blob: 3b7e339e67798bd216b51908b07f89f357831f8c [file] [log] [blame]
# Copyright (c) 2020, ARM Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/usr/bin/env python3
import flatbuffers
import numpy as np
from enum import Enum, IntEnum, unique
from tosa import TosaGraph, TosaBasicBlock, TosaTensor, TosaOperator, DType, Format, Usage, Op, ResizeMode, Version
import tosa
import os
import json
# With the way flatc generates its python types, there is no programatic way
# to get string names for the integer types. Manually maintain a string table
# here.
DTypeNames = [ 'UNKNOWN',
'BOOL',
'AINT8',
'UINT8',
'INT4',
'INT8',
'INT16',
'INT32',
'INT48',
'FLOAT' ]
def dtype_str_to_val(name):
for i in range(len(DTypeNames)):
if name.casefold() == DTypeNames[i].casefold():
return i
raise Exception('Unable to parse DType name {}'.format(name))
class TosaSerializerUnion:
'''This class handles encapsulating and serializing union types into flatbuffers'''
def __init__(self):
# A tuple of the start and end functions. Set by the options constructors below
self.optFcns = None
# The type from the tosa.Options enumeration. Set by the options constructors below.
self.utype = None
# Each of these lists is a tuple of the add function and the
# value being added. Set by the options constructors below.
self.ints = []
self.bools = []
self.floats = []
self.strings = []
self.intvecs = []
self.fpvecs = []
def serialize(self, builder):
# We have to build strings and vectors first
strList = []
intVecList = []
fpVecList = []
for fcn, val in self.strings:
strList.append((fcn, builder.CreateString(val)))
for fcn, val in self.intvecs:
intVecList.append((fcn, TosaSerializer.serializeInt32Vec(builder, val)))
for fcn, val in self.fpvecs:
fpVecList.append((fcn, TosaSerializer.serializeFpVec(builder, val)))
startFcn, endFcn = self.optFcns
# Then serialize the options object from the list of primitives and
# other serialized values
startFcn(builder)
for fcn, val in self.ints:
fcn(builder, val)
for fcn, val in self.bools:
fcn(builder, val)
for fcn, val in self.floats:
fcn(builder, val)
for fcn, val in strList:
fcn(builder, val)
for fcn, val in intVecList:
fcn(builder, val)
for fcn, val in fpVecList:
fcn(builder, val)
return endFcn(builder)
class TosaSerializerAttribute(TosaSerializerUnion):
'''This class handles encapsulating all of the enumerated types for attributes'''
def __init__(self):
super().__init__()
def Pool2dAttribute(self, kernel, stride, padding):
from tosa import Pool2dAttribute as a, Attribute
self.utype = Attribute.Attribute().Pool2dAttribute
self.optFcns = (a.Pool2dAttributeStart, a.Pool2dAttributeEnd)
self.intvecs.append((a.Pool2dAttributeAddPadding,
padding))
self.intvecs.append((a.Pool2dAttributeAddKernel,
kernel))
self.intvecs.append((a.Pool2dAttributeAddStride,
stride))
def Conv2dAttribute(self, padding, stride, dilation):
from tosa import Conv2dAttribute as a, Attribute
self.utype = Attribute.Attribute().Conv2dAttribute
self.optFcns = (a.Conv2dAttributeStart, a.Conv2dAttributeEnd)
self.intvecs.append((a.Conv2dAttributeAddPadding,
padding))
self.intvecs.append((a.Conv2dAttributeAddStride,
stride))
self.intvecs.append((a.Conv2dAttributeAddDilation,
dilation))
def TransposeConv2DAttribute(self, outpad, stride, dilation, output_shape):
from tosa import TransposeConv2dAttribute as a, Attribute
self.utype = Attribute.Attribute().TransposeConv2dAttribute
