blob: aa51ad209a7b73c36400230b5e66d9afca6381e6 [file] [log] [blame]
Georgios Pinitas358ca202017-12-07 16:47:52 +00001/*
Gunes Bayir918a9fb2022-02-15 11:40:13 +00002 * Copyright (c) 2017-2022 Arm Limited.
Georgios Pinitas358ca202017-12-07 16:47:52 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Michalis Spyrouf4643372019-11-29 16:17:13 +000024#ifndef ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H
25#define ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H
Georgios Pinitas358ca202017-12-07 16:47:52 +000026
Georgios Pinitas9be0c5a2018-02-19 12:46:29 +000027#include "arm_compute/core/Helpers.h"
Georgios Pinitas358ca202017-12-07 16:47:52 +000028#include "arm_compute/core/ITensorInfo.h"
Gian Marco Iodice7026b302019-06-26 17:18:11 +010029#include "arm_compute/core/KernelDescriptors.h"
Georgios Pinitas1250a5a2018-01-02 13:27:37 +000030#include "arm_compute/core/Utils.h"
Adnan AlSinane4563a02021-09-01 15:32:03 +010031#include "arm_compute/runtime/FunctionDescriptors.h"
Georgios Pinitas358ca202017-12-07 16:47:52 +000032
Georgios Pinitas77589b52018-08-21 14:41:35 +010033#include "arm_compute/core/utils/helpers/tensor_transform.h"
34
Gian Marco Iodiced2fab732018-03-02 11:18:12 +000035#include <cmath>
36
Georgios Pinitas358ca202017-12-07 16:47:52 +000037namespace arm_compute
38{
39namespace misc
40{
41namespace shape_calculator
42{
Pablo Telloa0a4ba12019-12-11 13:04:34 +000043/** Calculate the output tensor shape for the reduce mean operation
44 *
45 * @param[in] input Input tensor shape
46 * @param[in] reduction_axis Reduction axis
47 * @param[in] keep_dims Flag to indicate if dimensions are kept
48 *
49 * @return the calculated shape
50 */
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010051inline TensorShape calculate_reduce_mean_shape(ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims)
Pablo Telloa0a4ba12019-12-11 13:04:34 +000052{
53 const int reduction_ops = reduction_axis.num_dimensions();
54 Coordinates axis_local = reduction_axis;
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010055 const int input_dims = input->num_dimensions();
Pablo Telloa0a4ba12019-12-11 13:04:34 +000056 convert_negative_axis(axis_local, input_dims);
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010057 TensorShape out_shape = input->tensor_shape();
Pablo Telloa0a4ba12019-12-11 13:04:34 +000058 // Configure reshape layer if we want to drop the dimensions
59 if(!keep_dims)
60 {
61 // We have to sort the reduction axis vectors in order for remove_dimension
62 // to work properly
63 std::sort(axis_local.begin(), axis_local.begin() + reduction_ops);
64 for(int i = 0; i < reduction_ops; ++i)
65 {
66 out_shape.remove_dimension(axis_local[i] - i);
67 }
68 return out_shape;
69 }
70 else
71 {
72 for(int i = 0; i < reduction_ops; ++i)
73 {
74 out_shape.set(axis_local[i], 1);
75 }
76 return out_shape;
77 }
78}
Michalis Spyroud33fe342019-01-04 17:10:25 +000079/** Calculate the output tensor shape of a vector input given the convolution dimensions
80 *
81 * @param[in] input Input tensor shape
82 * @param[in] conv_w Convolution width
83 * @param[in] conv_h Convolution height
84 * @param[in] data_layout Data layout
85 *
86 * @return the calculated shape
87 */
Abe Mbise7784c832018-05-31 16:48:41 +010088inline TensorShape compute_vector_to_tensor_output_shape(const TensorShape &input, size_t conv_w, size_t conv_h, const DataLayout &data_layout)
89{
90 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
91 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
92 const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
93
94 TensorShape output_shape(input);
95 output_shape.set(idx_w, conv_w);
96 output_shape.set(idx_h, conv_h);
97 output_shape.set(idx_c, input.x() / (conv_w * conv_h));
98
99 return output_shape;
100}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100101
Michalis Spyroud33fe342019-01-04 17:10:25 +0000102/** Calculate the permuted shape of an input given a permutation vector
103 *
104 * @param[in] input Input tensor info
105 * @param[in] perm Permutation vector
106 *
107 * @return the calculated shape
108 */
Pablo Tello00afd112018-01-04 10:34:24 +0000109inline TensorShape compute_permutation_output_shape(const ITensorInfo &input, const PermutationVector &perm)
110{
111 TensorShape output_shape = input.tensor_shape();
112 permute(output_shape, perm);
113 return output_shape;
114}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100115
Michalis Spyroud33fe342019-01-04 17:10:25 +0000116/** Calculate the output shape of the reorg layer given a stride
117 *
118 * @param[in] input Input tensor info
119 * @param[in] stride Stride
120 *
121 * @return the calculated shape
122 */
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100123inline TensorShape compute_reorg_output_shape(const ITensorInfo &input, int32_t stride)
124{
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100125 const size_t idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
126 const size_t idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
127 const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100128
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100129 ARM_COMPUTE_ERROR_ON(stride <= 0);
130 ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_width] % stride != 0), "The width of the input tensor must be a multiple of stride");
131 ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_height] % stride != 0), "The height of the input tensor must be a multiple of stride");
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100132
133 TensorShape output_shape{ input.tensor_shape() };
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100134
135 output_shape.set(idx_width, output_shape[idx_width] / stride);
136 output_shape.set(idx_height, output_shape[idx_height] / stride);
137 output_shape.set(idx_channel, output_shape[idx_channel] * stride * stride);
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100138
139 return output_shape;
140}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100141
Michalis Spyroud33fe342019-01-04 17:10:25 +0000142/** Calculate the reshaped shape of the weights
143 *
144 * @param[in] weights Weights tensor info
145 * @param[in] has_bias (Optional) Set to true if there is bias
146 * @param[in] num_groups (Optional) Number of groups
147 *
148 * @return the calculated shape of the reshaped weights
149 */
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100150inline TensorShape compute_weights_reshaped_shape(const ITensorInfo &weights, bool has_bias = false, unsigned int num_groups = 1)
Georgios Pinitas78c00902018-01-09 17:33:11 +0000151{
Giorgio Arena088c2b02018-08-07 16:59:05 +0100152 // Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100153 ARM_COMPUTE_ERROR_ON(num_groups == 0);
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100154 ARM_COMPUTE_ERROR_ON(weights.data_layout() == DataLayout::NHWC && num_groups > 1);
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100155 ARM_COMPUTE_ERROR_ON((weights.dimension(3) % num_groups) != 0);
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100156
Georgios Pinitas78c00902018-01-09 17:33:11 +0000157 // Calculate output shape
158 TensorShape weights_reshaped{ weights.tensor_shape() };
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100159 weights_reshaped.set(3, weights_reshaped[3] / num_groups);
160
Georgios Pinitas78c00902018-01-09 17:33:11 +0000161 weights_reshaped.collapse(3);
162 const size_t tmp_dim = weights_reshaped[0];
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100163 weights_reshaped.set(0, weights_reshaped[1]);
Georgios Pinitas78c00902018-01-09 17:33:11 +0000164 weights_reshaped.set(1, tmp_dim + (has_bias ? 1 : 0));
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100165 if(weights.num_dimensions() < 5)
166 {
167 weights_reshaped.set(2, num_groups);
168 }
Georgios Pinitas78c00902018-01-09 17:33:11 +0000169
170 return weights_reshaped;
171}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100172
Michalis Spyroud33fe342019-01-04 17:10:25 +0000173/** Calculate the Left Hand Side matrix reshaped shape
174 *
175 * @param[in] a Input tensor info
176 * @param[in] lhs_info Left Hand Side matrix information
177 * @param[in] reinterpret_input_as_3d (Optional) Set to true if the input need to be interpreted as 3d
178 *
179 * @return the calculated shape
180 */
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000181inline TensorShape compute_lhs_reshaped_shape(const ITensorInfo &a, const GEMMLHSMatrixInfo &lhs_info, bool reinterpret_input_as_3d = false)
182{
183 ARM_COMPUTE_ERROR_ON(lhs_info.m0 == 0);
184 ARM_COMPUTE_ERROR_ON(lhs_info.k0 == 0);
185 ARM_COMPUTE_ERROR_ON(lhs_info.v0 == 0);
186
187 // Input width/height
188 const unsigned int input_width = a.dimension(0);
189 const unsigned int input_height = reinterpret_input_as_3d ? a.dimension(1) * a.dimension(2) : a.dimension(1);
190
191 // Number of horizontal/vertical blocks in the input tensor
192 const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(lhs_info.k0));
193 const unsigned int num_vert_blocks = std::ceil(input_height / static_cast<float>(lhs_info.m0));
194
195 // Block size
196 const unsigned int block_size = lhs_info.m0 * lhs_info.k0;
197
198 // Output width/height
199 const unsigned int output_width = block_size * num_horiz_blocks * lhs_info.v0;
200 const unsigned int output_height = std::ceil(num_vert_blocks / static_cast<float>(lhs_info.v0));
201
202 TensorShape lhs_shape{ a.tensor_shape() };
203 lhs_shape.set(0, output_width);
204 lhs_shape.set(1, output_height);
205
206 if((reinterpret_input_as_3d) && (lhs_shape.num_dimensions() > 2))
207 {
208 // When the data format is NHWC and the shapes are Nx1x1
209 // the tensor shape num_dimensions is automatically set to 1 instead of 3.
