyInfo& dotProductInfo)
{
j.at("s").get_to(dotProductInfo.s);
j.at("ks").get_to(dotProductInfo.ks);
}
void from_json(const nlohmann::json& j, ReduceProductVerifyInfo& reduceProduceInfo)
{
j.at("n").get_to(reduceProduceInfo.n);
}
void from_json(const nlohmann::json& j, AbsErrorVerifyInfo& absErrorInfo)
{
if (j.contains("lower_bound"))
{
j.at("lower_bound").get_to(absErrorInfo.lowerBound);
}
}
void from_json(const nlohmann::json& j, VerifyConfig& cfg)
{
j.at("mode").get_to(cfg.mode);
j.at("data_type").get_to(cfg.dataType);
if (j.contains("ulp_info"))
{
j.at("ulp_info").get_to(cfg.ulpInfo);
}
if (j.contains("dot_product_info"))
{
j.at("dot_product_info").get_to(cfg.dotProductInfo);
}
if (j.contains("reduce_product_info"))
{
j.at("reduce_product_info").get_to(cfg.reduceProductInfo);
}
// Set up defaults for optional AbsErrorVerifyInfo
cfg.absErrorInfo.lowerBound = 0;
if (j.contains("abs_error_info"))
{
j.at("abs_error_info").get_to(cfg.absErrorInfo);
}
}
std::optional<VerifyConfig> parseVerifyConfig(const char* tensorName, const char* json)
{
if (!tensorName)
return std::nullopt;
auto jsonCfg = nlohmann::json::parse(json, nullptr, /* allow exceptions */ false);
if (jsonCfg.is_discarded())
{
WARNING("[Verifier] Invalid json config.");
return std::nullopt;
}
if (!jsonCfg.contains("tensors"))
{
WARNING("[Verifier] Missing tensors in json config.");
return std::nullopt;
}
const auto& tensors = jsonCfg["tensors"];
if (!tensors.contains(tensorName))
if (!tensors.contains(tensorName))
{
WARNING("[Verifier] Missing tensor %s in json config.", tensorName);
return std::nullopt;
}
const auto& namedTensor = tensors[tensorName];
return namedTensor.get<VerifyConfig>();
}
int64_t numElements(const std::vector<int32_t>& shape)
{
return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<int64_t>());
}
std::vector<int32_t> indexToPosition(int64_t index, const std::vector<int32_t>& shape)
{
std::vector<int32_t> pos;
for (auto d = shape.end() - 1; d >= shape.begin(); --d)
{
pos.insert(pos.begin(), index % *d);
index /= *d;
}
ASSERT_MSG(index == 0, "index too large for given shape")
return pos;
}
std::string positionToString(const std::vector<int32_t>& pos)
{
std::string str = "[";
for (auto d = pos.begin(); d < pos.end(); ++d)
{
str.append(std::to_string(*d));
if (pos.end() - d > 1)
{
str.append(",");
}
}
str.append("]");
return str;
}
DType mapToDType(tosa_datatype_t dataType)
{
static std::map<tosa_datatype_t, DType> typeMap = {
{ tosa_datatype_bool_t, DType_BOOL }, { tosa_datatype_int4_t, DType_INT4 },
{ tosa_datatype_int8_t, DType_INT8 }, { tosa_datatype_uint16_t, DType_UINT16 },
{ tosa_datatype_int16_t, DType_INT16 }, { tosa_datatype_int32_t, DType_INT32 },
{ tosa_datatype_int48_t, DType_INT48 }, { tosa_datatype_fp16_t, DType_FP16 },
{ tosa_datatype_bf16_t, DType_BF16 }, { tosa_datatype_fp32_t, DType_FP32 },
{ tosa_datatype_shape_t, DType_SHAPE },
};
if (typeMap.count(dataType))
{
return typeMap[dataType];
}
return DType_UNKNOWN;
}
// Like const_exp2 but for use during runtime
double exp2(int32_t n)
{
if (n < -1075)
{
return 0.0; // smaller than smallest denormal
}
TOSA_REF_REQUIRE(n <= 1023, " Invalid exponent value (%d) in exp2", n);
return const_exp2(n);
}
int32_t ilog2(double v)
{
TOSA_REF_REQUIRE(0.0 < v && v < std::numeric_limits<double>::infinity(), " Value out of range (%g) in ilog2", v);
int32_t n = 0;
while (v >= 2.0)
{
v = v / 2.0;
n++;
}
while (v < 1.0)
{
v = v * 2.0;
n--;
}
return n;
}
static_assert(std::numeric_limits<float>::is_iec559,
"TOSA Reference Model has not been built with standard IEEE 754 32-bit float support; Bounds based "
"verification is invalid");
static_assert(std::numeric_limits<double>::is_iec559,
"TOSA Reference Model has not been built with standard IEEE 754 64-bit float support; Bounds based "
"verification is invalid");
template <typename OutType>
bool tosaCheckFloatBound(OutType testValue, double referenceValue, double errorBound)
{
// Both must be NaNs to be correct
if (std::isnan(referenceValue) || std::isnan(testValue))
{
if (std::isnan(referenceValue) && std::isnan(testValue))
{
return true;
}
WARNING("[Verifier][Bound] Non-matching NaN values - ref (%g) versus test (%g).", referenceValue, testValue);
return false;
}
// Check the errorBound
TOSA_REF_REQUIRE(errorBound >= 0.f, " Invalid error bound (%g)", errorBound);
// Make the sign of the reference value positive
// and adjust the test value appropriately.
if (referenceValue < 0)
{
referenceValue = -referenceValue;
testValue = -testValue;
}
// At this point we are ready to calculate the ULP bounds for the reference value.
double referenceMin, referenceMax;
// If the reference is infinity e.g. the result of an overflow the test value must
// be infinity of an appropriate sign.
if (std::isinf(referenceValue))
{
// We already canonicalized the input such that the reference value is positive
// so no need to check again here.
referenceMin = std::numeric_limits<OutType>::infinity();
referenceMax = std::numeric_limits<OutType>::infinity();
}
else if (referenceValue == 0)
{
// For zero we require that the results match exactly with the correct sign.
referenceMin = 0;
referenceMax = 0;
}
else
{
// Scale by the number of ULPs requested by the user.
referenceMax = referenceValue + errorBound;
referenceMin = referenceValue - errorBound;
// Handle the overflow cases.
if (referenceMax > AccPrecision<OutType>::normal_max)
{
referenceMax = std::numeric_limits<OutType>::infinity();
}
if (referenceMin > AccPrecision<OutType>::normal_max)
{
referenceMin = std::numeric_limits<OutType>::infinity();
}
// And the underflow cases.
if (referenceMax < AccPrecision<OutType>::normal_min)
{
referenceMax = AccPrecision<OutType>::normal_min;
}
if (referenceMin < AccPrecision<OutType>::normal_min)
{
referenceMin = 0.0;
}
}
// And finally... Do the comparison.
double testValue64 = static_cast<double>(testValue);
bool withinBound = testValue64 >= referenceMin && testValue64 <= referenceMax;
if (!withinBound)
{
WARNING("[Verifier][Bound] value %.*g is not in error bound %.*g range (%.*g <= ref %.*g <= %.*g).", DBL_DIG,
testValue64, DBL_DIG, errorBound, DBL_DIG, referenceMin, DBL_DIG, referenceValue, DBL_DIG,
referenceMax);
}
return withinBound;
}
// Instantiate the needed check functions
template bool tosaCheckFloatBound(float testValue, double referenceValue, double errorBound);
template bool tosaCheckFloatBound(half_float::half testValue, double referenceValue, double errorBound);
} // namespace TosaReference