blob: 61a19f4e3a6cc64480dca34856ba835a526eca23 [file] [log] [blame]
// Copyright (c) 2020, ARM Limited.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "type_conversion.h"
#include "quant_util.h"
#include "template_types.h"
#include <cmath>
using namespace TosaReference;
using namespace Eigen;
using namespace tosa;
template <int Rank, DType InDtype, DType OutDtype>
OpRescale<Rank, InDtype, OutDtype>::OpRescale(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_)
: GraphNode(Op_RESCALE, id_)
{
setRequiredOperands(1, 1);
setRequiredRank(0, 6);
INIT_ATTRIBUTE(Rescale);
}
template <int Rank, DType InDtype, DType OutDtype>
OpRescale<Rank, InDtype, OutDtype>::~OpRescale()
{
if (attribute)
delete attribute;
}
template <int Rank, DType InDtype, DType OutDtype>
int OpRescale<Rank, InDtype, OutDtype>::checkTensorAttributes()
{
if (validateRequiredOperands())
return 1;
if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0]))
{
return 1;
}
// output and input must be the same rank and size
if (inputs[0]->matchRankSize(*outputs[0]))
{
printNodeValidationError("OpRescale: input and output rank/size must match");
return 1;
}
in = dynamic_cast<TosaReference::TensorTemplate<TIn>*>(inputs[0]);
out = dynamic_cast<TosaReference::TensorTemplate<TOut>*>(outputs[0]);
ASSERT_MEM(in && out);
return 0;
}
template <int Rank, DType InDtype, DType OutDtype>
int OpRescale<Rank, InDtype, OutDtype>::eval()
{
int32_t input_zp = attribute->input_zp();
int32_t output_zp = attribute->output_zp();
std::vector<int32_t> multiplier = attribute->multiplier();
std::vector<int32_t> shift = attribute->shift();
//bool scale32 = attribute->scale32();
bool double_round = attribute->double_round();
bool per_channel = attribute->per_channel();
if (TosaReference::TypeChecker::is_symmetric(InDtype))
{
if (input_zp != 0)
{
FATAL_ERROR_NODE("input tensor is symmetric type %s but zeropoint is %d instead of 0",
EnumNamesDType()[InDtype], input_zp);
}
}
if (TosaReference::TypeChecker::is_symmetric(OutDtype))
{
if (output_zp != 0)
{
FATAL_ERROR_NODE("output tensor is symmetric type %s but zeropoint is %d instead of 0",
EnumNamesDType()[OutDtype], output_zp);
}
}
// reshape [d0, d1, ..., dn] into [d0 * d1 ..., dn]
Eigen::array<Eigen::Index, 2> shape_2d;
shape_2d[0] = 1;
if (Rank > 0)
{
for (int i = 0; i < Rank - 1; i++)
{
shape_2d[0] *= this->in->getShape()[i];
}
shape_2d[1] = this->in->getShape()[Rank - 1];
}
else
{
shape_2d[1] = 1;
}
ETensor2<InEigenType> input_reshaped = this->in->getTensor().reshape(shape_2d);
ETensor2<OutEigenType> output_2d(shape_2d);
// TODO: pass scale32 in when 16-bit mode implemented
if (per_channel)
{
ETensor2<InEigenType> curr_channel_slice_prescaled;
ETensor2<OutEigenType> curr_channel_slice_postscaled;
int32_t channel_multiplier, channel_shift;
Eigen::array<Eigen::Index, 2> begin, size;
size = Eigen::array<Eigen::Index, 2>({ shape_2d[0], 1 });
for (int32_t i = 0; i < shape_2d[1]; i++)
{
begin = Eigen::array<Eigen::Index, 2>({ 0, i });
curr_channel_slice_prescaled = input_reshaped.slice(begin, size);
channel_multiplier = multiplier[i];
channel_shift = shift[i];
curr_channel_slice_postscaled =
curr_channel_slice_prescaled.unaryExpr([input_zp, output_zp, channel_multiplier, channel_shift,
double_round](InEigenType in_val) -> OutEigenType {
InEigenType input_zp_shifted = in_val - (InEigenType)input_zp;
int32_t scaled = TosaReference::QuantUtil<InDtype>::apply_scale(
input_zp_shifted, channel_multiplier, channel_shift, double_round);
OutEigenType out_val = (OutEigenType)(scaled + output_zp);
out_val = std::max<OutEigenType>(out_val, QMin);
out_val = std::min<OutEigenType>(out_val, QMax);
return out_val;
});
for (int32_t j = 0; j < shape_2d[0]; j++)