210 // To avoid failures by removing a dimension that doesn't exist
211 // check if the number of dimensions is greater than 2.
212 lhs_shape.remove_dimension(2);
213 }
214
215 return lhs_shape;
216}
217
Michalis Spyroud33fe342019-01-04 17:10:25 +0000218/** Calculate the Right Hand Side matrix reshaped shape
219 *
220 * @param[in] a Input tensor info
221 * @param[in] rhs_info Right Hand Side matrix information
222 *
223 * @return the calculated shape
224 */
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000225inline TensorShape compute_rhs_reshaped_shape(const ITensorInfo &a, const GEMMRHSMatrixInfo &rhs_info)
226{
227 ARM_COMPUTE_ERROR_ON(rhs_info.n0 == 0);
228 ARM_COMPUTE_ERROR_ON(rhs_info.k0 == 0);
229 ARM_COMPUTE_ERROR_ON(rhs_info.h0 == 0);
230
231 // Input width/height
232 const unsigned int input_width = a.dimension(0);
233 const unsigned int input_height = a.dimension(1);
234
235 // Number of horizontal/vertical blocks in the input tensor
236 const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(rhs_info.n0));
237 const unsigned int num_vert_blocks = std::ceil(input_height / static_cast<float>(rhs_info.k0));
238
239 // Block size
240 const unsigned int block_size = rhs_info.n0 * rhs_info.k0;
241
242 // Output width/height
243 const unsigned int output_width = block_size * num_vert_blocks * rhs_info.h0;
244 const unsigned int output_height = std::ceil(num_horiz_blocks / static_cast<float>(rhs_info.h0));
245
246 TensorShape rhs_shape{ a.tensor_shape() };
247 rhs_shape.set(0, output_width);
248 rhs_shape.set(1, output_height);
249
250 return rhs_shape;
251}
252
Michalis Spyroud33fe342019-01-04 17:10:25 +0000253/** Calculate the interleaved shape of an input tensor
254 *
255 * @param[in] a Input tensor info
256 * @param[in] mult_interleave4x4_height (Optional) Interleave4x4 height
257 * @param[in] reinterpret_input_as_3d (Optional) Set to true if the input need to be interpreted as 3d
258 *
259 * @return the calculated shape
260 */
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100261inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_interleave4x4_height = 1, bool reinterpret_input_as_3d = false)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000262{
Gian Marco36a0a462018-01-12 10:21:40 +0000263 // The interleaved output matrix will have the following shape: [ a_height * W, ceil(a_width / W) ] where W = 4 * mult_interleave4x4_height
264 ARM_COMPUTE_ERROR_ON(mult_interleave4x4_height < 1);
265 const int interleave_width = 4 * mult_interleave4x4_height;
Georgios Pinitas358ca202017-12-07 16:47:52 +0000266 TensorShape shape_interleaved_a{ a.tensor_shape() };
Gian Marco36a0a462018-01-12 10:21:40 +0000267 shape_interleaved_a.set(0, a.dimension(0) * interleave_width);
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100268 if(reinterpret_input_as_3d)
269 {
270 const int M = a.dimension(1) * a.dimension(2);
271 const int height = std::ceil(M / static_cast<float>(interleave_width));
272 shape_interleaved_a.set(1, height);
Isabella Gottardi089695f2018-10-17 18:04:15 +0100273
274 // When the data format is NHWC and the shapes are Nx1x1
275 // the tensor shape num_dimensions is automatically set to 1 instead of 3.
276 // To avoid failures by removing a dimension that doesn't exist
277 // check if the number of dimensions is greater than 2.
278 if(shape_interleaved_a.num_dimensions() > 2)
279 {
280 shape_interleaved_a.remove_dimension(2);
281 }
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100282 }
283 else
284 {
285 shape_interleaved_a.set(1, std::ceil(a.dimension(1) / static_cast<float>(interleave_width)));
286 }
Georgios Pinitas358ca202017-12-07 16:47:52 +0000287
288 return shape_interleaved_a;
289}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100290
Michalis Spyroud33fe342019-01-04 17:10:25 +0000291/** Calculate the transposed 1xW shape
292 *
293 * @param[in] b Input tensor info
294 *
295 * @return the calculated shape
296 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000297inline TensorShape compute_transpose1xW_shape(const ITensorInfo &b)
298{
299 // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
300 TensorShape shape_transposed1xW_b{ b.tensor_shape() };
301 shape_transposed1xW_b.set(0, b.dimension(1) * 16);
302 shape_transposed1xW_b.set(1, std::ceil(b.dimension(0) / 16.f));
303
304 return shape_transposed1xW_b;
305}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100306
Michalis Spyroud33fe342019-01-04 17:10:25 +0000307/** Calculate the transposed 1xW width element shape
308 *
309 * @param[in] b Input tensor info
310 * @param[in] mult_transpose1xW_width (Optional) Transpose1xW width
311 *
312 * @return the calculated shape
313 */
Gian Marco36a0a462018-01-12 10:21:40 +0000314inline TensorShape compute_transpose1xW_with_element_size_shape(const ITensorInfo &b, int mult_transpose1xW_width = 1)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000315{
Gian Marco36a0a462018-01-12 10:21:40 +0000316 // Note: mult_transpose1xW_width expresses the number of chunks with size 1x(W) we want to store on the same row
317 // The transpose1xW output matrix will have the following shape:
318 // [ b_height * W, ceil(b_width / W) ] where W = (16 / element size of the tensor) * mult_transpose1xW_width
319 ARM_COMPUTE_ERROR_ON(mult_transpose1xW_width < 1);
Georgios Pinitas358ca202017-12-07 16:47:52 +0000320 TensorShape shape_transposed1xW_b{ b.tensor_shape() };
Gian Marco36a0a462018-01-12 10:21:40 +0000321 const size_t transpose_width = (16 / b.element_size()) * mult_transpose1xW_width;
Georgios Pinitas358ca202017-12-07 16:47:52 +0000322 shape_transposed1xW_b.set(0, b.dimension(1) * transpose_width);
323 shape_transposed1xW_b.set(1, static_cast<size_t>(std::ceil(b.dimension(0) / static_cast<float>(transpose_width))));
324
325 return shape_transposed1xW_b;
326}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100327
Michalis Spyroud33fe342019-01-04 17:10:25 +0000328/** Calculate the reductionA shape used in GEMMLowp
329 *
330 * @param[in] b Input tensor info
331 *
332 * @return the calculated shape
333 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000334inline TensorShape compute_reductionA_shape(const ITensorInfo &b)
335{
336 TensorShape shape_vector_sum_col{ b.tensor_shape() };
337 if(shape_vector_sum_col.num_dimensions() > 1)
338 {
339 shape_vector_sum_col.remove_dimension(1);
340 }
341
342 return shape_vector_sum_col;
343}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100344
Michalis Spyroud33fe342019-01-04 17:10:25 +0000345/** Calculate the reductionB shape used in GEMMLowp
346 *
347 * @param[in] a Input tensor info
348 *
349 * @return the calculated shape
350 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000351inline TensorShape compute_reductionB_shape(const ITensorInfo &a)
352{
353 TensorShape shape_vector_sum_row{ a.tensor_shape() };
354 shape_vector_sum_row.set(Window::DimX, a.dimension(1));
Georgios Pinitas932491f2018-09-21 16:33:15 +0100355 if(shape_vector_sum_row.num_dimensions() > 1)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000356 {
357 shape_vector_sum_row.remove_dimension(1);
358 }
359
360 return shape_vector_sum_row;
361}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100362
Michalis Spyroud33fe342019-01-04 17:10:25 +0000363/** Calculate the Col2Im shape
364 *
365 * @param[in] input Input tensor info
366 * @param[in] convolved_dims Convolved dimensions
367 * @param[in] batch_size_on_z True if batch size is on z axis
368 * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution
369 *
370 * @return the calculated shape
371 */
Giorgio Arena226e4b92018-08-23 12:00:02 +0100372inline TensorShape compute_col2im_shape(const ITensorInfo &input, const Size2D &convolved_dims, bool batch_size_on_z, unsigned int num_groups = 1)
Georgios Pinitas78c00902018-01-09 17:33:11 +0000373{
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100374 ARM_COMPUTE_ERROR_ON(num_groups == 0);
Giorgio Arena226e4b92018-08-23 12:00:02 +0100375 ARM_COMPUTE_ERROR_ON(input.tensor_shape()[1] != (convolved_dims.area()));
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100376 ARM_COMPUTE_ERROR_ON((num_groups > 1) && input.tensor_shape()[2] != num_groups);
377
Georgios Pinitase55b40a2018-09-13 17:20:04 +0100378 const DataLayout data_layout = input.data_layout();
379 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
380 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
381 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100382
Georgios Pinitase55b40a2018-09-13 17:20:04 +0100383 TensorShape col2im_shape{ input.tensor_shape() };
384 // If batches start on 3rd dimension shift dimensions right by 1 to retain upper tensor shape,
385 // as first three will be override by H,W,C data
386 if(batch_size_on_z && num_groups == 1)
387 {
388 col2im_shape.shift_right(1);
389 }
390 col2im_shape.set(width_idx, convolved_dims.width);
391 col2im_shape.set(height_idx, convolved_dims.height);
392 col2im_shape.set(channel_idx, input.tensor_shape()[0] * num_groups);
Georgios Pinitas78c00902018-01-09 17:33:11 +0000393
394 return col2im_shape;
395}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100396
Michalis Spyroud33fe342019-01-04 17:10:25 +0000397/** Calculate the transposed shape of a tensor
398 *
399 * @param[in] input Input tensor info
400 *
401 * @return the calculated shape