self.optFcns = (a.TransposeConv2dAttributeStart, a.TransposeConv2dAttributeEnd)
self.intvecs.append((a.TransposeConv2dAttributeAddOutpad,
outpad))
self.intvecs.append((a.TransposeConv2dAttributeAddStride,
stride))
self.intvecs.append((a.TransposeConv2dAttributeAddDilation,
dilation))
self.intvecs.append((a.TransposeConv2dAttributeAddOutputShape,
output_shape))
def ReluNAttribute(self, maxint, maxfp):
from tosa import ReluNAttribute as a, Attribute
self.utype = Attribute.Attribute().ReluNAttribute
self.optFcns = (a.ReluNAttributeStart, a.ReluNAttributeEnd)
self.ints.append((a.ReluNAttributeAddMaxInt, maxint))
self.ints.append((a.ReluNAttributeAddMaxFp, maxfp))
def AxisAttribute(self, axis):
from tosa import AxisAttribute as a, Attribute
self.utype = Attribute.Attribute().AxisAttribute
self.optFcns = (a.AxisAttributeStart, a.AxisAttributeEnd)
self.ints.append((a.AxisAttributeAddAxis,
axis))
def ReshapeAttribute(self, shape):
from tosa import ReshapeAttribute as a, Attribute
self.utype = Attribute.Attribute().ReshapeAttribute
self.optFcns = (a.ReshapeAttributeStart, a.ReshapeAttributeEnd)
self.intvecs.append((a.ReshapeAttributeAddShape,
shape))
def SliceAttribute(self, begin, size):
from tosa import SliceAttribute as a, Attribute
self.utype = Attribute.Attribute().SliceAttribute
self.optFcns = (a.SliceAttributeStart, a.SliceAttributeEnd)
self.intvecs.append((a.SliceAttributeAddBegin,
begin))
self.intvecs.append((a.SliceAttributeAddSize,
size))
def TileAttribute(self, multiples):
from tosa import TileAttribute as a, Attribute
self.utype = Attribute.Attribute().TileAttribute
self.optFcns = (a.TileAttributeStart, a.TileAttributeEnd)
self.intvecs.append((a.TileAttributeAddMultiples,
multiples))
def ResizeAttribute(self, output_size, stride, offset, shift, stride_fp, offset_fp, mode):
from tosa import ResizeAttribute as a, Attribute
self.utype = Attribute.Attribute().ResizeAttribute
self.optFcns = (a.ResizeAttributeStart, a.ResizeAttributeEnd)
self.intvecs.append((a.ResizeAttributeAddOutputSize,
output_size))
self.intvecs.append((a.ResizeAttributeAddStride,
stride))
self.intvecs.append((a.ResizeAttributeAddOffset,
offset))
self.ints.append((a.ResizeAttributeAddShift,
shift))
self.fpvecs.append((a.ResizeAttributeAddStrideFp,
stride_fp))
self.fpvecs.append((a.ResizeAttributeAddOffsetFp,
offset_fp))
self.ints.append((a.ResizeAttributeAddMode,
mode))
def ClampAttribute(self, minint, maxint, minfp, maxfp):
from tosa import ClampAttribute as a, Attribute
self.utype = Attribute.Attribute().ClampAttribute
self.optFcns = (a.ClampAttributeStart, a.ClampAttributeEnd)
self.ints.append((a.ClampAttributeAddMinInt,
minint))
self.ints.append((a.ClampAttributeAddMaxInt,
maxint))
self.ints.append((a.ClampAttributeAddMinFp,
minfp))
self.ints.append((a.ClampAttributeAddMaxFp,
maxfp))
def RescaleAttribute(self, input_zp, output_zp, multiplier, shift, scale32, double_round, per_channel):
from tosa import RescaleAttribute as a, Attribute
self.utype = Attribute.Attribute().RescaleAttribute
self.optFcns = (a.RescaleAttributeStart, a.RescaleAttributeEnd)
self.ints.append((a.RescaleAttributeAddInputZp,
input_zp))
self.ints.append((a.RescaleAttributeAddOutputZp,
output_zp))
self.intvecs.append((a.RescaleAttributeAddMultiplier,
multiplier))
self.intvecs.append((a.RescaleAttributeAddShift,
shift))
self.bools.append((a.RescaleAttributeAddScale32,
scale32))
