blob: f53ce21d053ca5ec5b7f71f927629692e83427ed [file] [log] [blame]
Gian Marco76faef82018-01-29 12:15:32 +00001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26#if defined(FIXED_POINT_POSITION)
27#include "fixed_point.h"
28#endif // FIXED_POINT_POSITION
29
30#if defined(DATA_TYPE) && defined(ELEMENT_SIZE)
31#if !defined(FIXED_POINT_POSITION)
32
33#if ELEMENT_SIZE == 1
34#define COND_DATA_TYPE char
35#elif ELEMENT_SIZE == 2
36#define COND_DATA_TYPE short
37#elif ELEMENT_SIZE == 4
38#define COND_DATA_TYPE int
39#else // ELEMENT_SIZE
40#error "Element size not support"
41#endif // ELEMENT_SIZE
42
43#if defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(KERNEL_DEPTH)
44/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 1x1 and the stride_x = 1
45 *
46 * @note This kernel computes 4 elements
47 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
48 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
49 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
50 * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
51 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
52 *
53 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
54 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
55 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
56 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
57 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
58 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
59 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
60 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
61 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
62 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
63 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
64 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
65 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
66 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
67 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
68 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
69 */
70__kernel void im2col1x1_stridex1_dchw(
71 TENSOR3D_DECLARATION(src),
72 IMAGE_DECLARATION(dst),
73 uint src_stride_w,
74 uint dst_stride_w)
75{
76 const uint xc = get_global_id(0) * 4; // x coordinate in the convolved tensor
77 const uint yc = get_global_id(1); // y coordinate in the convolved tensor
78 const uint ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
79 const uint batch = get_global_id(2) / KERNEL_DEPTH; // batch size
80
81 // Clamp xc
82 // The strategy clamps at "xc" as it will be a valid value for sure
83 uint4 xc_clamped = xc + (uint4)(0, 1, 2, 3);
84
85 // Check which values are valid
86 const VEC_DATA_TYPE(COND_DATA_TYPE, 4) cond0 = CONVERT((xc_clamped < SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
87
88 xc_clamped = select((uint4)xc, xc_clamped, convert_int4(cond0));
89
90 // Calculate input indices
91 const uint xi = xc;
92 const uint yi = yc * STRIDE_Y;
93
94 // Calculate output indices
95 const uint xo = ch;
96 const uint4 yo = xc_clamped + yc * CONVOLVED_WIDTH; // Index of the convolution
97
98 // Get input and output address
99 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
100
101 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + batch * dst_stride_w;
102
103 VEC_DATA_TYPE(DATA_TYPE, 4)
104 data = vload4(0, (__global DATA_TYPE *)input_ptr);
105
106 // If out-of-bound, overwrite with the first element
107 data = select((VEC_DATA_TYPE(DATA_TYPE, 4))data.s0, data, cond0);
108
109 *(__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) = data.s0;
110 *(__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) = data.s1;
111 *(__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) = data.s2;
112 *(__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) = data.s3;
113
114#ifdef HAS_BIAS
115 if(ch == (KERNEL_DEPTH - 1))
116 {
117 *((__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) + 1) = 1.0f;
118 *((__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) + 1) = 1.0f;
119 *((__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) + 1) = 1.0f;
120 *((__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) + 1) = 1.0f;
121 }
122#endif // HAS_BIAS
123}
124#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(KERNEL_DEPTH)
125
Pablo Tello4a626a72018-04-04 10:01:14 +0100126#define PTR_TO_VALUE(PTR, DATA_TYPE) *((DATA_TYPE *)(PTR))
127
Gian Marco76faef82018-01-29 12:15:32 +0000128#if defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
Pablo Tello4a626a72018-04-04 10:01:14 +0100129
130/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 5x5
131 *
132 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
133 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
134 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
135 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
136 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
137 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
138 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
139 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
140 *
141 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
142 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
143 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
144 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
145 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
146 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
147 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
148 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