402 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000403inline TensorShape compute_transposed_shape(const ITensorInfo &input)
404{
405 TensorShape shape_transposed{ input.tensor_shape() };
406
407 shape_transposed.set(0, input.dimension(1));
408 shape_transposed.set(1, input.dimension(0));
409
410 return shape_transposed;
411}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100412
Michalis Spyroud33fe342019-01-04 17:10:25 +0000413/** Calculate the depthwise convolution output shape of a tensor
414 *
Michalis Spyrou60c3b0e2021-04-08 12:02:58 +0100415 * @param[in] input Input tensor info
416 * @param[in] weights Weights tensor info
417 * @param[in] info Convolution info
Michalis Spyroud33fe342019-01-04 17:10:25 +0000418 *
419 * @return the calculated shape
420 */
Michalis Spyrou60c3b0e2021-04-08 12:02:58 +0100421inline TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, const ConvolutionInfo &info)
Georgios Pinitas1250a5a2018-01-02 13:27:37 +0000422{
423 const TensorShape input_shape{ input.tensor_shape() };
424 const TensorShape weights_shape{ weights.tensor_shape() };
425
Giorgio Arenadfca60b2018-01-31 10:30:59 +0000426 const DataLayout data_layout = input.data_layout();
427 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
428 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Giorgio Arena76572242018-04-04 17:44:26 +0100429 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Giorgio Arenadfca60b2018-01-31 10:30:59 +0000430
Usama Arife73686a2019-04-08 17:30:48 +0100431 const DataLayout weights_data_layout = weights.data_layout();
432 const int weights_width_idx = get_data_layout_dimension_index(weights_data_layout, DataLayoutDimension::WIDTH);
433 const int weights_height_idx = get_data_layout_dimension_index(weights_data_layout, DataLayoutDimension::HEIGHT);
giuros016d109962019-01-07 17:47:19 +0000434
435 unsigned int output_width = 0;
436 unsigned int output_height = 0;
437 std::tie(output_width, output_height) = scaled_dimensions(input_shape[width_idx], input_shape[height_idx],
Usama Arife73686a2019-04-08 17:30:48 +0100438 weights_shape[weights_width_idx], weights_shape[weights_height_idx],
Michalis Spyrou60c3b0e2021-04-08 12:02:58 +0100439 info.pad_stride_info, info.dilation);
giuros016d109962019-01-07 17:47:19 +0000440
441 TensorShape output_shape{ input_shape };
442 output_shape.set(width_idx, output_width);
443 output_shape.set(height_idx, output_height);
Michalis Spyrou60c3b0e2021-04-08 12:02:58 +0100444 output_shape.set(channel_idx, input_shape[channel_idx] * info.depth_multiplier);
giuros016d109962019-01-07 17:47:19 +0000445
446 return output_shape;
447}
448
Michalis Spyroud33fe342019-01-04 17:10:25 +0000449/** Calculate the upsampled output shape used for deconvolution
450 *
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100451 * @param[in] input Input tensor info
452 * @param[in] weights Weights tensor shape
453 * @param[in] sx Stride on x axis
454 * @param[in] sy Stride on y axis
455 * @param[in] out_dims Output shape dimensions
456 * @param[in] padx Padding on x axis
457 * @param[in] pady Padding on y axis
Michalis Spyroud33fe342019-01-04 17:10:25 +0000458 *
459 * @return the calculated shape
460 */
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100461inline TensorShape compute_deconvolution_upsampled_shape(const ITensorInfo &input, const ITensorInfo &weights, unsigned int sx, unsigned int sy,
Manuel Bottini6e10aa32020-04-30 13:28:23 +0100462 std::pair<unsigned int, unsigned int> &out_dims, uint32_t &padx, uint32_t &pady)
Michalis Spyrou780db4e2017-11-23 09:49:51 +0000463{
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100464 const DataLayout data_layout = input.data_layout();
465 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
466 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
467
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100468 // Find the upsampled dimensions
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100469 unsigned int out_x = (input.dimension(idx_w) - 1) * sx + 1;
470 unsigned int out_y = (input.dimension(idx_h) - 1) * sy + 1;
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100471
472 // Find the padding needed for the convolution with stride 1 in order to match output shape
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100473 padx = out_dims.first - (out_x - weights.dimension(idx_w) + 1);
474 pady = out_dims.second - (out_y - weights.dimension(idx_h) + 1);
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100475 out_x += padx;
476 out_y += pady;
477
478 TensorShape scale_out_shape(input.tensor_shape());
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100479 scale_out_shape.set(idx_w, out_x);
480 scale_out_shape.set(idx_h, out_y);
Michalis Spyrou780db4e2017-11-23 09:49:51 +0000481
482 return scale_out_shape;
483}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100484
Michalis Spyroud33fe342019-01-04 17:10:25 +0000485/** Calculate the output shape of the deconvolution layer
486 *
487 * @param[in] out_dims Output x and y shape dimensions
488 * @param[in] input Input tensor info
489 * @param[in] weights Weights tensor shape
490 *
491 * @return the calculated shape
492 */
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100493inline TensorShape compute_deconvolution_output_shape(const std::pair<unsigned int, unsigned int> &out_dims, const ITensorInfo &input, const ITensorInfo &weights)
494{
495 const TensorShape input_shape{ input.tensor_shape() };
496 const TensorShape weights_shape{ weights.tensor_shape() };
497
498 const DataLayout data_layout = input.data_layout();
499 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
500 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
501 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
502 const int batch_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
503
504 TensorShape out_shape{ input_shape };
505 out_shape.set(width_idx, out_dims.first);
506 out_shape.set(height_idx, out_dims.second);
507 out_shape.set(channel_idx, weights_shape[batch_idx]);
508 return out_shape;
509}
510
Michalis Spyroud33fe342019-01-04 17:10:25 +0000511/** Calculate the im2col output shape of a tensor
512 *
513 * @param[in] input Input tensor info
514 * @param[in] kernel_dims The kernel dimensions (width and height).
515 * @param[in] conv_info Contains padding and stride information
516 * @param[in] has_bias In case biases are provided expands the matrix with 1
517 * @param[in] dilation Dilation, in elements, across x and y
518 * @param[in] batch_size_on_z True if batch size is on z axis
519 * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution
520 *
521 * @return the calculated shape
522 */
Giorgio Arena0f170392018-07-18 16:13:12 +0100523inline TensorShape compute_im2col_conv_shape(const ITensorInfo *input, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, bool batch_size_on_z,
524 unsigned int num_groups = 1)
Giorgio Arena156fcf32018-03-09 15:30:43 +0000525{
Giorgio Arena0f170392018-07-18 16:13:12 +0100526 // The output shape will be the 3D shape [ out_channels * kernel_area, num_elems_per_out_channel, batches ] if batch_size_on_z == true
527 // or the 4D shape [ out_channels * kernel_area / num_groups, num_elems_per_out_channel, num_groups, batches ] if batch_size_on_z == false
528
529 ARM_COMPUTE_ERROR_ON(num_groups == 0);
530 ARM_COMPUTE_ERROR_ON(num_groups > 1 && input->data_layout() != DataLayout::NCHW);
531 ARM_COMPUTE_ERROR_ON(num_groups > 1 && batch_size_on_z);
Giorgio Arena156fcf32018-03-09 15:30:43 +0000532
533 TensorShape output_shape{ input->tensor_shape() };
534
535 const DataLayout data_layout = input->data_layout();
536 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
537 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
538 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
539
540 std::pair<unsigned int, unsigned int> out_dims = scaled_dimensions(output_shape[width_idx], output_shape[height_idx], kernel_dims.width, kernel_dims.height, conv_info, dilation);
Giorgio Arena0f170392018-07-18 16:13:12 +0100541 output_shape.set(0, (output_shape[channel_idx] / num_groups * kernel_dims.area() + (has_bias ? 1 : 0))); // NOLINT
Giorgio Arenaf485a102018-04-20 16:06:21 +0100542 output_shape.set(1, (out_dims.first * out_dims.second));
Gian Marco Iodice597a8562018-08-01 15:06:06 +0100543 if(batch_size_on_z && output_shape.num_dimensions() >= 3)
544 {
545 output_shape.remove_dimension(2);
546 }
547 else
548 {
Giorgio Arena0f170392018-07-18 16:13:12 +0100549 output_shape.set(2, num_groups);
Gian Marco Iodice597a8562018-08-01 15:06:06 +0100550 }
Giorgio Arena156fcf32018-03-09 15:30:43 +0000551
552 return output_shape;
553}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100554
Michalis Spyroud33fe342019-01-04 17:10:25 +0000555/** Calculate the flattened output shape of a tensor
556 *
557 * @param[in] input Input tensor info
558 *
559 * @return the calculated shape
560 */
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100561inline TensorShape compute_flatten_shape(const ITensorInfo *input)
Ioan-Cristian Szabob4e3e1c2017-11-30 17:17:17 +0000562{
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100563 // The output shape will be the flatten version of the input (i.e. [ width * height * channels, num_batches, ... ] ). Used for FlattenLayer and FullyConnectedLayer.
