blob: 9d5db40c66f2f6181610413a0a0b677c1955d93b [file] [log] [blame]
// Copyright (c) 2020, ARM Limited.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "control_flow.h"
#include "subgraph_traverser.h"
using namespace TosaReference;
using namespace Eigen;
using namespace tosa;
OpControlFlow::OpControlFlow(TosaSerializationHandler* tsh_, Op op_, uint64_t id_)
: GraphNode(op_, id_)
{
tsh = tsh_;
}
OpControlFlow::~OpControlFlow()
{}
int OpControlFlow::evalBlock(TosaSerializationBasicBlock* block,
std::vector<TosaReference::Tensor*>& block_inputs,
std::vector<TosaReference::Tensor*>& block_outputs)
{
std::string block_name = block->GetName();
DEBUG_MED(OP, "Evaluating block %s", block_name.c_str());
SubgraphTraverser gt(block, tsh);
if (gt.initializeGraph())
{
FATAL_ERROR("Unable to initialize graph traverser for block %s", block_name.c_str());
}
if (gt.linkTensorsAndNodes())
{
FATAL_ERROR("Failed to link tensors and nodes for block %s", block_name.c_str());
}
if (gt.validateGraph())
{
FATAL_ERROR("Failed to validate subgraph for block %s", block_name.c_str());
}
int num_input_tensors = gt.getNumInputTensors();
int num_output_tensors = gt.getNumOutputTensors();
for (size_t i = 0; i < block_inputs.size(); i++)
{
DEBUG_HIGH(OP, "Input[%ld]: %s", i, block_inputs[i]->getName().c_str());
}
for (size_t i = 0; i < block_outputs.size(); i++)
{
DEBUG_HIGH(OP, "Output[%ld]: %s", i, block_outputs[i]->getName().c_str());
}
ASSERT_MSG((size_t)num_input_tensors == block_inputs.size(),
"op block %s inputs[%lu] does not match with graph traverser's inputs[%d]", block_name.c_str(),
block_inputs.size(), num_input_tensors);
ASSERT_MSG((size_t)num_output_tensors == block_outputs.size(),
"op block %s outputs[%lu] does not match with graph traverser's outputs[%d]", block_name.c_str(),
block_outputs.size(), num_output_tensors);
// set graph traverser's input = basic block's input
for (int i = 0; i < num_input_tensors; i++)
{
TosaReference::Tensor* tensor = gt.getInputTensor(i);
ASSERT_MSG(!tensor->is_allocated(), "block %s input tensors are unexpectedly initialized before",
block_name.c_str());
if (tensor->allocate())
{
WARNING("Fail to allocate tensor %s", tensor->getName().c_str());
return 1;
}
if (tensor->copyValueFrom(block_inputs[i]))
{
WARNING("Fail to copy tensor value %s -> %s", block_inputs[i]->getName().c_str(),
tensor->getName().c_str());
return 1;
}
// Push ready consumers to the next node list
for (auto gn : tensor->getConsumers())
{
if (gn->hasAllInputsReady() && !gn->getOnNextNodeList())
{
gt.addToNextNodeList(gn);
}
}
}
if (gt.evaluateAll())
{
FATAL_ERROR("Error evaluating network. Giving up.");
}
// make sure output tensor is evaluated and show its value
bool all_output_valid = true;
for (int i = 0; i < num_output_tensors; i++)
{
const TosaReference::Tensor* ct = gt.getOutputTensor(i);
ASSERT_MEM(ct);
if (!ct->getIsValid())
{
ct->dumpTensorParams(g_func_debug.func_debug_file);
if (DEBUG_ENABLED(DEBUG_VERB_HIGH, GT))
{
ct->dumpTensor(g_func_debug.func_debug_file);
}
all_output_valid = false;
}
}
if (!all_output_valid)
{
gt.dumpGraph(g_func_debug.func_debug_file);
FATAL_ERROR("SubgraphTraverser \"%s\" error: Output tensors are not all valid at the end of evaluation.",
block_name.c_str());
}
// set basic block's output = subgraph_traverser's output
for (int i = 0; i < num_output_tensors; i++)
{
TosaReference::Tensor* tensor = gt.getOutputTensor(i);
ASSERT_MSG(tensor->is_allocated(), "tensor %s is not allocated", tensor->getName().c_str());
if (block_outputs[i]->copyValueFrom(tensor))
{
WARNING("Fail to copy tensor value %s -> %s", tensor->getName().c_str(), outputs[i]->getName().c_str());
return 1;
}
}
return 0;
}
OpCondIf::OpCondIf(TosaSerializationHandler* tsh_, TosaAttributeBase* attribute_, uint64_t id_)
: OpControlFlow(tsh_, Op_COND_IF, id_)
{
INIT_ATTRIBUTE(CondIf);
}
OpCondIf::~OpCondIf()
{
if (attribute)
delete attribute;
}
int OpCondIf::checkTensorAttributes()
{
if (getInputs().size() < 1)
{
WARNING("OpCondIf: must have at least 1 operand");
return 1;
}
if (inputs[0]->getDtype() != DType_BOOL || inputs[0]->getRank() != 0)
{
WARNING("OpCondIf: invalid tensor dtype=%s, rank=%d", EnumNamesDType()[inputs[0]->getDtype()],
inputs[0]->getRank());
return 1;
}
