blob: b11f9cd993df37e9eb0d558c7efc04aa3fae08d2 [file] [log] [blame]
# Copyright (c) 2020-2021, ARM Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/usr/bin/env python3
import os
import sys
import json
import flatbuffers
import numpy as np
import struct
from enum import Enum, IntEnum, unique
from tosa import (
TosaGraph,
TosaBasicBlock,
TosaTensor,
TosaOperator,
DType,
Op,
ResizeMode,
Version,
)
from tosa_ref_run import TosaReturnCode
import tosa
# Keep version number in sync with the version default value with schema/tosa.fbs
TOSA_VERSION_MAJOR = 0
TOSA_VERSION_MINOR = 24
TOSA_VERSION_PATCH = 0
TOSA_VERSION_DRAFT = True
TOSA_VERSION = [TOSA_VERSION_MAJOR,
TOSA_VERSION_MINOR,
TOSA_VERSION_PATCH,
TOSA_VERSION_DRAFT]
# With the way flatc generates its python types, there is no programatic way
# to get string names for the integer types. Manually maintain a string table
# here.
DType = tosa.DType.DType()
DTypeNames = [
"UNKNOWN",
"BOOL",
"UINT8",
"INT4",
"INT8",
"INT16",
"INT32",
"INT48",
"FLOAT",
]
# File identifier needs to be kept in sync with schema/tosa.fbs
TOSA_GRAPH_IDENTIFIER = b"\x54\x4F\x53\x41"
ByteMask = np.uint64(0xFF)
def dtype_str_to_val(name):
for i in range(len(DTypeNames)):
if name.casefold() == DTypeNames[i].casefold():
return i
raise Exception("Unable to parse DType name {}".format(name))
class TosaSerializerUnion:
"""This class handles encapsulating and serializing union types into flatbuffers"""
def __init__(self):
# A tuple of the start and end functions. Set by the options constructors below
self.optFcns = None
# The type from the tosa.Options enumeration. Set by the options constructors below.
self.utype = None
# Each of these lists is a tuple of the add function and the
# value being added. Set by the options constructors below.
self.ints = []
self.bools = []
self.floats = []
self.strings = []
self.intvecs = []
self.fpvecs = []
def serialize(self, builder):
# We have to build strings and vectors first
strList = []
intVecList = []
fpVecList = []
for fcn, val in self.strings:
strList.append((fcn, builder.CreateString(val)))
for fcn, val in self.intvecs:
intVecList.append((fcn, TosaSerializer.serializeInt32Vec(builder, val)))
for fcn, val in self.fpvecs:
fpVecList.append((fcn, TosaSerializer.serializeFpVec(builder, val)))
startFcn, endFcn = self.optFcns
# Then serialize the options object from the list of primitives and
# other serialized values
startFcn(builder)
for fcn, val in self.ints:
fcn(builder, val)
for fcn, val in self.bools:
fcn(builder, val)
for fcn, val in self.floats:
fcn(builder, val)
for fcn, val in strList:
fcn(builder, val)
for fcn, val in intVecList:
fcn(builder, val)
for fcn, val in fpVecList:
fcn(builder, val)
return endFcn(builder)
class TosaSerializerAttribute(TosaSerializerUnion):
"""This class handles encapsulating all of the enumerated types for attributes"""
def __init__(self):
super().__init__()
def PoolAttribute(self, kernel, stride, padding):
from tosa import PoolAttribute as a, Attribute
self.utype = Attribute.Attribute().PoolAttribute
self.optFcns = (a.PoolAttributeStart, a.PoolAttributeEnd)