564
Ioan-Cristian Szabob4e3e1c2017-11-30 17:17:17 +0000565 TensorShape output_shape{ input->tensor_shape() };
566
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100567 output_shape.collapse(3);
Giorgio Arena156fcf32018-03-09 15:30:43 +0000568
569 return output_shape;
570}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100571
Michalis Spyroud33fe342019-01-04 17:10:25 +0000572/** Calculate the softmax output shape of a tensor
573 *
574 * @param[in] input Input tensor info
575 * @param[in] axis (Optional) Softmax axis
576 *
577 * @return the calculated shape
578 */
giuros01efbf6c82018-09-03 09:53:53 +0100579inline TensorShape compute_softmax_shape(const ITensorInfo *input, size_t axis = 1)
580{
581 // The output shape will be a 2D version of the input. For instance:
582 // - [x,y,z] and axis 1 will return [x, y*z]
583 // - [x,y,z,w] and axis 2 will return [x*y, w*z]
584 // - [x,y,z,w] and axis 3 will return [x*y*z, w]
585 TensorShape shape2D = input->tensor_shape();
586
587 if(axis < input->num_dimensions())
588 {
589 // Collapse from axis onward (this changes the shape)
590 shape2D.collapse_from(axis);
591
592 // Collapse the rest (collapse is inclusive)
593 shape2D.collapse(shape2D.num_dimensions() - 1);
594 }
595 else
596 {
597 // Collapse everything
598 shape2D.collapse(shape2D.num_dimensions());
599 }
600
601 if(axis == 0)
602 {
603 // If axis is zero the first dim should be one. Since
604 // collapse is an inclusive operation we need to shift
605 shape2D.shift_right(1);
606 }
607
608 return shape2D;
609}
610
Michalis Spyroud33fe342019-01-04 17:10:25 +0000611/** Calculate the winograd filter transform shape
612 *
613 * @param[in] input Input tensor info
614 * @param[in] winograd_info Winograd information
615 *
616 * @return the calculated shape
617 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000618inline TensorShape compute_winograd_filter_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000619{
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000620 TensorShape tensor_shape{ input.tensor_shape() };
621
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000622 const Size2D kernel_size = winograd_info.kernel_size;
623 const Size2D output_tile_size = winograd_info.output_tile_size;
624 const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);
Giorgio Arena2d9de0a2018-03-15 17:58:20 +0000625
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000626 tensor_shape.remove_dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH));
627 tensor_shape.set(Window::DimX, input.dimension(3));
628 tensor_shape.set(Window::DimY, input.dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL)));
629 tensor_shape.set(Window::DimZ, input_tile_size.area());
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000630
631 return tensor_shape;
632}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100633
Michalis Spyroud33fe342019-01-04 17:10:25 +0000634/** Calculate the winograd input transform shape
635 *
636 * @param[in] input Input tensor info
637 * @param[in] winograd_info Winograd information
638 *
639 * @return the calculated shape
640 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000641inline TensorShape compute_winograd_input_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000642{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000643 const PadStrideInfo conv_info = winograd_info.convolution_info;
644 const Size2D kernel_size = winograd_info.kernel_size;
645 const Size2D output_tile_size = winograd_info.output_tile_size;
646 const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);
647
Giorgio Arenac42f28d2018-04-26 11:33:05 +0100648 const size_t idx_w = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
649 const size_t idx_h = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
650 const size_t idx_c = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000651
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100652 // Compute the number of output tiles along the x and y direction of size "output_tile_size"
653 const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input.tensor_shape()[idx_w], input.tensor_shape()[idx_h]),
654 kernel_size,
655 output_tile_size,
656 conv_info);
Giorgio Arenac42f28d2018-04-26 11:33:05 +0100657
658 const unsigned int width = input.tensor_shape()[idx_c];
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100659 const unsigned int height = num_tiles.area();
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000660 const unsigned int depth = input_tile_size.area();
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000661
662 TensorShape output_shape{ input.tensor_shape() };
663 output_shape.set(0, width);
664 output_shape.set(1, height);
665 output_shape.set(2, depth);
666
667 return output_shape;
668}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100669
Michalis Spyroud33fe342019-01-04 17:10:25 +0000670/** Calculate the winograd output transform shape
671 *
672 * @param[in] input Input tensor info
673 * @param[in] winograd_info Winograd information
674 *
675 * @return the calculated shape
676 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000677inline TensorShape compute_winograd_output_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000678{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000679 const PadStrideInfo conv_info = winograd_info.convolution_info;
680 const Size2D kernel_size = winograd_info.kernel_size;
681 const Size2D input_dimensions = winograd_info.input_dimensions;
682 const DataLayout data_layout = winograd_info.output_data_layout;
683
684 // Compute output shape
685 unsigned int output_width = 0;
686 unsigned int output_height = 0;
687 std::tie(output_width, output_height) = scaled_dimensions(input_dimensions.width, input_dimensions.height,
688 kernel_size.width, kernel_size.height, conv_info);
689
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000690 TensorShape tensor_shape{ input.tensor_shape() };
691
692 // Output dimension
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000693 const unsigned int out_w = output_width;
694 const unsigned int out_h = output_height;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000695 const unsigned int out_c = input.dimension(0);
696
697 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH), out_w);
698 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT), out_h);
699 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL), out_c);
700
701 return tensor_shape;
702}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100703
Michalis Spyroud33fe342019-01-04 17:10:25 +0000704/** Calculate the deep convolution shape output shape of a tensor
705 *
SiCongLid9287352021-11-03 19:01:22 +0000706 * @param[in] input_shape Input tensor shape
707 * @param[in] input_data_layout Input data layout
708 * @param[in] weights_shape Weights tensor shape
709 * @param[in] conv_info Contains padding and stride information
Michalis Spyroud33fe342019-01-04 17:10:25 +0000710 *
711 * @return the calculated shape
712 */
SiCongLid9287352021-11-03 19:01:22 +0000713inline TensorShape compute_deep_convolution_shape(const TensorShape &input_shape, DataLayout input_data_layout, const TensorShape &weights_shape, const PadStrideInfo &conv_info)
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000714{
SiCongLid9287352021-11-03 19:01:22 +0000715 const size_t idx_width = get_data_layout_dimension_index(input_data_layout, DataLayoutDimension::WIDTH);
716 const size_t idx_height = get_data_layout_dimension_index(input_data_layout, DataLayoutDimension::HEIGHT);
717 const size_t idx_channel = get_data_layout_dimension_index(input_data_layout, DataLayoutDimension::CHANNEL);
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000718
Giorgio Arenac0f54432018-03-16 14:02:34 +0000719 const unsigned int input_width = input_shape[idx_width];
720 const unsigned int input_height = input_shape[idx_height];
721 const unsigned int weights_width = weights_shape[idx_width];
722 const unsigned int weights_height = weights_shape[idx_height];
723 const unsigned int weights_out_channel = weights_shape[3];
724 unsigned int output_width = 0;
725 unsigned int output_height = 0;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000726 std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, weights_width, weights_height, conv_info);
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000727
728 TensorShape output_shape{ input_shape };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000729 output_shape.set(idx_width, output_width);
730 output_shape.set(idx_height, output_height);
Giorgio Arenac0f54432018-03-16 14:02:34 +0000731 output_shape.set(idx_channel, weights_out_channel);
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000732
733 return output_shape;
734}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100735
SiCongLid9287352021-11-03 19:01:22 +0000736/** Calculate the deep convolution shape output shape of a tensor
737 *
738 * @param[in] input Input tensor info
739 * @param[in] weights Weights tensor info
740 * @param[in] conv_info Contains padding and stride information
741 *
742 * @return the calculated shape
743 */
744inline TensorShape compute_deep_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, const PadStrideInfo &conv_info)
745{
746 return compute_deep_convolution_shape(input.tensor_shape(), input.data_layout(), weights.tensor_shape(), conv_info);
747}
748
Michalis Spyroud33fe342019-01-04 17:10:25 +0000749/** Calculate the min/max shape output shape of a tensor
750 *
751 * @param[in] input Input tensor info
752 *
753 * @return the calculated shape
754 */
Alex Gilday60954c62018-03-05 16:22:48 +0000755inline TensorShape compute_min_max_shape(const ITensorInfo *input)
756{
757 TensorShape output_shape{ input->tensor_shape() };
758 output_shape.set(Window::DimX, 2);
759 output_shape.remove_dimension(1);
760 output_shape.remove_dimension(1);
761
762 return output_shape;
763}
764
Michalis Spyroud33fe342019-01-04 17:10:25 +0000765/** Calculate the output pool shape of a tensor
766 *
767 * @param[in] input Input tensor info
768 * @param[in] pool_info Pooling layer info
769 *
770 * @return the calculated shape
771 */
Michalis Spyroue74b2012018-04-18 09:49:16 +0100772inline TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
773{
Freddie Liardetafcbb8f2021-05-04 12:41:16 +0100774 int pooled_w = 0;
775 int pooled_h = 0;
Michalis Spyroue74b2012018-04-18 09:49:16 +0100776
Giorgio Arena3c520c52018-05-01 11:47:24 +0100777 TensorShape output_shape{ input.tensor_shape() };
Michalis Spyroue74b2012018-04-18 09:49:16 +0100778
Freddie Liardetafcbb8f2021-05-04 12:41:16 +0100779 const bool is_global_pooling = pool_info.is_global_pooling;
780 const int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
781 const int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
782 const int input_width = input.tensor_shape()[idx_width];
783 const int input_height = input.tensor_shape()[idx_height];
784 const int pool_size_x = is_global_pooling ? output_shape[idx_width] : pool_info.pool_size.width;
785 const int pool_size_y = is_global_pooling ? output_shape[idx_height] : pool_info.pool_size.height;
Giorgio Arena3c520c52018-05-01 11:47:24 +0100786