149 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
150 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
151 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
152 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
153 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
154 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
155 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
156 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
157 */
158__kernel void im2col_generic_nhwc(
159 TENSOR3D_DECLARATION(src),
160 IMAGE_DECLARATION(dst),
161 uint src_stride_w,
162 uint dst_stride_w)
163{
164 const int src_stride_y_int = (int)src_stride_y;
165 const int src_stride_z_int = (int)src_stride_z;
166 const int xc = get_global_id(1); // x coordinate in the convolved tensor
167 const int yc = get_global_id(2) % CONVOLVED_HEIGHT; // y coordinate in the convolved tensor
168 const int ch = get_global_id(0); // input feature map
169 const int batch = get_global_id(2) / CONVOLVED_HEIGHT; // batch size
170
171 // Calculate input indices
172 const int xi = xc * STRIDE_X - PAD_LEFT;
173 const int yi = yc * STRIDE_Y - PAD_TOP;
174
175 // Calculate output indices
176 const int xo = ch * KERNEL_HEIGHT * KERNEL_WIDTH;
177 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
178
179 // Get input and output address
180 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_y_int + yi * src_stride_z_int + ch * src_stride_x + batch * src_stride_w;
181 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
182
183 for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
184 {
185 const int y0 = yi + yk;
186 if(y0 >= 0 && y0 < SRC_HEIGHT)
187 {
188 int xk;
189 for(xk = 0; xk < KERNEL_WIDTH; xk++)
190 {
191 const int x0 = xi + xk;
192 if(x0 >= 0 && x0 < SRC_WIDTH)
193 {
194 *((__global DATA_TYPE *)output_ptr) = PTR_TO_VALUE(input_ptr + xk * src_stride_y + yk * src_stride_z, DATA_TYPE);
195 }
196 else
197 {
198 *((__global DATA_TYPE *)output_ptr) = PAD_VALUE;
199 }
200 output_ptr += 1 * sizeof(DATA_TYPE);
201 }
202 }
203 else
204 {
205 for(int xk = 0; xk < KERNEL_WIDTH; xk++)
206 {
207 *((__global DATA_TYPE *)output_ptr) = (DATA_TYPE)PAD_VALUE;
208 output_ptr += 1 * dst_stride_x;
209 }
210 }
211 }
212#ifdef HAS_BIAS
213 if(ch == (KERNEL_DEPTH - 1))
214 {
215 *((__global DATA_TYPE *)output_ptr) = 1.0f;
216 output_ptr += 1 * dst_stride_x;
217 }
218#endif // HAS_BIAS
219}
220
221/** This kernel performs a reshaping of the input tensor (with layout NHWC) to a tensor used to perform convolution using GEMM when the kernel size is 3x3
222 *
223 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
224 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
225 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
226 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
227 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
228 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
229 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
230 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
231 *
232 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
233 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
234 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
235 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
236 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
237 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
238 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
239 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
240 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
241 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
242 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
243 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
244 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
245 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
246 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
247 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
248 */
249__kernel void im2col3x3_nhwc(
250 TENSOR3D_DECLARATION(src),
251 IMAGE_DECLARATION(dst),
252 uint src_stride_w,
253 uint dst_stride_w)
254{
255 const int src_stride_y_int = (int)src_stride_y;
256 const int src_stride_z_int = (int)src_stride_z;
257 const int xc = get_global_id(1); // x coordinate in the convolved tensor
258 const int yc = get_global_id(2) % CONVOLVED_HEIGHT; // y coordinate in the convolved tensor
259 const int ch = get_global_id(0); // input feature map
260 const int batch = get_global_id(2) / CONVOLVED_HEIGHT; // batch size
261
262 // Calculate input indices
263 const int xi = xc * STRIDE_X - PAD_LEFT;
264 const int yi = yc * STRIDE_Y - PAD_TOP;
265
266 // Calculate output indices
267 const int xo = ch * 9; // 3x3
268 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
269
270 // Get input and output address
271 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_y_int + yi * src_stride_z_int + ch * src_stride_x + batch * src_stride_w;
272 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
273
274 VEC_DATA_TYPE(DATA_TYPE, 3)
275 row0 = (VEC_DATA_TYPE(DATA_TYPE, 3))(PAD_VALUE);
276 VEC_DATA_TYPE(DATA_TYPE, 3)
277 row1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(PAD_VALUE);
278 VEC_DATA_TYPE(DATA_TYPE, 3)
279 row2 = (VEC_DATA_TYPE(DATA_TYPE, 3))(PAD_VALUE);
280
281 const int3 y = (int3)yi + (int3)(0, 1, 2);
282 // Guard against reading outside the input buffer, there is no padding in Z so we check if ry is inside the buffer.