self.bools.append((a.RescaleAttributeAddDoubleRound,
double_round))
self.bools.append((a.RescaleAttributeAddPerChannel,
per_channel))
def MulAttribute(self, shift):
from tosa import MulAttribute as a, Attribute
self.utype = Attribute.Attribute().MulAttribute
self.optFcns = (a.MulAttributeStart, a.MulAttributeEnd)
self.ints.append((a.MulAttributeAddShift,
shift))
def ArithmeticRightShiftAttribute(self, round):
from tosa import ArithmeticRightShiftAttribute as a, Attribute
self.utype = Attribute.Attribute().ArithmeticRightShiftAttribute
self.optFcns = (a.ArithmeticRightShiftAttributeStart, a.ArithmeticRightShiftAttributeEnd)
self.bools.append((a.ArithmeticRightShiftAttributeAddRound,
round))
def CustomAttribute(self, identifier):
from tosa import CustomAttribute as a, Attribute
self.utype = Attribute.Attribute().CustomAttribute
self.optFcns = (a.CustomAttributeStart, a.CustomAttributeEnd)
self.strings.append((a.CustomAttributeAddIdentifier,
identifier))
def CondIfAttribute(self, then_branch, else_branch):
from tosa import CondIfAttribute as a, Attribute
self.utype = Attribute.Attribute().CondIfAttribute
self.optFcns = (a.CondIfAttributeStart, a.CondIfAttributeEnd)
self.strings.append((a.CondIfAttributeAddThenBranch,
then_branch))
self.strings.append((a.CondIfAttributeAddElseBranch,
else_branch))
def WhileLoopAttribute(self, cond_branch, body_branch):
from tosa import WhileLoopAttribute as a, Attribute
self.utype = Attribute.Attribute().WhileLoopAttribute
self.optFcns = (a.WhileLoopAttributeStart, a.WhileLoopAttributeEnd)
self.strings.append((a.WhileLoopAttributeAddCondBranch,
cond_branch))
self.strings.append((a.WhileLoopAttributeAddBodyBranch,
body_branch))
class TosaSerializerQuantInfo(TosaSerializerUnion):
'''This class handles encapsulating all of the enumerated types for quantinfo types'''
def __init__(self):
super().__init__()
def ConvQuantInfo(self, input_zp, weight_zp):
from tosa import ConvQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().ConvQuantInfo
self.optFcns = (q.ConvQuantInfoStart, q.ConvQuantInfoEnd)
self.ints.append((q.ConvQuantInfoAddInputZp, input_zp))
self.ints.append((q.ConvQuantInfoAddWeightZp, weight_zp))
def UnaryQuantInfo(self, input_zp, output_zp):
from tosa import UnaryQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().UnaryQuantInfo
self.optFcns = (q.UnaryQuantInfoStart, q.UnaryQuantInfoEnd)
self.ints.append((q.UnaryQuantInfoAddInputZp, input_zp))
self.ints.append((q.UnaryQuantInfoAddOutputZp, output_zp))
def MatMulQuantInfo(self, a_zp, b_zp):
from tosa import MatMulQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().MatMulQuantInfo
self.optFcns = (q.MatMulQuantInfoStart, q.MatMulQuantInfoEnd)
self.ints.append((q.MatMulQuantInfoAddAZp, a_zp))
self.ints.append((q.MatMulQuantInfoAddBZp, b_zp))
def PadQuantInfo(self, input_zp):
from tosa import PadQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().PadQuantInfo
self.optFcns = (q.PadQuantInfoStart, q.PadQuantInfoEnd)
self.ints.append((q.PadQuantInfoAddInputZp, input_zp))
class TosaSerializerTensor:
def __init__(self, name, shape, dtype, usage, dformat, filename = None, placeholderFilename = None):
self.name = name
if isinstance(shape, np.ndarray):
shape = shape.astype(int).tolist()
shape = list(map(int, shape))
self.shape = shape
self.dtype = dtype
self.usage = TosaSerializer.toList(usage)
self.dformat = TosaSerializer.toList(dformat)