Freddie Liardetafcbb8f2021-05-04 12:41:16 +0100787 std::tie(pooled_w, pooled_h) = scaled_dimensions_signed(input_width, input_height,
788 pool_size_x, pool_size_y,
789 pool_info.pad_stride_info);
Michalis Spyroue74b2012018-04-18 09:49:16 +0100790
Freddie Liardetafcbb8f2021-05-04 12:41:16 +0100791 ARM_COMPUTE_ERROR_ON_MSG((pooled_w < 1 || pooled_h < 1), "Calculated output dimension size is invalid");
792
793 output_shape.set(idx_width, static_cast<size_t>(pooled_w));
794 output_shape.set(idx_height, static_cast<size_t>(pooled_h));
Michalis Spyroue74b2012018-04-18 09:49:16 +0100795
796 return output_shape;
797}
798
morgolock37722d92020-04-09 14:17:48 +0100799/** Calculate the output unpool shape of a tensor
800 *
801 * @param[in] input Input tensor info
802 * @param[in] pool_info Pooling layer info
803 *
804 * @return the calculated shape
805 */
806inline TensorShape compute_unpool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
807{
808 const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
809 const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
810 const TensorShape input_shape = input.tensor_shape();
811 ARM_COMPUTE_ERROR_ON(input_shape[idx_height] <= 1 || input_shape[idx_width] <= 1);
812 const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
813 const unsigned int stride_x = pad_stride_info.stride().first;
814 const unsigned int stride_y = pad_stride_info.stride().second;
815
816 const int pad_left = pad_stride_info.pad_left();
817 const int pad_top = pad_stride_info.pad_top();
818 const int pad_right = pad_stride_info.pad_right();
819 const int pad_bottom = pad_stride_info.pad_bottom();
820
821 TensorShape output_shape = input_shape;
822 const unsigned int out_width = (input_shape[idx_width] - 1) * stride_x - pad_left - pad_right + pool_info.pool_size.width;
823 const unsigned int out_height = (input_shape[idx_height] - 1) * stride_y - pad_top - pad_bottom + pool_info.pool_size.height;
824
825 output_shape.set(idx_width, out_width);
826 output_shape.set(idx_height, out_height);
827 return output_shape;
828}
829
George Wort44b4e972019-01-08 11:41:54 +0000830/** Calculate the output roi align shape of a tensor
831 *
832 * @param[in] input Input tensor info
833 * @param[in] rois Rois tensor info
834 * @param[in] pool_info Pooling layer info
835 *
836 * @return the calculated shape
837 */
838inline TensorShape compute_roi_align_shape(const ITensorInfo &input, const ITensorInfo &rois, ROIPoolingLayerInfo pool_info)
839{
840 TensorShape output_shape{ input.tensor_shape() };
841
842 const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
843 const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
844
845 output_shape.set(idx_width, pool_info.pooled_width());
846 output_shape.set(idx_height, pool_info.pooled_height());
847 output_shape.set(3, rois.dimension(1));
848
849 return output_shape;
850}
851
Michalis Spyroud33fe342019-01-04 17:10:25 +0000852/** Calculate the RNN shape of a tensor
853 *
854 * @param[in] input Input tensor info
855 * @param[in] batch_size Batch size
856 *
857 * @return the calculated shape
858 */
Michalis Spyrou36a559e2018-03-20 10:30:58 +0000859inline TensorShape compute_rnn_shape(const ITensorInfo *input, const unsigned int batch_size)
860{
861 TensorShape output_shape{ input->tensor_shape() };
862 output_shape.set(1, batch_size);
863
864 return output_shape;
865}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100866
Michalis Spyroud33fe342019-01-04 17:10:25 +0000867/** Calculate the matrix multiplication output shape of two tensors
868 *
869 * @param[in] input0 First input tensor info
870 * @param[in] input1 Second input tensor info
871 * @param[in] is_interleaved_transposed True if the input is interleaved transposed
872 * @param[in] reshape_info GEMM reshape info
873 *
874 * @return the calculated shape
875 */
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100876inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
877{
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000878 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100879 ARM_COMPUTE_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The first input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100880
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100881 const bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000882 const bool reinterpret_output_as_3d = reshape_info.depth_output_gemm3d() != 0;
883 const int depth_output_gemm3d = reinterpret_output_as_3d ? reshape_info.depth_output_gemm3d() : 1;
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100884 const int m = reshape_info.reinterpret_input_as_3d() ? input0.dimension(1) * input0.dimension(2) : input0.dimension(1);
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000885
886 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
887 // dimension of the output tensor
888 const int dim0 = is_interleaved_transposed ? reshape_info.n() : input1.dimension(0);
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000889 const int dim1 = is_interleaved_transposed ? reshape_info.m() / depth_output_gemm3d : m / depth_output_gemm3d;
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100890 const int dim2 = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
891 const int dim3 = reinterpret_input_as_3d ? 1 : input0.tensor_shape()[3];
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000892
893 TensorShape output_shape{ input0.tensor_shape() };
894
895 output_shape.set(0, dim0);
896 output_shape.set(1, dim1);
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000897 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : dim2);
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100898 output_shape.set(3, reinterpret_output_as_3d ? dim2 : dim3);
899 output_shape.set(4, reinterpret_output_as_3d ? dim3 : 1);
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000900
901 return output_shape;
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100902}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100903
Michalis Spyroud33fe342019-01-04 17:10:25 +0000904/** Calculate the matrix multiplication output shape of two tensors
905 *
906 * @param[in] input0 First input tensor info
907 * @param[in] input1 Second input tensor info
908 * @param[in] gemm_info GEMM reshape info
909 *
910 * @return the calculated shape
911 */
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000912inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMReshapeInfo &gemm_info)
913{
Michalis Spyrou6bff1952019-10-02 17:22:11 +0100914 ARM_COMPUTE_UNUSED(input1);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000915 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
916
Gian Marco Iodice926afe12019-03-19 11:44:13 +0000917 const bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000918 const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d() != 0;
919 const int depth_output_gemm3d = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d() : 1;
920
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000921 TensorShape output_shape{ input0.tensor_shape() };
922
Vidhya Sudhan Loganathanae1a89e2019-05-03 09:13:55 +0100923 if(!reinterpret_input_as_3d && !reinterpret_output_as_3d)
924 {
925 output_shape.set(0, gemm_info.n());
926 output_shape.set(1, gemm_info.m());
927 }
928 else
929 {
930 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
931 // dimension of the output tensor
932 const int batch_size = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
933 output_shape.set(0, gemm_info.n());
934 output_shape.set(1, gemm_info.m() / depth_output_gemm3d);
935 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : batch_size);
936 output_shape.set(3, reinterpret_output_as_3d ? batch_size : 1);
937 }
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000938
939 return output_shape;
940}
941
Michalis Spyroud33fe342019-01-04 17:10:25 +0000942/** Calculate the matrix multiplication output shape of two tensors
943 *
Gian Marco Iodice7026b302019-06-26 17:18:11 +0100944 * @param[in] input0 First input tensor info
945 * @param[in] input1 Second input tensor info
946 * @param[in] gemm_info GEMM kernel info used to retrieve the original dimensions of the input matrices
947 *
948 * @return the calculated shape
949 */
950inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMKernelInfo &gemm_info)
951{
Michalis Spyrou6bff1952019-10-02 17:22:11 +0100952 ARM_COMPUTE_UNUSED(input1);
Gian Marco Iodice7026b302019-06-26 17:18:11 +0100953 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
954
955 const bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
956 const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
957 const unsigned int depth_output_gemm3d = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d : 1;
958
959 TensorShape output_shape{ input0.tensor_shape() };
960
961 if(!reinterpret_input_as_3d && !reinterpret_output_as_3d)
962 {
963 output_shape.set(0, gemm_info.n);
964 output_shape.set(1, gemm_info.m);
965 }
966 else
967 {
968 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
969 // dimension of the output tensor
970 const unsigned int batch_size = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
971 output_shape.set(0, gemm_info.n);
972 output_shape.set(1, gemm_info.m / depth_output_gemm3d);
973 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : batch_size);
974 output_shape.set(3, reinterpret_output_as_3d ? batch_size : 1);
975 }
976
977 return output_shape;
978}
979
980/** Calculate the matrix multiplication output shape of two tensors
981 *
Michalis Spyroud33fe342019-01-04 17:10:25 +0000982 * @param[in] input Input tensor info
983 * @param[in] gemm_3d_depth (Optional) GEMM 3d depth
984 * @param[in] batch_size_on_z (Optional) True if batch size is on z axis
985 *
986 * @return the calculated shape
987 */
Georgios Pinitas932491f2018-09-21 16:33:15 +0100988inline TensorShape compute_output_stage_shape(const ITensorInfo &input, unsigned int gemm_3d_depth = 1, bool batch_size_on_z = false)
Georgios Pinitas041f36d2018-09-18 18:38:37 +0100989{
990 ARM_COMPUTE_ERROR_ON(input.data_layout() != DataLayout::NHWC && gemm_3d_depth > 1);
991
992 TensorShape output_shape = input.tensor_shape();
993 if(gemm_3d_depth > 1)
994 {
Georgios Pinitas932491f2018-09-21 16:33:15 +0100995 if(batch_size_on_z)
996 {
997 output_shape.shift_right(1);
998 }
Georgios Pinitas041f36d2018-09-18 18:38:37 +0100999 output_shape.set(0, input.tensor_shape().x());
1000 output_shape.set(1, input.tensor_shape().y() / gemm_3d_depth);
1001 output_shape.set(2, gemm_3d_depth);
1002 }
1003
1004 return output_shape;
1005}
1006
Michalis Spyroud33fe342019-01-04 17:10:25 +00001007/** Calculate the strided slice output shape of a tensor
1008 *
1009 * @param[in] input Input tensor info
1010 * @param[in] starts The starts of the dimensions of the input tensor to be sliced
1011 * @param[in] ends The ends of the dimensions of the input tensor to be sliced
1012 * @param[in] strides The strides of the dimensions of the input tensor to be sliced
1013 * @param[in] begin_mask If the ith bit of begin_mask is set, starts[i] is ignored and the fullest possible range in that dimension is used instead.
