blob: 2e78107a1a422abfb041d68d4bd9a282829e31ee [file] [log] [blame]
/*
* Copyright (c) 2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
namespace arm_compute
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
|| output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
// Check biases if exist
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
}
if(output->total_size() != 0)
{
if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
{
ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
return Status{};
}
inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
{
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
// Multiply by result_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value,
typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)
{
return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
}
template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value,
typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)
{
return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
}
template <typename T>
inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
typename wrapper::traits::neon_vector<T, 16>::type max)
{
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
}
};
// Convert S16 to S8 or U8
typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
out = wrapper::vmax(out, min);
out = wrapper::vmin(out, max);
return out;
}
class Coordinates;
template <typename T>
void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window)
{
using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(_input, win);
Iterator out(_output, win);
if(_bias != nullptr)
{
Window win_biases;
win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
Iterator bias(_bias, win_biases);
execute_window_loop(win, [&](const Coordinates &)
{
// Compute 16 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
}
};
const int32x4x4_t bias_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
}
};
// Add the bias to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
// Add the offset terms to GEMM's result and multiply by result_mult_int
scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
// Quantize
in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
// Store the result
*(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
}
},
in, bias, out);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
// Compute 16 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
}
};
// Add the offset terms to GEMM's result and multiply by result_mult_int
scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
// Quantize
in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
// Store the result
*(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
}
},
in, out);
}
}
NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel()
: _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false)
{
}
void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
(bias != nullptr) ? bias->info() : nullptr,
output->info(),
output_stage));
_input = input;
_bias = bias;
_output = output;
_output_stage = output_stage;
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
INEKernel::configure(win);
// Check if we need to clamp the result using min and max
_is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
&& !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
&& _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
if(_output_stage->output_data_type == DataType::QASYMM8)
{
_func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<uint8_t>;
}
else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
{
_func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<int8_t>;
}
else
{
ARM_COMPUTE_ERROR("Data type not supported");
}
}
Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
return Status{};
}
void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window);
}
} // namespace arm_compute