{
output_2d(j, i) = curr_channel_slice_postscaled(j, 0);
}
}
}
else
{
int32_t tensor_multiplier = multiplier[0];
int32_t tensor_shift = shift[0];
output_2d = input_reshaped.unaryExpr(
[input_zp, output_zp, tensor_multiplier, tensor_shift, double_round](InEigenType in_val) -> OutEigenType {
InEigenType input_zp_shifted = in_val - (InEigenType)input_zp;
int32_t scaled = TosaReference::QuantUtil<InDtype>::apply_scale(input_zp_shifted, tensor_multiplier,
tensor_shift, double_round);
OutEigenType out_val = (OutEigenType)(scaled + output_zp);
out_val = std::max<OutEigenType>(out_val, QMin);
out_val = std::min<OutEigenType>(out_val, QMax);
return out_val;
});
}
// reshape [d0 * d1 ..., dn] back to [d0, d1, ..., dn]
Eigen::array<Eigen::Index, Rank> output_shape;
for (int i = 0; i < Rank; i++)
{
output_shape[i] = this->out->getShape()[i];
}
this->out->getTensor() = output_2d.reshape(output_shape);
return GraphNode::eval();
}
template <int Rank, DType InDtype, DType OutDtype>
OpCast<Rank, InDtype, OutDtype>::OpCast(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_)
: GraphNode(Op_CAST, id_)
{
setRequiredOperands(1, 1);
setRequiredRank(0, 6);
}
template <int Rank, DType InDtype, DType OutDtype>
OpCast<Rank, InDtype, OutDtype>::~OpCast()
{}
template <int Rank, DType InDtype, DType OutDtype>
int OpCast<Rank, InDtype, OutDtype>::checkTensorAttributes()
{
if (validateRequiredOperands())
return 1;
if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0]))
{
return 1;
}
// output and input must be the same rank and size
if (inputs[0]->matchRankSize(*outputs[0]))
{
printNodeValidationError("OpCast: input and output rank/size must match");
return 1;
}
in = dynamic_cast<TosaReference::TensorTemplate<TIn>*>(inputs[0]);
out = dynamic_cast<TosaReference::TensorTemplate<TOut>*>(outputs[0]);
ASSERT_MEM(in && out);
return 0;
}
template <int Rank, DType InDtype, DType OutDtype>
int OpCast<Rank, InDtype, OutDtype>::eval()
{
this->out->getTensor() = this->in->getTensor().unaryExpr(cast_helper.get_fcn());
return GraphNode::eval();
}
template <DType InDtype, DType OutDtype>
CastHelper<InDtype, OutDtype>::CastHelper()
{
fcn = [](InEigenType in) -> OutEigenType {
OutEigenType out = (OutEigenType)in; // implicit sign_extend() if sizeof(out_t) >= sizeof(in_t)
int64_t mask = (1L << OutBits) - 1;
out = out & mask;
return out;
};
}
template <DType InDtype>
CastHelper<InDtype, DType_BOOL>::CastHelper()
{
fcn = [](InEigenType in) -> bool { return (in != 0) ? true : false; };
}
template <DType OutDtype>
CastHelper<DType_BOOL, OutDtype>::CastHelper()
{
fcn = [](bool in) -> OutEigenType {
OutEigenType out = in ? (OutEigenType)1 : (OutEigenType)0;
return out;
};
}
template <DType InDtype>
CastHelper<InDtype, DType_FLOAT>::CastHelper()
{
fcn = [](InEigenType in) -> float {
float out = (OutEigenType)in; // default cast to float is round_to_nearest_float()
return out;
};
}
template <DType OutDtype>
CastHelper<DType_FLOAT, OutDtype>::CastHelper()
{
fcn = [](float in) -> OutEigenType {
OutEigenType out = std::round(in);
out = std::max<OutEigenType>(out, OutMin);
out = std::min<OutEigenType>(out, OutMax);
return out;
};
}
// template explicit instantiation
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, AINT8, AINT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, AINT8, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, AINT8, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, AINT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, AINT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, AINT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, UINT8, AINT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, AINT8, UINT8);