1014 * @param[in] end_mask If the ith bit of end_mask is set, ends[i] is ignored and the fullest possible range in that dimension is used instead.
1015 * @param[in] shrink_axis_mask If the ith bit of shrink_axis_mask is set, it implies that the ith specification shrinks the dimensionality by 1
1016 *
1017 * @return the calculated shape
1018 */
Georgios Pinitas77589b52018-08-21 14:41:35 +01001019inline TensorShape compute_strided_slice_shape(const ITensorInfo &input,
1020 const Coordinates &starts, const Coordinates &ends, const Coordinates &strides,
1021 int32_t begin_mask, int32_t end_mask, int32_t shrink_axis_mask)
1022{
1023 using namespace arm_compute::helpers::tensor_transform;
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001024 return compute_strided_slice_output_shape(input.tensor_shape(), starts, ends, strides, begin_mask, end_mask, shrink_axis_mask);
1025}
Georgios Pinitas77589b52018-08-21 14:41:35 +01001026
Michalis Spyroud33fe342019-01-04 17:10:25 +00001027/** Calculate the slice output shape of a tensor
1028 *
1029 * @param[in] input_shape Input tensor info
1030 * @param[in] starts The starts of the dimensions of the input tensor to be sliced
1031 * @param[in] ends The ends of the dimensions of the input tensor to be sliced
1032 *
1033 * @return the calculated shape
1034 */
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001035inline TensorShape compute_slice_shape(const TensorShape &input_shape, const Coordinates &starts, const Coordinates &ends)
1036{
1037 using namespace arm_compute::helpers::tensor_transform;
Georgios Pinitas77589b52018-08-21 14:41:35 +01001038
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001039 return compute_strided_slice_output_shape(input_shape,
1040 starts, ends, BiStrides(),
1041 0, construct_slice_end_mask(ends), 0);
Georgios Pinitas77589b52018-08-21 14:41:35 +01001042}
Georgios Pinitase1a352c2018-09-03 12:42:19 +01001043
Michalis Spyroud33fe342019-01-04 17:10:25 +00001044/** Calculate the batch to space output shape of a tensor
1045 *
1046 * @param[in] input Input tensor info
1047 * @param[in] block_x Block shape x value
1048 * @param[in] block_y Block shape y value
1049 *
1050 * @return the calculated shape
1051 */
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001052inline TensorShape compute_batch_to_space_shape(const ITensorInfo *input, const int block_x, const int block_y)
1053{
1054 ARM_COMPUTE_ERROR_ON(block_x <= 0 || block_y <= 0);
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001055
1056 const DataLayout data_layout = input->data_layout();
1057 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1058 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001059 const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001060
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001061 TensorShape output_shape{ input->tensor_shape() };
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001062 output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_x);
1063 output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_y);
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001064 output_shape.set(idx_batch, input->tensor_shape()[idx_batch] / (block_x * block_y));
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001065
1066 return output_shape;
1067}
Georgios Pinitas77589b52018-08-21 14:41:35 +01001068
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001069/** Calculate the depth to space output shape of a tensor
1070 *
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001071 * @param[in] input_shape Input tensor shape
1072 * @param[in] data_layout Operation data layout
1073 * @param[in] block Block shape value
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001074 *
1075 * @return the calculated shape
1076 */
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001077inline TensorShape compute_depth_to_space_shape(const TensorShape &input_shape, DataLayout data_layout, int block)
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001078{
1079 ARM_COMPUTE_ERROR_ON(block < 2);
1080
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001081 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1082 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1083 const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001084
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001085 TensorShape output_shape{ input_shape };
1086 output_shape.set(idx_width, input_shape[idx_width] * block);
1087 output_shape.set(idx_height, input_shape[idx_height] * block);
1088 output_shape.set(idx_channel, input_shape[idx_channel] / (block * block));
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001089
1090 return output_shape;
1091}
1092
Michalis Spyroud33fe342019-01-04 17:10:25 +00001093/** Calculate the split output shape of a tensor
1094 *
1095 * @param[in] input Input tensor info
1096 * @param[in] axis Axis on which to split the input
1097 * @param[in] num_splits Number of splits
1098 *
1099 * @return the calculated shape
1100 */
Georgios Pinitase1a352c2018-09-03 12:42:19 +01001101inline TensorShape compute_split_shape(const ITensorInfo *input, unsigned int axis, unsigned int num_splits)
1102{
1103 TensorShape empty_shape;
1104 empty_shape.set(0, 0);
1105
1106 TensorShape out_shape{ input->tensor_shape() };
1107
1108 // Return empty shape if axis is invalid
1109 if(axis > input->tensor_shape().num_dimensions())
1110 {
1111 return empty_shape;
1112 }
1113
1114 size_t axis_size = out_shape[axis];
1115
1116 // Return empty shape if num_split is not valid
1117 if(axis_size % num_splits)
1118 {
1119 return empty_shape;
1120 }
1121
1122 out_shape[axis] = axis_size / num_splits;
1123 return out_shape;
1124}
1125
Michalis Spyroud33fe342019-01-04 17:10:25 +00001126/** Calculate the space to batch output shape of a tensor
1127 *
1128 * @param[in] input Input tensor info
1129 * @param[in] block_x Block shape x value
1130 * @param[in] block_y Block shape y value
1131 * @param[in] padding_left Left padding values
1132 * @param[in] padding_right Right padding values
1133 *
1134 * @return the calculated shape
1135 */
Michalis Spyrou16934a52018-08-21 18:03:58 +01001136inline TensorShape compute_space_to_batch_shape(const ITensorInfo *input, const int block_x, const int block_y, const Size2D &padding_left, const Size2D &padding_right)
1137{
1138 TensorShape output_shape{ input->tensor_shape() };
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001139
1140 const DataLayout data_layout = input->data_layout();
1141 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1142 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1143 const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
1144
SiCong Li18bdfae2020-11-08 21:58:01 +00001145 ARM_COMPUTE_ERROR_ON((input->tensor_shape()[idx_width] + padding_left.x() + padding_right.x()) % block_x != 0);
1146 ARM_COMPUTE_ERROR_ON((input->tensor_shape()[idx_height] + padding_left.y() + padding_right.y()) % block_y != 0);
1147
1148 output_shape.set(idx_width, (input->tensor_shape()[idx_width] + padding_left.x() + padding_right.x()) / block_x);
1149 output_shape.set(idx_height, (input->tensor_shape()[idx_height] + padding_left.y() + padding_right.y()) / block_y);
1150 output_shape.set(idx_batch, input->tensor_shape()[idx_batch] * block_x * block_y);
Michalis Spyrou16934a52018-08-21 18:03:58 +01001151
1152 return output_shape;
1153}
Pablo Tello32521432018-11-15 14:43:10 +00001154
Manuel Bottini5b7d5372019-05-17 14:04:22 +01001155/** Calculate the space to batch output shape of a tensor
1156 *
1157 * @param[in] input Input tensor info
1158 * @param[in] block_shape Block shape value
1159 *
1160 * @return the calculated shape
1161 */
1162inline TensorShape compute_space_to_depth_shape(const ITensorInfo *input, int32_t block_shape)
1163{
1164 TensorShape output_shape{ input->tensor_shape() };
1165
1166 const DataLayout data_layout = input->data_layout();
1167 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1168 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1169 const int idx_depth = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
1170
1171 output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_shape);
1172 output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_shape);
