blob: f4c8cb945ef3d33bea934286ee3b34ef59031163 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers_cs.h"
#if defined(DATA_TYPE_FP16)
precision mediump float;
#endif /*DATA_TYPE_FP16*/
uint hash(uint x)
{
x += (x << 10u);
x ^= (x >> 6u);
x += (x << 3u);
x ^= (x >> 11u);
x += (x << 15u);
return x;
}
uint hash(uvec3 v)
{
return hash(v.x ^ hash(v.y) ^ hash(v.z));
}
float float_construct(uint m)
{
const uint ieee_mantissa = 0x007FFFFFu;
const uint ieee_one = 0x3F800000u;
m &= ieee_mantissa;
m |= ieee_one;
float f = uintBitsToFloat(m);
return f - 1.0;
}
float rand(vec3 v, float seed)
{
return float_construct(hash(floatBitsToUint(v + seed)));
}
/** Dropout is used to improve over-fit on neural networks.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] mask_ptr Pointer to the mask tensor. Supported data types: same as @p src_ptr
* @param[in] mask_attrs The attributes of the mask tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
Tensor3DAttributes mask_attrs;
Tensor3DAttributes dst_attrs;
};
#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, maskBuffer, float, mask_ptr, mask_shift, 2, restrict);
TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
Tensor3DIterator mask_iter = CONVERT_TO_TENSOR3D_ITERATOR(mask_attrs, mask_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
float random = 0.f;
float inputv = 0.f;
float maskv = 0.f;
float outputv = 0.f;
#ifdef FORWARD
random = rand(vec3(gl_GlobalInvocationID.xyz), SEED);
maskv = (random > RATIO) ? 1.f : 0.f;
STORE_CURRENT_ITEM(mask_ptr, mask_iter, maskv);
#else /* FORWARD */
maskv = LOAD_CURRENT_ITEM(mask_ptr, mask_iter);
#endif /* FORWARD */
inputv = LOAD_CURRENT_ITEM(src_ptr, src_iter);
outputv = maskv * inputv * float(SCALE);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, outputv);
}
#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, maskBuffer, uint, mask_ptr, mask_shift, 2, restrict);
TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
Tensor3DIterator mask_iter = CONVERT_TO_TENSOR3D_ITERATOR(mask_attrs, mask_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
float random1 = 0.f;
float random2 = 0.f;
vec2 input_vec = vec2(0, 0);
vec2 output_vec = vec2(0, 0);
vec2 mask_vec = vec2(0, 0);
#ifdef FORWARD
random1 = rand(vec3(gl_GlobalInvocationID.xyz), SEED);
random2 = rand(vec3(float(gl_GlobalInvocationID.x) + 0.5f, gl_GlobalInvocationID.yz), SEED);
mask_vec.x = (random1 > RATIO) ? 1.f : 0.f;
mask_vec.y = (random2 > RATIO) ? 1.f : 0.f;
STORE_PACK2_CURRENT_ITEM_HALF(mask_ptr, mask_iter, mask_vec);
#else /* FORWARD */
mask_vec = LOAD_UNPACK2_CURRENT_ITEM_HALF(mask_ptr, mask_iter);
#endif /* FORWARD */
input_vec = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
output_vec = mask_vec * input_vec * float(SCALE);
STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, output_vec);
}
#else /* DATA_TYPE_FP32 */
#endif /* DATA_TYPE_FP32 */