# Filename for const tensors. This gets written to the .tosa serialization
self.filename = filename
# Filename for placeholder tensors. These get generated by the test generation
# process and are written to disk, but are considered input tensors by the network
# so they do not appear in the TOSA serialiazation. However, if we want to form a unit
# test around these input tensors, we can get the filename from here.
self.placeholderFilename = placeholderFilename
def __str__(self):
str = 'TosaSerializerTensor name: {} shape: {} dtype: {} Usage: {} format {} filename: {}'.format(
self.name, self.shape, DTypeNames[self.dtype], self.usage, self.dformat, self.filename)
return str
def addUsage(self, usage):
self.usage.append(usage)
def addFormat(self, format):
self.dformat.append(format)
def setDtype(self, dtype):
self.dtype = dtype
def merge(self, name, shape, dtype, usage, dformat, filename = None):
# Merge in additional usage/formats to the list
found = 0
for i in self.usage:
if i == usage:
found = 1
break
if not found:
self.usage.append(usage)
found = 0
for i in self.dformat:
if i == dformat:
found = 1
break
if not found:
self.dformat.append(dformat)
def serialize(self, builder):
fb_name = builder.CreateString(self.name)
if self.filename:
fb_filename = builder.CreateString(self.filename)
fb_shapes = TosaSerializer.serializeInt32Vec(builder, self.shape)
fb_usage = TosaSerializer.serializeInt32Vec(builder, self.usage)
fb_dformat = TosaSerializer.serializeInt32Vec(builder, self.dformat)
TosaTensor.TosaTensorStart(builder)
TosaTensor.TosaTensorAddName(builder, fb_name)
TosaTensor.TosaTensorAddShape(builder, fb_shapes)
TosaTensor.TosaTensorAddType(builder, self.dtype)
TosaTensor.TosaTensorAddUsage(builder, fb_usage)
TosaTensor.TosaTensorAddFormat(builder, fb_dformat)
if self.filename:
TosaTensor.TosaTensorAddNpyFilename(builder, fb_filename)
return TosaTensor.TosaTensorEnd(builder)
class TosaSerializerOperator:
def __init__(self, op, inputs, outputs, attributes = None, quantInfo = None):
self.op = op
self.attributes = attributes
self.inputs = TosaSerializer.toList(inputs)
self.outputs = TosaSerializer.toList(outputs)
self.quantInfo = quantInfo
def __str__(self):
str = 'Op {}\n----\n'.format(self.op)
for i in self.inputs:
str = str + ' Input: {}\n'.format(i)
for o in self.outputs:
str = str + ' Output: {}\n'.format(o)
return str
def serialize(self, builder):
fb_inputs = TosaSerializer.serializeStrVec(builder, self.inputs, TosaOperator.TosaOperatorStartInputsVector)
fb_outputs = TosaSerializer.serializeStrVec(builder, self.outputs, TosaOperator.TosaOperatorStartOutputsVector)
# Need to serialize quant_info and attributes enums still
if self.attributes is not None:
fb_attributes = self.attributes.serialize(builder)
if self.quantInfo is not None:
fb_qinfo = self.quantInfo.serialize(builder)
TosaOperator.TosaOperatorStart(builder)
TosaOperator.TosaOperatorAddOp(builder, self.op)
TosaOperator.TosaOperatorAddInputs(builder, fb_inputs)
TosaOperator.TosaOperatorAddOutputs(builder, fb_outputs)
if self.attributes is not None:
TosaOperator.TosaOperatorAddAttributeType(builder, self.attributes.utype)
TosaOperator.TosaOperatorAddAttribute(builder, fb_attributes)
if self.quantInfo is not None:
TosaOperator.TosaOperatorAddQuantInfoType(builder, self.quantInfo.utype)
TosaOperator.TosaOperatorAddQuantInfo(builder, fb_qinfo)
return TosaOperator.TosaOperatorEnd(builder)
class TosaSerializerBasicBlock:
def __init__(self, name):
self.name = name
self.operators = []
# Dict assures uniqueness, but allows us to look up by name
self.tensors = dict()
self.inputs = []
self.outputs = []
def addTensor(self, name, shape, dtype, usage, dformat, filename = None, placeholderFilename = None):
try:
# Someone already added this tensor.
# We may have to add more usages and formats
tens = self.tensors[name]
filename = tens.merge(name, shape, dtype, usage, dformat, filename)
except KeyError:
self.tensors[name] = TosaSerializerTensor(name, shape, dtype, usage, dformat, filename, placeholderFilename)
return self.tensors[name]
def addInput(self, name):
self.inputs.append(name)
def addOutput(self, name):
self.outputs.append(name)
def addOperator(self, op, inputs, outputs, attributes = None, quant_info = None):
self.operators.append(TosaSerializerOperator(op, inputs, outputs, attributes, quant_info))
def serialize(self, builder):
fb_name = builder.CreateString(self.name)
fbv_inputs = TosaSerializer.serializeStrVec(builder, list(self.inputs), TosaBasicBlock.TosaBasicBlockStartInputsVector)
fbv_outputs = TosaSerializer.serializeStrVec(builder, list(self.outputs), TosaBasicBlock.TosaBasicBlockStartOutputsVector)
fbv_tensors = TosaSerializer.serializeObjVec(builder, list(self.tensors.values()), TosaBasicBlock.TosaBasicBlockStartTensorsVector)
fbv_operators = TosaSerializer.serializeObjVec(builder, self.operators, TosaBasicBlock.TosaBasicBlockStartOperatorsVector)
TosaBasicBlock.TosaBasicBlockStart(builder)
TosaBasicBlock.TosaBasicBlockAddName(builder, fb_name)
TosaBasicBlock.TosaBasicBlockAddInputs(builder, fbv_inputs)
TosaBasicBlock.TosaBasicBlockAddOutputs(builder, fbv_outputs)
TosaBasicBlock.TosaBasicBlockAddTensors(builder, fbv_tensors)
TosaBasicBlock.TosaBasicBlockAddOperators(builder, fbv_operators)
return TosaBasicBlock.TosaBasicBlockEnd(builder)
@unique
class TensorDir(IntEnum):
PLACEHOLDER = 0
CONST = 1
INTERMEDIATE = 2
RESULT = 3
class TosaSerializer:
def __init__(self, pathPrefix):
# Get the global TOSA version if not already defined
try:
TOSA_VERSION
except NameError:
TosaSerializer.setTosaVersion()
self.builder = flatbuffers.Builder(0)
self.basicBlocks = []
self.startBasicBlock('main')
self.pathPrefix = pathPrefix
# Indicies used for adding/naming tensors
self.currInputIdx = 0
self.currConstIdx = 0
self.currLayerIdx = 1
self.currResultIdx = 0
# Is this an illegal test that is expected to fail?
self.expectedFailure = False
self.expectedFailureDesc = ''
def __str__(self):
str = ''
for bb in self.basicBlocks:
str = str + bb.__str__()
return str
def addPlaceholder(self, shape, dtype, usage, dformat, vals):
if not self.currBasicBlock:
raise Exception('addTensor called without valid basic block')
name = 'input-{}'.format(self.currInputIdx)
filename = '{}.npy'.format(name)
self.currInputIdx = self.currInputIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, usage, dformat, None, filename)
# This is always an input to the block
self.currBasicBlock.addInput(name)
# Add the operator now
self.currBasicBlock.addOperator(tosa.Op.Op().PLACEHOLDER, [], name)
if vals is not None:
np.save(os.path.join(self.pathPrefix, filename), vals, False)
return tens
def addConst(self, shape, dtype, usage, dformat, vals):
if not self.currBasicBlock:
raise Exception('addTensor called without valid basic block')
name = 'const-{}'.format(self.currInputIdx)
filename = '{}.npy'.format(name)
self.currInputIdx = self.currInputIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, usage, dformat, filename)
# Add the operator now
self.currBasicBlock.addOperator(tosa.Op.Op().CONST, [], name)
if vals is not None:
np.save(os.path.join(self.pathPrefix, filename), vals, False)
return tens
def addIntermediate(self, shape, dtype, usage, dformat):
if not self.currBasicBlock:
raise Exception('addTensor called without valid basic block')
name = 'layer-{}'.format(self.currLayerIdx)
filename = None # No file, so no filename
self.currLayerIdx = self.currLayerIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, usage, dformat, filename)
return tens
def addInputTensor(self, tensor):
self.currBasicBlock.addOperator(tosa.Op.Op().PLACEHOLDER, [], tensor.name)
self.currBasicBlock.addTensor(tensor.name, tensor.shape, tensor.dtype, tensor.usage, tensor.dformat)
self.currBasicBlock.addInput(tensor.name)
def addOutputTensor(self, tensor):
self.currBasicBlock.addOutput(tensor.name)
def addOutput(self, shape, dtype, usage, dformat):
if not self.currBasicBlock:
raise Exception('addTensor called without valid basic block')
name = 'result-{}'.format(self.currResultIdx)