self.intvecs.append((a.PoolAttributeAddPadding, padding))
self.intvecs.append((a.PoolAttributeAddKernel, kernel))
self.intvecs.append((a.PoolAttributeAddStride, stride))
def ConvAttribute(self, padding, stride, dilation):
from tosa import ConvAttribute as a, Attribute
self.utype = Attribute.Attribute().ConvAttribute
self.optFcns = (a.ConvAttributeStart, a.ConvAttributeEnd)
self.intvecs.append((a.ConvAttributeAddPadding, padding))
self.intvecs.append((a.ConvAttributeAddStride, stride))
self.intvecs.append((a.ConvAttributeAddDilation, dilation))
def TransposeConvAttribute(self, outpad, stride, dilation, output_shape):
from tosa import TransposeConvAttribute as a, Attribute
self.utype = Attribute.Attribute().TransposeConvAttribute
self.optFcns = (a.TransposeConvAttributeStart, a.TransposeConvAttributeEnd)
self.intvecs.append((a.TransposeConvAttributeAddOutpad, outpad))
self.intvecs.append((a.TransposeConvAttributeAddStride, stride))
self.intvecs.append((a.TransposeConvAttributeAddDilation, dilation))
self.intvecs.append((a.TransposeConvAttributeAddOutputShape, output_shape))
def PadAttribute(self, padding, pad_const_int, pad_const_fp):
from tosa import PadAttribute as a, Attribute
self.utype = Attribute.Attribute().PadAttribute
self.optFcns = (a.PadAttributeStart, a.PadAttributeEnd)
self.intvecs.append((a.PadAttributeAddPadding, padding))
self.ints.append((a.PadAttributeAddPadConstInt, pad_const_int))
self.floats.append((a.PadAttributeAddPadConstFp, pad_const_fp))
def AxisAttribute(self, axis):
from tosa import AxisAttribute as a, Attribute
self.utype = Attribute.Attribute().AxisAttribute
self.optFcns = (a.AxisAttributeStart, a.AxisAttributeEnd)
self.ints.append((a.AxisAttributeAddAxis, axis))
def ReshapeAttribute(self, shape):
from tosa import ReshapeAttribute as a, Attribute
self.utype = Attribute.Attribute().ReshapeAttribute
self.optFcns = (a.ReshapeAttributeStart, a.ReshapeAttributeEnd)
self.intvecs.append((a.ReshapeAttributeAddShape, shape))
def SliceAttribute(self, begin, size):
from tosa import SliceAttribute as a, Attribute
self.utype = Attribute.Attribute().SliceAttribute
self.optFcns = (a.SliceAttributeStart, a.SliceAttributeEnd)
self.intvecs.append((a.SliceAttributeAddBegin, begin))
self.intvecs.append((a.SliceAttributeAddSize, size))
def TileAttribute(self, multiples):
from tosa import TileAttribute as a, Attribute
self.utype = Attribute.Attribute().TileAttribute
self.optFcns = (a.TileAttributeStart, a.TileAttributeEnd)
self.intvecs.append((a.TileAttributeAddMultiples, multiples))
def ResizeAttribute(
self, output_size, stride, offset, shift, stride_fp, offset_fp, mode
):
from tosa import ResizeAttribute as a, Attribute
self.utype = Attribute.Attribute().ResizeAttribute
self.optFcns = (a.ResizeAttributeStart, a.ResizeAttributeEnd)
self.intvecs.append((a.ResizeAttributeAddOutputSize, output_size))
self.intvecs.append((a.ResizeAttributeAddStride, stride))
self.intvecs.append((a.ResizeAttributeAddOffset, offset))
self.ints.append((a.ResizeAttributeAddShift, shift))
self.fpvecs.append((a.ResizeAttributeAddStrideFp, stride_fp))
