blob: 2e78107a1a422abfb041d68d4bd9a282829e31ee [file] [log] [blame]
Luca Foschiani4b869532020-02-13 15:07:36 +00001/*
Michele Di Giorgiod9eaf612020-07-08 11:12:57 +01002 * Copyright (c) 2020 Arm Limited.
Luca Foschiani4b869532020-02-13 15:07:36 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Michalis Spyrouebcebf12020-10-21 00:04:14 +010024#include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
Luca Foschiani4b869532020-02-13 15:07:36 +000025
Luca Foschiani4b869532020-02-13 15:07:36 +000026#include "arm_compute/core/Error.h"
27#include "arm_compute/core/Helpers.h"
28#include "arm_compute/core/ITensor.h"
Luca Foschiani4b869532020-02-13 15:07:36 +000029#include "arm_compute/core/Types.h"
30#include "arm_compute/core/Utils.h"
31#include "arm_compute/core/Validate.h"
32#include "arm_compute/core/Window.h"
33#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Sang-Hoon Park68dd25f2020-10-19 16:00:11 +010034#include "src/core/AccessWindowStatic.h"
Georgios Pinitasddb93bb2020-10-02 16:38:59 +010035#include "src/core/NEON/wrapper/wrapper.h"
Sang-Hoon Park68dd25f2020-10-19 16:00:11 +010036#include "src/core/helpers/AutoConfiguration.h"
37#include "src/core/helpers/WindowHelpers.h"
Luca Foschiani4b869532020-02-13 15:07:36 +000038
39#include <arm_neon.h>
40#include <cstddef>
41#include <cstdint>
42
43namespace arm_compute
44{
45Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
46{
47 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
48
49 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
50 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
51 || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
52
53 // Check biases if exist
54 if(bias != nullptr)
55 {
56 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
57 ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
58 ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
59 }
60
61 if(output->total_size() != 0)
62 {
63 if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
64 {
65 ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
66 }
67
68 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
69 }
70
71 return Status{};
72}
73
74inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
75{
76 // Add the offset terms to GEMM's result
77 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
78 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
79 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
80 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
81
82 // Multiply by result_mult_int
83 in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
84 in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
85 in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
86 in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
87}
88
89template <typename T>
90inline typename std::enable_if<std::is_same<T, uint8_t>::value,
91 typename wrapper::traits::neon_vector<T, 16>::type>::type
92 convert_to_8bit(const int16x8x2_t in_s16)
93{
94 return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
95}
96
97template <typename T>
98inline typename std::enable_if<std::is_same<T, int8_t>::value,
99 typename wrapper::traits::neon_vector<T, 16>::type>::type
100 convert_to_8bit(const int16x8x2_t in_s16)
101{
102 return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
103}
104
105template <typename T>
106inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
107 typename wrapper::traits::neon_vector<T, 16>::type max)
108{
109 // Shift final result (negative value shift right)
110 in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
111 in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
112 in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
113 in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
114
115 // Convert S32 to S16
116 const int16x8x2_t in_s16 =
117 {
118 {
119 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
120 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
121 }
122 };
123
124 // Convert S16 to S8 or U8
125 typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
126
127 out = wrapper::vmax(out, min);
128 out = wrapper::vmin(out, max);
129
130 return out;
131}
132
133class Coordinates;
134
135template <typename T>
136void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window)
137{
138 using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
139
140 const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
141 const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
142 const int window_step_x = 16;
143 const auto window_start_x = static_cast<int>(window.x().start());
144 const auto window_end_x = static_cast<int>(window.x().end());
145
146 const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
147 const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
148
149 VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
150 VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
151
152 Window win(window);
153 win.set(Window::DimX, Window::Dimension(0, 1, 1));
154
155 Iterator in(_input, win);
156 Iterator out(_output, win);
157
158 if(_bias != nullptr)
159 {
160 Window win_biases;
161 win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
162 win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
163
164 Iterator bias(_bias, win_biases);
165 execute_window_loop(win, [&](const Coordinates &)
166 {
167 // Compute 16 elements per iteration
168 int x = window_start_x;
169 for(; x <= (window_end_x - window_step_x); x += window_step_x)
170 {
171 int32x4x4_t in_s32 =
172 {
173 {
174 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
175 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
176 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
177 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
178 }
179 };
180
181 const int32x4x4_t bias_s32 =
182 {
183 {
184 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
185 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
186 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
187 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
188 }
189 };
190
191 // Add the bias to GEMM's result
192 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
193 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
194 in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
195 in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
196
197 // Add the offset terms to GEMM's result and multiply by result_mult_int
198 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
199
200 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
201 }
202
203 // Compute left-over elements
204 for(; x < window_end_x; ++x)
205 {
206 const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
207 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
208
209 // Quantize
210 in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
211
212 // Store the result
213 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
214 }
215 },
216 in, bias, out);
217 }
218 else
219 {
220 execute_window_loop(win, [&](const Coordinates &)
221 {
222 // Compute 16 elements per iteration
223 int x = window_start_x;
224 for(; x <= (window_end_x - window_step_x); x += window_step_x)
225 {
226 int32x4x4_t in_s32 =
227 {
228 {
229 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
230 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
231 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
232 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
233 }
234 };
235
236 // Add the offset terms to GEMM's result and multiply by result_mult_int
237 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
238
239 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
240 }
241
242 // Compute left-over elements
243 for(; x < window_end_x; ++x)
244 {
245 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
246
247 // Quantize
248 in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
249
250 // Store the result
251 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
252 }
253 },
254 in, out);
255 }
256}
257
258NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel()
259 : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false)
260{
261}
262
263void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage)
264{
265 // Perform validate step
266 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage);
267
268 // Output auto inizialitation if not yet initialized
269 auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type));
270
271 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
272 (bias != nullptr) ? bias->info() : nullptr,
273 output->info(),
274 output_stage));
275
276 _input = input;
277 _bias = bias;
278 _output = output;
279 _output_stage = output_stage;
280
281 // Configure kernel window
282 Window win = calculate_max_window(*input->info(), Steps());
283 Coordinates coord;
284 coord.set_num_dimensions(output->info()->num_dimensions());
285 output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
286
287 INEKernel::configure(win);
288
289 // Check if we need to clamp the result using min and max
290 _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
291 && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
292 && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
293 if(_output_stage->output_data_type == DataType::QASYMM8)
294 {
295 _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<uint8_t>;
296 }
297 else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
298 {
299 _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<int8_t>;
300 }
301 else
302 {
303 ARM_COMPUTE_ERROR("Data type not supported");
304 }
305}
306
307Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
308{
309 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
310 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
311
312 return Status{};
313}
314
315void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info)
316{
317 ARM_COMPUTE_UNUSED(info);
318 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
319 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
320
321 (this->*_func)(window);
322}
323} // namespace arm_compute