self.currResultIdx = self.currResultIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, usage, dformat, None)
self.currBasicBlock.addOutput(name)
return tens
def addOperator(self, op, inputs, outputs, attributes = None, quant_info = None):
if op == tosa.Op.Op().PLACEHOLDER or \
op == tosa.Op.Op().CONST:
raise Exception('Use addPlaceholderTensor() or addConstTensor() to add PLACEHOLDER and CONST ops')
return self.currBasicBlock.addOperator(op, inputs, outputs, attributes, quant_info)
def setExpectedFailure(self, desc='', val=True):
self.expectedFailure = val
self.expectedFailureDesc = desc
def setExpectedFailure(self, desc='', val=True):
self.expectedFailure = val
self.expectedFailureDesc = desc
def serialize(self):
builder = self.builder
Version.VersionStart(builder)
Version.VersionAdd_major(builder, TOSA_VERSION[0])
Version.VersionAdd_minor(builder, TOSA_VERSION[1])
Version.VersionAdd_patch(builder, TOSA_VERSION[2])
Version.VersionAdd_experimental(builder, TOSA_VERSION[3])
version = Version.VersionEnd(builder)
fbv_bb = TosaSerializer.serializeObjVec(builder, self.basicBlocks, TosaGraph.TosaGraphStartBlocksVector)
TosaGraph.TosaGraphStart(builder)
TosaGraph.TosaGraphAddVersion(builder, version)
TosaGraph.TosaGraphAddBlocks(builder, fbv_bb)
graph = TosaGraph.TosaGraphEnd(builder)
self.builder.Finish(graph)
return self.builder.Output()
def writeJson(self, tosa_filename):
'''Write a json test file so that it is fairly easy to pick up the test
and generate commands for third party tool'''
test_desc = dict()
test_desc['tosa_file'] = tosa_filename
ifm_name = []
ifm_shape = []
ifm_file = []
ofm_name = []
ofm_file = []
ofm_shape = []
for b in self.basicBlocks:
if b.name == 'main':
for i in b.inputs:
ifm_name.append(i)
ifm_shape.append(b.tensors[i].shape)
ifm_file.append(b.tensors[i].placeholderFilename)
for o in b.outputs:
ofm_name.append(o)
ofm_shape.append(b.tensors[o].shape)
# Make up an OFM filename here. One isn't generated until the reference tool is
# run, so any name is a good name
ofm_file.append('ref-{}.npy'.format(o))
test_desc['ifm_placeholder'] = ifm_name
test_desc['ifm_file'] = ifm_file
test_desc['ifm_shape'] = ifm_shape
test_desc['ofm_name'] = ofm_name
test_desc['ofm_shape'] = ofm_shape
test_desc['ofm_file'] = ofm_file
test_desc['expected_failure'] = self.expectedFailure
if self.expectedFailureDesc:
test_desc['expected_failure_desc'] = self.expectedFailureDesc
return json.dumps(test_desc, indent=' ')
def startBasicBlock(self, name):
self.currBasicBlock = TosaSerializerBasicBlock(name)
self.basicBlocks.append(self.currBasicBlock)
@staticmethod
def serializeStrVec(builder, vec, start_fcn):
fb_strs = [builder.CreateString(i) for i in vec]
start_fcn(builder, len(fb_strs))
for s in fb_strs[::-1]:
builder.PrependUOffsetTRelative(s)
return builder.EndVector(len(fb_strs))
@staticmethod
def serializeInt32Vec(builder, vec):
builder.StartVector(4, len(vec), 4)
for v in vec[::-1]:
builder.PrependInt32(v)
return builder.EndVector(len(vec))
@staticmethod
def serializeFpVec(builder, vec):
builder.StartVector(4, len(vec), 4)
for v in vec[::-1]:
builder.PrependFloat32(v)
return builder.EndVector(len(vec))
@staticmethod
def serializeObjVec(builder, vec, start_fcn):
serialized_vec = []
for v in vec[::-1]:
serialized_vec.append(v.serialize(builder))
start_fcn(builder, len(vec))
for v in serialized_vec:
builder.PrependUOffsetTRelative(v)
return builder.EndVector(len(vec))
@staticmethod
def toList(val):
if isinstance(val, list):
return val
else:
return [val]
@staticmethod
def setTosaVersion():
# Create a dummy flatbuffers file with the default version information
# There does not appear to be a better way to get a constant from a
# flatbuffer schema file
builder = flatbuffers.Builder(0)
Version.VersionStart(builder)
ver = Version.VersionEnd(builder)
TosaGraph.TosaGraphStart(builder)
TosaGraph.TosaGraphAddVersion(builder, ver)
gr = TosaGraph.TosaGraphEnd(builder)
builder.Finish(gr)
out = builder.Output()
gr = TosaGraph.TosaGraph()
root = gr.GetRootAsTosaGraph(out, 0)
# Store the version as a global variable so that it only needs to be
# generated once per process.
global TOSA_VERSION
TOSA_VERSION = [root.Version()._major(),
root.Version()._minor(),
root.Version()._patch(),
root.Version()._experimental() ]