1173 output_shape.set(idx_depth, input->tensor_shape()[idx_depth] / (block_shape * block_shape));
1174
1175 return output_shape;
1176}
1177
Michalis Spyroud33fe342019-01-04 17:10:25 +00001178/** Calculate the prior box output shape of a tensor
1179 *
1180 * @param[in] input Input tensor info
1181 * @param[in] info PriorBoxLayer info
1182 *
1183 * @return the calculated shape
1184 */
Michalis Spyrou6c7c38e2018-08-29 16:28:11 +01001185inline TensorShape compute_prior_box_shape(const ITensorInfo &input, const PriorBoxLayerInfo &info)
1186{
1187 DataLayout data_layout = input.data_layout();
1188 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1189 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Pablo Tello32521432018-11-15 14:43:10 +00001190 const int num_priors = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size();
Michalis Spyrou6c7c38e2018-08-29 16:28:11 +01001191
1192 TensorShape output_shape{};
1193 output_shape.set(0, input.dimension(idx_w) * input.dimension(idx_h) * num_priors * 4);
1194 output_shape.set(1, 2);
1195
1196 return output_shape;
1197}
Michalis Spyrou16934a52018-08-21 18:03:58 +01001198
Michalis Spyroud33fe342019-01-04 17:10:25 +00001199/** Calculate the padded shape of a tensor
1200 *
1201 * @param[in] input_shape Input tensor shape
1202 * @param[in] padding Paddings list
1203 *
1204 * @return the calculated shape
1205 */
Giuseppe Rossinid7647d42018-07-17 18:13:13 +01001206inline TensorShape compute_padded_shape(const TensorShape &input_shape, const PaddingList &padding)
1207{
1208 TensorShape padded_shape = input_shape;
1209 for(size_t dim = 0; dim < padding.size(); ++dim)
1210 {
Georgios Pinitasdea2d2d2018-12-19 16:23:17 +00001211 const auto &padding_pair = padding[dim];
1212 const uint32_t shape_on_index = (padded_shape.num_dimensions() <= dim) ? 1 : input_shape[dim];
1213 padded_shape.set(dim, padding_pair.first + shape_on_index + padding_pair.second);
Giuseppe Rossinid7647d42018-07-17 18:13:13 +01001214 }
1215 return padded_shape;
1216}
1217
Michalis Spyroud33fe342019-01-04 17:10:25 +00001218/** Calculate the tiled shape of a tensor
1219 *
1220 * @param[in] input_shape Input tensor shape
1221 * @param[in] multiples Paddings list
1222 *
1223 * @return the calculated shape
1224 */
giuros013175fcf2018-11-21 09:59:17 +00001225inline TensorShape compute_tiled_shape(const TensorShape &input_shape, const Multiples &multiples)
1226{
1227 TensorShape tiled_shape = input_shape;
1228 for(size_t dim = 0; dim < multiples.size(); ++dim)
1229 {
1230 tiled_shape.set(dim, input_shape[dim] * multiples[dim]);
1231 }
1232 return tiled_shape;
1233}
1234
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001235/** Calculate the reduced shape of a tensor given an axis
1236 *
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001237 * @param[in] input Input tensor info
1238 * @param[in] axis Axis on which to perform reduction
1239 * @param[in] keep_dims (Optional) Whether to keep the dimension after reduction operation. Defaults to true.
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001240 *
1241 * @return the calculated shape
1242 */
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001243inline TensorShape compute_reduced_shape(const TensorShape &input, unsigned int axis, bool keep_dims = true)
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001244{
1245 TensorShape output_shape{ input };
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001246
1247 if(!keep_dims)
1248 {
1249 output_shape.remove_dimension(axis);
1250 }
1251 else
1252 {
1253 output_shape.set(axis, 1);
1254 }
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001255
1256 return output_shape;
1257}
1258
Michalis Spyroud33fe342019-01-04 17:10:25 +00001259/** Calculate the upsampled shape of a tensor
1260 *
1261 * @param[in] input Input tensor info
1262 * @param[in] info Contains stride information (x and y)
1263 *
1264 * @return the calculated shape
1265 */
Michalis Spyrouceb889e2018-09-17 18:24:41 +01001266inline TensorShape compute_upsample_shape(const ITensorInfo &input, const Size2D &info)
1267{
1268 const DataLayout data_layout = input.data_layout();
1269 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1270 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1271
1272 TensorShape scale_out_shape(input.tensor_shape());
1273 const unsigned int out_x = input.dimension(idx_width) * info.x();
1274 const unsigned int out_y = input.dimension(idx_height) * info.y();
1275 scale_out_shape.set(idx_width, out_x);
1276 scale_out_shape.set(idx_height, out_y);
1277
1278 return scale_out_shape;
1279}
1280
Michalis Spyroud33fe342019-01-04 17:10:25 +00001281/** Get the tensor shape
1282 *
1283 * @param[in] data Input data
1284 *
1285 * @return the extracted tensor shape
1286 */
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001287template <typename T>
Georgios Pinitase2220552018-07-20 13:23:44 +01001288inline TensorShape extract_shape(T *data)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001289{
Georgios Pinitase2220552018-07-20 13:23:44 +01001290 return data->info()->tensor_shape();
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001291}
1292
John Kesapidescafec8f2019-02-19 15:53:59 +00001293inline TensorShape extract_shape(ITensorInfo *data)
John Kesapides917959c2019-02-04 12:37:29 +00001294{
1295 return data->tensor_shape();
1296}
John Kesapidescafec8f2019-02-19 15:53:59 +00001297inline TensorShape extract_shape(const ITensorInfo *data)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001298{
Georgios Pinitase2220552018-07-20 13:23:44 +01001299 return data->tensor_shape();
1300}
1301
1302inline TensorShape extract_shape(const TensorShape *data)
1303{
1304 return *data;
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001305}
1306
Michalis Spyroua9c44722019-04-05 17:18:36 +01001307inline TensorShape extract_shape(TensorShape *data)
1308{
1309 return *data;
1310}
1311
Michalis Spyroud33fe342019-01-04 17:10:25 +00001312/** Calculate the unstack shape of a tensor
1313 *
1314 * @param[in] input_shape Input tensor shape
1315 * @param[in] axis Axis on which to perform the unstack operation
1316 *
1317 * @return the calculated shape
1318 */
Pablo Tello54303692018-11-22 16:14:36 +00001319inline TensorShape calculate_unstack_shape(TensorShape input_shape, unsigned int axis)
1320{
1321 ARM_COMPUTE_ERROR_ON(axis > input_shape.num_dimensions());
1322 input_shape.remove_dimension(axis);
1323 return input_shape;
1324}
1325
Pablo Tello3dd5b682019-03-04 14:14:02 +00001326/** Calculate the concatenate output shape of the concatenate operation along a single axis
Michalis Spyroud33fe342019-01-04 17:10:25 +00001327 *
Pablo Tello3dd5b682019-03-04 14:14:02 +00001328 * @param[in] input Vector containing the shapes of the inputs
1329 * @param[in] axis Axis along which to concatenate the input tensors
Michalis Spyroud33fe342019-01-04 17:10:25 +00001330 *
1331 * @return the calculated shape
1332 */
Georgios Pinitase29acf12018-07-16 14:40:09 +01001333template <typename T>
Pablo Tello3dd5b682019-03-04 14:14:02 +00001334inline TensorShape calculate_concatenate_shape(const std::vector<T *> &input, size_t axis)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001335{
Pablo Tello3dd5b682019-03-04 14:14:02 +00001336 TensorShape out_shape = extract_shape(input[0]);
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001337
Georgios Pinitasdcd949d2019-04-17 11:04:28 +01001338#if defined(ARM_COMPUTE_ASSERTS_ENABLED)
Michalis Spyroua9c44722019-04-05 17:18:36 +01001339 // All dimensions must match except the axis one
1340 for(unsigned int i = 0; i < MAX_DIMS; ++i)
1341 {
1342 if(i == axis)
1343 {
1344 continue;
1345 }
1346
1347 for(const auto &tensor : input)
1348 {
1349 ARM_COMPUTE_ERROR_ON(tensor == nullptr);
1350 const TensorShape shape = extract_shape(tensor);
1351 ARM_COMPUTE_ERROR_ON(out_shape[i] != shape[i]);
1352 }
1353 }
Georgios Pinitasdcd949d2019-04-17 11:04:28 +01001354#endif // defined(ARM_COMPUTE_ASSERTS_ENABLED)
Michalis Spyroua9c44722019-04-05 17:18:36 +01001355
1356 // Calculate output shape
Pablo Tello3dd5b682019-03-04 14:14:02 +00001357 size_t new_size = 0;
1358 for(const auto &tensor : input)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001359 {
