blob: 3380d8f1b7c0f48fde1440c3f91b76fd0289d408 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/runtime/heuristics/indirect_conv/ClIndirectConvDefaultConfigValhall.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/GPUTarget.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
namespace arm_compute
{
namespace cl_indirect_conv
{
using namespace arm_compute::misc::shape_calculator;
ClIndirectConvDefaultConfigValhall::ClIndirectConvDefaultConfigValhall(GPUTarget gpu) : IClIndirectConvKernelConfig(gpu)
{
}
DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure(const ITensorInfo *src,
const ITensorInfo *wei,
const PadStrideInfo &conv_info)
{
using ConfigurationFunctionExecutorPtr = DirectConvComputeKernelInfo (ClIndirectConvDefaultConfigValhall::*)(
const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info);
ClIndirectConvConfigArray<ConfigurationFunctionExecutorPtr> configs_G77(
&ClIndirectConvDefaultConfigValhall::configure_G77_f32, &ClIndirectConvDefaultConfigValhall::configure_G77_f16);
// Important note: Indirect convolution should not be used when the kernel size is 1x1 (pointwise). The reason is because the indirect buffer makes
// indirect convolution less efficient than direct convolution or gemm. For this reason, the heuristic of indirect convolution has not been tuned
// for the pointwise convolution cases.
ConfigurationFunctionExecutorPtr func = configs_G77.get_function(src->data_type());
ARM_COMPUTE_ERROR_ON_MSG(func == nullptr, "Data type not supported for indirect convolution");
return (this->*func)(src, wei, conv_info);
}
DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f32(const ITensorInfo *src,
const ITensorInfo *wei,
const PadStrideInfo &conv_info)
{
DirectConvComputeKernelInfo desc;
if (src->data_layout() == DataLayout::NHWC)
{
const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info);
const bool export_weights_to_cl_image = export_to_cl_image(wei);
const int32_t stride_x = conv_info.stride().first;
const int32_t stride_y = conv_info.stride().second;
const int32_t ofm = dst_shape[0];
const int32_t m = (dst_shape[1] / stride_x) * (dst_shape[2] / stride_y);
desc.export_weights_to_cl_image = export_weights_to_cl_image;
if (ofm <= 4)
{
desc.m0 = 1;
desc.n0 = 2;
desc.k0 = 16;
}
else
{
// The 16000 threshold value has been identified as the right
// one for using the biggest block size allowed on F32: 5x4x4
if (m < 16000)
{
desc.m0 = 4;
desc.n0 = 4;
desc.k0 = 4;
}
else
{
desc.m0 = 5;
desc.n0 = 4;
desc.k0 = 4;
}
}
}
return desc;
}
DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f16(const ITensorInfo *src,
const ITensorInfo *wei,
const PadStrideInfo &conv_info)
{
DirectConvComputeKernelInfo desc;
if (src->data_layout() == DataLayout::NHWC)
{
const TensorShape wei_shape = wei->tensor_shape();
const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info);
const bool export_weights_to_cl_image = export_to_cl_image(wei);
const int32_t ofm = dst_shape[0];
const int32_t m = dst_shape[1] * dst_shape[2];
const int32_t k = wei_shape[0];
desc.export_weights_to_cl_image = export_weights_to_cl_image;
if (ofm <= 4)
{
// k0 should be as larger as possible. However, we should avoid
// having left-over for loops that make the implementation slower.
if ((k % 16) == 0)
{
desc.k0 = 16;
}
else if ((k % 8) == 0)
{
desc.k0 = 8;
}
else
{
desc.k0 = 4;
}
desc.m0 = 1;
desc.n0 = ofm;
}
else
{
// The 16000 threshold value has been identified as the right
// one for using the biggest block size allowed on F16: 8x4
if (m >= 16000 && k < 4)
{
desc.m0 = 8;
desc.n0 = 4;
desc.k0 = 4; // k0 is clamped to k inside the kernel when k is less than 4
}
else
{
desc.m0 = 5;
desc.n0 = 4;
desc.k0 = 8;
}
}
}
return desc;
}
} // namespace cl_indirect_conv
} // namespace arm_compute