self.fpvecs.append((a.ResizeAttributeAddOffsetFp, offset_fp))
self.ints.append((a.ResizeAttributeAddMode, mode))
def ClampAttribute(self, minint, maxint, minfp, maxfp):
from tosa import ClampAttribute as a, Attribute
self.utype = Attribute.Attribute().ClampAttribute
self.optFcns = (a.ClampAttributeStart, a.ClampAttributeEnd)
self.ints.append((a.ClampAttributeAddMinInt, minint))
self.ints.append((a.ClampAttributeAddMaxInt, maxint))
self.ints.append((a.ClampAttributeAddMinFp, minfp))
self.ints.append((a.ClampAttributeAddMaxFp, maxfp))
def RescaleAttribute(
self, input_zp, output_zp, multiplier, shift, scale32, double_round, per_channel
):
from tosa import RescaleAttribute as a, Attribute
self.utype = Attribute.Attribute().RescaleAttribute
self.optFcns = (a.RescaleAttributeStart, a.RescaleAttributeEnd)
self.ints.append((a.RescaleAttributeAddInputZp, input_zp))
self.ints.append((a.RescaleAttributeAddOutputZp, output_zp))
self.intvecs.append((a.RescaleAttributeAddMultiplier, multiplier))
self.intvecs.append((a.RescaleAttributeAddShift, shift))
self.bools.append((a.RescaleAttributeAddScale32, scale32))
self.bools.append((a.RescaleAttributeAddDoubleRound, double_round))
self.bools.append((a.RescaleAttributeAddPerChannel, per_channel))
def MulAttribute(self, shift):
from tosa import MulAttribute as a, Attribute
self.utype = Attribute.Attribute().MulAttribute
self.optFcns = (a.MulAttributeStart, a.MulAttributeEnd)
self.ints.append((a.MulAttributeAddShift, shift))
def ArithmeticRightShiftAttribute(self, round):
from tosa import ArithmeticRightShiftAttribute as a, Attribute
self.utype = Attribute.Attribute().ArithmeticRightShiftAttribute
self.optFcns = (
a.ArithmeticRightShiftAttributeStart,
a.ArithmeticRightShiftAttributeEnd,
)
self.bools.append((a.ArithmeticRightShiftAttributeAddRound, round))
def CondIfAttribute(self, then_branch, else_branch):
from tosa import CondIfAttribute as a, Attribute
self.utype = Attribute.Attribute().CondIfAttribute
self.optFcns = (a.CondIfAttributeStart, a.CondIfAttributeEnd)
self.strings.append((a.CondIfAttributeAddThenBranch, then_branch))
self.strings.append((a.CondIfAttributeAddElseBranch, else_branch))
def WhileLoopAttribute(self, cond_branch, body_branch):
from tosa import WhileLoopAttribute as a, Attribute
self.utype = Attribute.Attribute().WhileLoopAttribute
self.optFcns = (a.WhileLoopAttributeStart, a.WhileLoopAttributeEnd)
self.strings.append((a.WhileLoopAttributeAddCondBranch, cond_branch))
self.strings.append((a.WhileLoopAttributeAddBodyBranch, body_branch))
def TransposeAttribute(self, perm):
from tosa import TransposeAttribute as a, Attribute
self.utype = Attribute.Attribute().TransposeAttribute
self.optFcns = (a.TransposeAttributeStart, a.TransposeAttributeEnd)
self.intvecs.append((a.TransposeAttributeAddPerm, perm))
def TableAttribute(self, table):
from tosa import TableAttribute as a, Attribute
self.utype = Attribute.Attribute().TableAttribute
self.optFcns = (a.TableAttributeStart, a.TableAttributeEnd)
self.intvecs.append((a.TableAttributeAddTable, table))
class TosaSerializerQuantInfo(TosaSerializerUnion):