cond = dynamic_cast<TosaReference::Tensor0<bool>*>(inputs[0]);
ASSERT_MEM(cond);
then_block = tsh->GetBlockByName(attribute->then_branch());
else_block = tsh->GetBlockByName(attribute->else_branch());
if (!then_block)
{
WARNING("OpCondIf: fail to resolve then_branch %s", attribute->then_branch().c_str());
return 1;
}
if (!else_block)
{
WARNING("OpCondIf: fail to resolve else_branch %s", attribute->else_branch().c_str());
return 1;
}
return 0;
}
int OpCondIf::eval()
{
bool cond_val = cond->getTensor()(0);
std::vector<TosaReference::Tensor*> block_inputs(getInputs().begin() + 1, getInputs().end());
if (cond_val)
{
if (evalBlock(then_block, block_inputs, getOutputs()))
{
WARNING("OpCondIf: Fail to evaluate then branch block %s", attribute->then_branch().c_str());
return 1;
}
}
else
{
if (evalBlock(else_block, block_inputs, getOutputs()))
{
WARNING("OpCondIf: Fail to evaluate else branch block %s", attribute->else_branch().c_str());
return 1;
}
}
return GraphNode::eval();
}
OpWhileLoop::OpWhileLoop(TosaSerializationHandler* tsh_, TosaAttributeBase* attribute_, uint64_t id_)
: OpControlFlow(tsh_, Op_WHILE_LOOP, id_)
{
INIT_ATTRIBUTE(WhileLoop);
}
OpWhileLoop::~OpWhileLoop()
{
if (attribute)
delete attribute;
}
int OpWhileLoop::checkTensorAttributes()
{
if (getInputs().size() <= 0)
{
WARNING("OpWhileLoop: must have at least 1 operands");
return 1;
}
if (getInputs().size() != getOutputs().size())
{
WARNING("OpWhileLoop: inputs and outputs size must match");
return 1;
}
cond_block = tsh->GetBlockByName(attribute->cond_branch());
body_block = tsh->GetBlockByName(attribute->body_branch());
if (!cond_block)
{
WARNING("OpWhileLoop: fail to resolve cond_branch %s", attribute->cond_branch().c_str());
return 1;
}
if (!body_block)
{
WARNING("OpWhileLoop: fail to resolve body_branch %s", attribute->body_branch().c_str());
return 1;
}
if (cond_block->GetOutputs().size() != 1)
{
WARNING("OpWhileLoop: invalid cond_block output size %lu", cond_block->GetOutputs().size());
return 1;
}
TosaSerializationTensor* cond_output_tensor = cond_block->GetTensorByName(cond_block->GetOutputs()[0]);
if (!cond_output_tensor)
{
WARNING("OpWhileLoop: fail to resolve cond_block's output tensor %s", cond_block->GetOutputs()[0].c_str());
return 1;
}
if (cond_output_tensor->GetDtype() != DType_BOOL)
{
WARNING("OpWhileLoop: invalid cond_block's output tensor data type %s",
EnumNamesDType()[cond_output_tensor->GetDtype()]);
return 1;
}
if (cond_output_tensor->GetShape().size() != 0)
{
WARNING("OpWhileLoop: invalid cond_block's output rank %lu", cond_output_tensor->GetShape().size());
return 1;
}
return 0;
}
int OpWhileLoop::eval()
{
TosaReference::Tensor0<bool> cond_output_ctensor(
std::string("cond_output"), DType_BOOL, std::vector<Usage>({ Usage_ACTIVATION }),
std::vector<Format>({ Format_UNKNOWN }), std::vector<int32_t>({}), false);
cond_output_ctensor.allocate();
std::vector<TosaReference::Tensor*> cond_block_outputs;
cond_block_outputs.push_back(&cond_output_ctensor);
size_t num_input_output = getInputs().size();
size_t eval_count = 0;
while (eval_count++ < MAX_WHILE_LOOP_ITERATION)
{
if (evalBlock(cond_block, getInputs(), cond_block_outputs))
{
WARNING("OpWhileLoop: Fail to evaluate cond block %s", attribute->cond_branch().c_str());
return 1;
}
bool cond_val = cond_output_ctensor.getTensor()(0);
DEBUG_HIGH(OP, "Conditional block value: %d", cond_val);
if (cond_val)
{
if (evalBlock(body_block, getInputs(), getOutputs()))
{
WARNING("OpWhileLoop: Fail to evaluate body block %s", attribute->body_branch().c_str());
return 1;
}
// assigning output tensors value back to input tensors value for next iteration
for (size_t i = 0; i < num_input_output; i++)
{
if (getInputs()[i]->copyValueFrom(getOutputs()[i]))
{
WARNING("Fail to copy tensor value %s -> %s", getOutputs()[i]->getName().c_str(),
getInputs()[i]->getName().c_str());
return 1;
}
}
}
else
{
// in last iteration or the case it never evaluates body block
// assign input tensors value to output tensors
for (size_t i = 0; i < num_input_output; i++)
{
if (getOutputs()[i]->copyValueFrom(getInputs()[i]))
{
WARNING("Fail to copy tensor value %s -> %s", getInputs()[i]->getName().c_str(),
getOutputs()[i]->getName().c_str());
return 1;
}
}
break;
}
}
return GraphNode::eval();
}