Georgios Pinitase2220552018-07-20 13:23:44 +01001360 const TensorShape shape = extract_shape(tensor);
Pablo Tello3dd5b682019-03-04 14:14:02 +00001361 new_size += shape[axis];
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001362 }
1363
Pablo Tello3dd5b682019-03-04 14:14:02 +00001364 out_shape.set(axis, new_size);
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001365
1366 return out_shape;
1367}
Michalis Spyroud33fe342019-01-04 17:10:25 +00001368/** Calculate the stack output shape of a tensor
1369 *
1370 * @param[in] a Input tensor info
1371 * @param[in] axis Axis on which to perform the stack operation
1372 * @param[in] num_tensors Number of tensors to stack
1373 *
1374 * @return the calculated shape
1375 */
Gian Marco Iodice8aa985e2018-11-27 15:58:08 +00001376inline TensorShape compute_stack_shape(const ITensorInfo &a, unsigned int axis, unsigned int num_tensors)
1377{
1378 ARM_COMPUTE_ERROR_ON(axis > a.num_dimensions());
1379 ARM_COMPUTE_ERROR_ON(a.num_dimensions() > 4);
1380
1381 TensorShape shape_out{ a.tensor_shape() };
1382 shape_out.set(axis, num_tensors);
1383
1384 unsigned int i_shift = 0;
1385
1386 for(unsigned int i = 0; i < a.num_dimensions(); ++i)
1387 {
1388 if(i == axis)
1389 {
1390 i_shift++;
1391 }
1392
1393 shape_out.set(i + i_shift, a.tensor_shape()[i]);
1394 }
1395 return shape_out;
1396}
Manuel Bottini8529bd62018-11-21 11:53:04 +00001397
Adnan AlSinane4563a02021-09-01 15:32:03 +01001398/** Calculate the output shape of 3d Convolution
1399 *
1400 * @param[in] src Input tensor shape
1401 * @param[in] weights Weights tensor shape
1402 * @param[in] conv3d_info 3d Convolution Parameters object
1403 *
1404 * @return the calculated shape
1405 */
1406inline TensorShape compute_conv3d_shape(const TensorShape &src, const TensorShape &weights, const Conv3dInfo &conv3d_info)
1407{
1408 // Weight tensor shape indices (D H W Cin Cout)
1409 constexpr unsigned int weights_depth_dim = 4u;
1410 constexpr unsigned int weights_height_dim = 3u;
1411 constexpr unsigned int weights_width_dim = 2u;
1412 constexpr unsigned int weights_CHout_dim = 0u;
1413
1414 // Source/Destination Tensor shape indices (N D H W C)
1415 constexpr unsigned int batch_dim = 4u;
1416 constexpr unsigned int depth_dim = 3u;
1417 constexpr unsigned int height_dim = 2u;
1418 constexpr unsigned int width_dim = 1u;
1419 constexpr unsigned int channel_dim = 0u;
1420
1421 TensorShape output_shape{ src };
1422 const size_t pad_left = conv3d_info.padding.left;
1423 const size_t pad_right = conv3d_info.padding.right;
1424 const size_t pad_top = conv3d_info.padding.top;
1425 const size_t pad_bottom = conv3d_info.padding.bottom;
1426 const size_t pad_front = conv3d_info.padding.front;
1427 const size_t pad_back = conv3d_info.padding.back;
1428 const size_t dilation_x = conv3d_info.dilation.width;
1429 const size_t dilation_y = conv3d_info.dilation.height;
1430 const size_t dilation_z = conv3d_info.dilation.depth;
1431 const size_t stride_x = conv3d_info.stride.x();
1432 const size_t stride_y = conv3d_info.stride.y();
1433 const size_t stride_z = conv3d_info.stride.z();
1434
1435 int output_width_size = 0;
1436 int output_height_size = 0;
1437 int output_depth_size = 0;
1438
1439 switch(conv3d_info.round_type)
1440 {
1441 case DimensionRoundingType::FLOOR:
1442 output_width_size = static_cast<int>(std::floor((static_cast<float>(src[width_dim] + pad_left + pad_right - (dilation_x * (weights[weights_width_dim] - 1) + 1)) / stride_x) + 1));
1443 output_height_size = static_cast<int>(std::floor((static_cast<float>(src[height_dim] + pad_top + pad_bottom - (dilation_y * (weights[weights_height_dim] - 1) + 1)) / stride_y) + 1));
1444 output_depth_size = static_cast<int>(std::floor((static_cast<float>(src[depth_dim] + pad_front + pad_back - (dilation_z * (weights[weights_depth_dim] - 1) + 1)) / stride_z) + 1));
1445 break;
1446 case DimensionRoundingType::CEIL:
1447 output_width_size = static_cast<int>(std::ceil((static_cast<float>(src[width_dim] + pad_left + pad_right - (dilation_x * (weights[weights_width_dim] - 1) + 1)) / stride_x) + 1));
1448 output_height_size = static_cast<int>(std::ceil((static_cast<float>(src[height_dim] + pad_top + pad_bottom - (dilation_y * (weights[weights_height_dim] - 1) + 1)) / stride_y) + 1));
1449 output_depth_size = static_cast<int>(std::ceil((static_cast<float>(src[depth_dim] + pad_front + pad_back - (dilation_z * (weights[weights_depth_dim] - 1) + 1)) / stride_z) + 1));
1450 break;
1451 default:
1452 ARM_COMPUTE_ERROR("Unsupported rounding type");
1453 }
1454
1455 output_shape.set(batch_dim, src[batch_dim]);
1456 output_shape.set(width_dim, output_width_size);
1457 output_shape.set(height_dim, output_height_size);
1458 output_shape.set(depth_dim, output_depth_size);
1459 output_shape.set(channel_dim, weights[weights_CHout_dim]);
1460 return output_shape;
1461}
1462
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001463/** Calculate the output pool3d shape of a tensor
1464 *
1465 * @param[in] src Input tensor info
1466 * @param[in] pool3d_info Pooling layer info
1467 *
1468 * @return the calculated shape
1469 */
ramelg0137515692022-02-26 22:06:20 +00001470inline TensorShape compute_pool3d_shape(const TensorShape &src, Pooling3dLayerInfo pool3d_info)
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001471{
1472 TensorShape output_shape{ src };
1473
ramelg0137515692022-02-26 22:06:20 +00001474 const auto data_layout = DataLayout::NDHWC;
1475 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1476 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1477 const int idx_depth = get_data_layout_dimension_index(data_layout, DataLayoutDimension::DEPTH);
1478 const int pool_size_width = pool3d_info.is_global_pooling ? src[idx_width] : pool3d_info.pool_size.width;
1479 const int pool_size_height = pool3d_info.is_global_pooling ? src[idx_height] : pool3d_info.pool_size.height;
1480 const int pool_size_depth = pool3d_info.is_global_pooling ? src[idx_depth] : pool3d_info.pool_size.depth;
1481 int output_width = 0;
1482 int output_height = 0;
1483 int output_depth = 0;
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001484
ramelg0137515692022-02-26 22:06:20 +00001485 std::tie(output_width, output_height, output_depth) = scaled_3d_dimensions_signed(src[idx_width], src[idx_height], src[idx_depth], pool_size_width, pool_size_height,
1486 pool_size_depth, pool3d_info);
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001487
ramelg0137515692022-02-26 22:06:20 +00001488 ARM_COMPUTE_ERROR_ON_MSG((output_width < 1 || output_height < 1 || output_depth < 1), "Calculated output dimension size is invalid");
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001489
ramelg0137515692022-02-26 22:06:20 +00001490 output_shape.set(idx_width, static_cast<size_t>(output_width));
1491 output_shape.set(idx_height, static_cast<size_t>(output_height));
1492 output_shape.set(idx_depth, static_cast<size_t>(output_depth));
Gunes Bayir918a9fb2022-02-15 11:40:13 +00001493
1494 return output_shape;
1495}
1496
Manuel Bottini8529bd62018-11-21 11:53:04 +00001497inline TensorShape compute_gather_shape(const TensorShape &input_shape, const TensorShape &indices_shape, uint32_t actual_axis)
1498{
Manuel Bottini8529bd62018-11-21 11:53:04 +00001499 ARM_COMPUTE_ERROR_ON(input_shape.num_dimensions() > 4);
1500 ARM_COMPUTE_ERROR_ON(actual_axis >= input_shape.num_dimensions());
1501
Pablo Marquez Tello0db8b8b2022-04-27 11:46:31 +01001502 TensorShape output_shape = input_shape;
1503 if(indices_shape.num_dimensions() == 1u)
1504 {
1505 output_shape[actual_axis] = indices_shape[0];
1506 }
1507 else
1508 {
1509 const auto inddims{ indices_shape.num_dimensions() };
1510 output_shape.shift_right(indices_shape.num_dimensions() - 1);
1511 output_shape[0] = input_shape[0];
1512 for(size_t idx(1); (idx - 1) < inddims; ++idx)
1513 {
1514 output_shape.set(actual_axis + idx, indices_shape[idx - 1], false);
1515 }
1516 }
Manuel Bottini8529bd62018-11-21 11:53:04 +00001517 return output_shape;
1518}
Georgios Pinitas358ca202017-12-07 16:47:52 +00001519} // namespace shape_calculator
1520} // namespace misc
1521} // namespace arm_compute
Michalis Spyrouf4643372019-11-29 16:17:13 +00001522#endif /* ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H */