"""This class handles encapsulating all of the enumerated types for quantinfo types"""
def __init__(self):
super().__init__()
def ConvQuantInfo(self, input_zp, weight_zp):
from tosa import ConvQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().ConvQuantInfo
self.optFcns = (q.ConvQuantInfoStart, q.ConvQuantInfoEnd)
self.ints.append((q.ConvQuantInfoAddInputZp, input_zp))
self.ints.append((q.ConvQuantInfoAddWeightZp, weight_zp))
def UnaryQuantInfo(self, input_zp, output_zp):
from tosa import UnaryQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().UnaryQuantInfo
self.optFcns = (q.UnaryQuantInfoStart, q.UnaryQuantInfoEnd)
self.ints.append((q.UnaryQuantInfoAddInputZp, input_zp))
self.ints.append((q.UnaryQuantInfoAddOutputZp, output_zp))
def MatMulQuantInfo(self, a_zp, b_zp):
from tosa import MatMulQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().MatMulQuantInfo
self.optFcns = (q.MatMulQuantInfoStart, q.MatMulQuantInfoEnd)
self.ints.append((q.MatMulQuantInfoAddAZp, a_zp))
self.ints.append((q.MatMulQuantInfoAddBZp, b_zp))
def PadQuantInfo(self, input_zp):
from tosa import PadQuantInfo as q, QuantInfo
self.utype = QuantInfo.QuantInfo().PadQuantInfo
self.optFcns = (q.PadQuantInfoStart, q.PadQuantInfoEnd)
self.ints.append((q.PadQuantInfoAddInputZp, input_zp))
class TosaSerializerTensor:
def __init__(
self,
name,
shape,
dtype,
data=None,
placeholderFilename=None,
):
self.name = name
if isinstance(shape, np.ndarray):
shape = shape.astype(int).tolist()
shape = list(map(int, shape))
self.shape = shape
self.dtype = dtype
if isinstance(data, np.ndarray):
data = data.flatten().astype(int).tolist()
data = list(map(int, data))
self.data = data
elif isinstance(data, list):
data = list(map(int, data))
self.data = data
else:
self.data = None
# Filename for placeholder tensors. These get generated by the test generation
# process and are written to disk, but are considered input tensors by the network
# so they do not appear in the TOSA serialiazation. However, if we want to form a unit
# test around these input tensors, we can get the filename from here.
self.placeholderFilename = placeholderFilename
def __str__(self):
str = "TosaSerializerTensor name: {} shape: {} dtype: {}".format(
self.name,
self.shape,
DTypeNames[self.dtype],
)
return str
def setDtype(self, dtype):
self.dtype = dtype
def serialize(self, builder):
fb_name = builder.CreateString(self.name)
fb_shapes = TosaSerializer.serializeInt32Vec(builder, self.shape)
if self.data:
u8_data = list()
# little endianess
if self.dtype == DType.BOOL:
for val in self.data:
val_u8 = np.uint8(val)
u8_data.append(val_u8)
elif self.dtype == DType.INT4:
in_size = len(self.data)
out_size = (in_size + 1) // 2
for i in range(out_size):
val_0 = self.data[2 * i]
if (2 * i + 1) < in_size:
val_1 = self.data[2 * i + 1]
else:
val_1 = 0
val_i8 = (val_0 & 0xF) | ((val_1 & 0xF) << 4)
val_u8 = np.uint8(val_i8)
u8_data.append(val_u8)
elif self.dtype == DType.INT8:
for val in self.data:
val_u8 = np.uint8(val)
u8_data.append(val_u8)
elif self.dtype == DType.INT16:
for val in self.data:
val_u16 = np.uint16(val)
b0 = val_u16 & ByteMask
b1 = (val_u16 >> np.uint16(8)) & ByteMask
u8_data.extend([b0, b1])
elif self.dtype == DType.INT32:
for val in self.data:
val_u32 = np.uint32(val)
b0 = val_u32 & ByteMask
b1 = (val_u32 >> np.uint32(8)) & ByteMask
b2 = (val_u32 >> np.uint32(16)) & ByteMask
b3 = (val_u32 >> np.uint32(24)) & ByteMask
u8_data.extend([b0, b1, b2, b3])
elif self.dtype == DType.INT48:
for val in self.data:
val_u64 = np.uint64(val)
b0 = val_u64 & ByteMask
b1 = (val_u64 >> np.uint64(8)) & ByteMask
b2 = (val_u64 >> np.uint64(16)) & ByteMask
b3 = (val_u64 >> np.uint64(24)) & ByteMask
b4 = (val_u64 >> np.uint64(32)) & ByteMask
b5 = (val_u64 >> np.uint64(40)) & ByteMask
u8_data.extend([b0, b1, b2, b3, b4, b5])
elif self.dtype == DType.FLOAT:
for val in self.data:
b = struct.pack("!f", val)
u8_data.extend([b[3], b[2], b[1], b[0]])
else:
raise Exception(
"unsupported data type {}".format(DTypeNames[self.dtype])
)
fb_data = TosaSerializer.serializeUint8Vec(builder, u8_data)
TosaTensor.TosaTensorStart(builder)
TosaTensor.TosaTensorAddName(builder, fb_name)
TosaTensor.TosaTensorAddShape(builder, fb_shapes)
TosaTensor.TosaTensorAddType(builder, self.dtype)
if self.data:
TosaTensor.TosaTensorAddData(builder, fb_data)
return TosaTensor.TosaTensorEnd(builder)
class TosaSerializerOperator:
def __init__(self, op, inputs, outputs, attributes=None, quantInfo=None):
self.op = op
self.attributes = attributes
self.inputs = TosaSerializer.toList(inputs)
self.outputs = TosaSerializer.toList(outputs)
self.quantInfo = quantInfo
def __str__(self):
str = "Op {}\n----\n".format(self.op)
for i in self.inputs:
str = str + " Input: {}\n".format(i)
for o in self.outputs:
str = str + " Output: {}\n".format(o)
return str
def serialize(self, builder):
fb_inputs = TosaSerializer.serializeStrVec(
builder, self.inputs, TosaOperator.TosaOperatorStartInputsVector
)
fb_outputs = TosaSerializer.serializeStrVec(
builder, self.outputs, TosaOperator.TosaOperatorStartOutputsVector
)
# Need to serialize quant_info and attributes enums still
if self.attributes is not None:
fb_attributes = self.attributes.serialize(builder)
if self.quantInfo is not None:
fb_qinfo = self.quantInfo.serialize(builder)
TosaOperator.TosaOperatorStart(builder)
TosaOperator.TosaOperatorAddOp(builder, self.op)
TosaOperator.TosaOperatorAddInputs(builder, fb_inputs)
TosaOperator.TosaOperatorAddOutputs(builder, fb_outputs)
if self.attributes is not None:
TosaOperator.TosaOperatorAddAttributeType(builder, self.attributes.utype)
TosaOperator.TosaOperatorAddAttribute(builder, fb_attributes)
if self.quantInfo is not None:
TosaOperator.TosaOperatorAddQuantInfoType(builder, self.quantInfo.utype)
TosaOperator.TosaOperatorAddQuantInfo(builder, fb_qinfo)
return TosaOperator.TosaOperatorEnd(builder)
class TosaSerializerBasicBlock:
def __init__(self, name):
self.name = name
self.operators = []
# Dict assures uniqueness, but allows us to look up by name
self.tensors = dict()
self.inputs = []
self.outputs = []
def addTensor(
self,
name,
shape,
dtype,
data=None,
placeholderFilename=None,
):
try:
# Someone already added this tensor.
tens = self.tensors[name]
except KeyError:
self.tensors[name] = TosaSerializerTensor(
name, shape, dtype, data, placeholderFilename
)
return self.tensors[name]
def addInput(self, name):
self.inputs.append(name)
def addOutput(self, name):
self.outputs.append(name)
def addOperator(self, op, inputs, outputs, attributes=None, quant_info=None):
self.operators.append(
TosaSerializerOperator(op, inputs, outputs, attributes, quant_info)
)
def serialize(self, builder):
fb_name = builder.CreateString(self.name)
fbv_inputs = TosaSerializer.serializeStrVec(
builder, list(self.inputs), TosaBasicBlock.TosaBasicBlockStartInputsVector
)
fbv_outputs = TosaSerializer.serializeStrVec(
builder, list(self.outputs), TosaBasicBlock.TosaBasicBlockStartOutputsVector
)
fbv_tensors = TosaSerializer.serializeObjVec(
builder,
list(self.tensors.values()),
TosaBasicBlock.TosaBasicBlockStartTensorsVector,
)
fbv_operators = TosaSerializer.serializeObjVec(
builder, self.operators, TosaBasicBlock.TosaBasicBlockStartOperatorsVector
)
TosaBasicBlock.TosaBasicBlockStart(builder)
TosaBasicBlock.TosaBasicBlockAddName(builder, fb_name)
TosaBasicBlock.TosaBasicBlockAddInputs(builder, fbv_inputs)
TosaBasicBlock.TosaBasicBlockAddOutputs(builder, fbv_outputs)
TosaBasicBlock.TosaBasicBlockAddTensors(builder, fbv_tensors)
TosaBasicBlock.TosaBasicBlockAddOperators(builder, fbv_operators)
return TosaBasicBlock.TosaBasicBlockEnd(builder)
@unique
class TensorDir(IntEnum):
PLACEHOLDER = 0
CONST = 1
INTERMEDIATE = 2
RESULT = 3
class TosaSerializer:
def __init__(self, pathPrefix):
# Get the global TOSA version if not already defined
self.builder = flatbuffers.Builder(0)
self.basicBlocks = []
self.startBasicBlock("main")
self.pathPrefix = pathPrefix
# Indicies used for adding/naming tensors
self.currInputIdx = 0
self.currConstIdx = 0
self.currLayerIdx = 1
self.currResultIdx = 0
# Is this an illegal test that is expected to fail?
self.expectedReturnCode = TosaReturnCode.VALID
self.expectedFailure = False
self.expectedFailureDesc = ""
def __str__(self):
str = ""
for bb in self.basicBlocks:
str = str + bb.__str__()
return str
def addPlaceholder(self, shape, dtype, vals):
if not self.currBasicBlock:
raise Exception("addTensor called without valid basic block")
name = "input-{}".format(self.currInputIdx)
filename = "{}.npy".format(name)
self.currInputIdx = self.currInputIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, None, filename)
# This is always an input to the block
self.currBasicBlock.addInput(name)
if vals is not None:
np.save(os.path.join(self.pathPrefix, filename), vals, False)
return tens
def addConst(self, shape, dtype, vals):
if not self.currBasicBlock:
raise Exception("addTensor called without valid basic block")
name = "const-{}".format(self.currInputIdx)
filename = "{}.npy".format(name)
self.currInputIdx = self.currInputIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, vals)
# Add the operator now
self.currBasicBlock.addOperator(tosa.Op.Op().CONST, [], name)
return tens
def addIntermediate(self, shape, dtype):
if not self.currBasicBlock:
raise Exception("addTensor called without valid basic block")
name = "layer-{}".format(self.currLayerIdx)
self.currLayerIdx = self.currLayerIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, None)
return tens
def addInputTensor(self, tensor):
self.currBasicBlock.addTensor(tensor.name, tensor.shape, tensor.dtype)
self.currBasicBlock.addInput(tensor.name)
def addOutputTensor(self, tensor):
self.currBasicBlock.addOutput(tensor.name)
def addOutput(self, shape, dtype):
if not self.currBasicBlock:
raise Exception("addTensor called without valid basic block")
name = "result-{}".format(self.currResultIdx)
self.currResultIdx = self.currResultIdx + 1
tens = self.currBasicBlock.addTensor(name, shape, dtype, None)
self.currBasicBlock.addOutput(name)
return tens
def addOperator(self, op, inputs, outputs, attributes=None, quant_info=None):
if op == tosa.Op.Op().CONST:
raise Exception("Use addConstTensor() to add CONST ops")
return self.currBasicBlock.addOperator(
op, inputs, outputs, attributes, quant_info
)
def setExpectedReturnCode(self, val, desc=""):
self.expectedReturnCode = val
self.expectedFailureDesc = desc
if val == TosaReturnCode.VALID:
self.expectedFailure = False
else:
# Unpredictable or error results are considered expected failures
# for conformance
self.expectedFailure = True
def serialize(self):
builder = self.builder
Version.VersionStart(builder)
Version.VersionAdd_major(builder, TOSA_VERSION[0])
Version.VersionAdd_minor(builder, TOSA_VERSION[1])
Version.VersionAdd_patch(builder, TOSA_VERSION[2])
Version.VersionAdd_draft(builder, TOSA_VERSION[3])
version = Version.VersionEnd(builder)
fbv_bb = TosaSerializer.serializeObjVec(
builder, self.basicBlocks, TosaGraph.TosaGraphStartBlocksVector
)
TosaGraph.TosaGraphStart(builder)
TosaGraph.TosaGraphAddVersion(builder, version)
TosaGraph.TosaGraphAddBlocks(builder, fbv_bb)
graph = TosaGraph.TosaGraphEnd(builder)
self.builder.Finish(graph, TOSA_GRAPH_IDENTIFIER)
return self.builder.Output()
def writeJson(self, tosa_filename):
"""Write a json test file so that it is fairly easy to pick up the test
and generate commands for third party tool"""
test_desc = dict()
test_desc["tosa_file"] = tosa_filename
ifm_name = []
ifm_file = []
ofm_name = []
ofm_file = []
for b in self.basicBlocks:
if b.name == "main":
for i in b.inputs:
ifm_name.append(i)
ifm_file.append(b.tensors[i].placeholderFilename)
for o in b.outputs:
ofm_name.append(o)
# Make up an OFM filename here. One isn't generated until the reference tool is
# run, so any name is a good name
ofm_file.append("ref-{}.npy".format(o))
test_desc["ifm_name"] = ifm_name
test_desc["ifm_file"] = ifm_file
test_desc["ofm_name"] = ofm_name
test_desc["ofm_file"] = ofm_file
test_desc["expected_return_code"] = self.expectedReturnCode
test_desc["expected_failure"] = self.expectedFailure
if self.expectedFailureDesc:
test_desc["expected_failure_desc"] = self.expectedFailureDesc
return json.dumps(test_desc, indent=" ")
def startBasicBlock(self, name):
self.currBasicBlock = TosaSerializerBasicBlock(name)
self.basicBlocks.append(self.currBasicBlock)
@staticmethod
def serializeStrVec(builder, vec, start_fcn):
fb_strs = [builder.CreateString(i) for i in vec]
start_fcn(builder, len(fb_strs))
for s in fb_strs[::-1]:
builder.PrependUOffsetTRelative(s)
# This try/except block supports both the Flatbuffers 2.x and 1.x APIs,
# defaulting to 2.x. If/when Flatbuffers 1.x support is deprecated, the
# try block and builder.EndVector(len) function calls can be removed.
try:
return builder.EndVector()
except TypeError:
return builder.EndVector(len(fb_strs))
@staticmethod
def serializeUint8Vec(builder, vec):
builder.StartVector(1, len(vec), 8)
for v in vec[::-1]:
builder.PrependUint8(v)
try:
return builder.EndVector()
except TypeError:
return builder.EndVector(len(vec))
@staticmethod
def serializeInt32Vec(builder, vec):
builder.StartVector(4, len(vec), 4)
for v in vec[::-1]:
builder.PrependInt32(v)
try:
return builder.EndVector()
except TypeError:
return builder.EndVector(len(vec))
@staticmethod
def serializeFpVec(builder, vec):
builder.StartVector(4, len(vec), 4)
for v in vec[::-1]:
builder.PrependFloat32(v)
try:
return builder.EndVector()
except TypeError:
return builder.EndVector(len(vec))
@staticmethod
def serializeObjVec(builder, vec, start_fcn):
serialized_vec = []
for v in vec[::-1]:
serialized_vec.append(v.serialize(builder))
start_fcn(builder, len(vec))
for v in serialized_vec:
builder.PrependUOffsetTRelative(v)
try:
return builder.EndVector()
except TypeError:
return builder.EndVector(len(vec))
@staticmethod
def toList(val):
if isinstance(val, list):
return val
else:
return [val]