283 if(y.s0 >= 0 && y.s0 < SRC_HEIGHT)
284 {
285 row0 = (VEC_DATA_TYPE(DATA_TYPE, 3))(
286 PTR_TO_VALUE(input_ptr + 0 * src_stride_y, DATA_TYPE),
287 PTR_TO_VALUE(input_ptr + 1 * src_stride_y, DATA_TYPE),
288 PTR_TO_VALUE(input_ptr + 2 * src_stride_y, DATA_TYPE));
289 }
290
291 if(y.s1 >= 0 && y.s1 < SRC_HEIGHT)
292 {
293 row1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(
294 PTR_TO_VALUE(input_ptr + 0 * src_stride_y + 1 * src_stride_z, DATA_TYPE),
295 PTR_TO_VALUE(input_ptr + 1 * src_stride_y + 1 * src_stride_z, DATA_TYPE),
296 PTR_TO_VALUE(input_ptr + 2 * src_stride_y + 1 * src_stride_z, DATA_TYPE));
297 }
298
299 if(y.s2 >= 0 && y.s2 < SRC_HEIGHT)
300 {
301 row2 = (VEC_DATA_TYPE(DATA_TYPE, 3))(
302 PTR_TO_VALUE(input_ptr + 0 * src_stride_y + 2 * src_stride_z, DATA_TYPE),
303 PTR_TO_VALUE(input_ptr + 1 * src_stride_y + 2 * src_stride_z, DATA_TYPE),
304 PTR_TO_VALUE(input_ptr + 2 * src_stride_y + 2 * src_stride_z, DATA_TYPE));
305 }
306
307#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
308 // Put 0 if the value is out-of-bound
309 const int3 x = (int3)xi + (int3)(0, 1, 2);
310 VEC_DATA_TYPE(COND_DATA_TYPE, 3)
311 cond0 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
312 row0 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row0, cond0);
313 row1 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row1, cond0);
314 row2 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row2, cond0);
315#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
316 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, (__global DATA_TYPE *)output_ptr);
317 *((__global DATA_TYPE *)output_ptr + 8) = row2.s2;
318
319#ifdef HAS_BIAS
320 if(ch == (KERNEL_DEPTH - 1))
321 {
322 *((__global DATA_TYPE *)output_ptr + 9) = 1.0f;
323 }
324#endif // HAS_BIAS
325}
326
Gian Marco76faef82018-01-29 12:15:32 +0000327/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 3x3
328 *
329 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
330 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
331 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
332 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
333 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
334 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
335 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
336 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
337 *
338 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
339 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
340 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
341 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
342 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
343 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
344 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
345 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
346 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
347 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
348 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
349 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
350 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
351 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
352 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
353 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
354 */
355__kernel void im2col3x3_dchw(
356 TENSOR3D_DECLARATION(src),
357 IMAGE_DECLARATION(dst),
358 uint src_stride_w,
359 uint dst_stride_w)
360{
361 const int xc = get_global_id(0); // x coordinate in the convolved tensor
362 const int yc = get_global_id(1); // y coordinate in the convolved tensor
363 const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
364 const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
365
366 // Calculate input indices
367 const int xi = xc * STRIDE_X - PAD_LEFT;
368 const int yi = yc * STRIDE_Y - PAD_TOP;
369
370 // Calculate output indices
371 const int xo = ch * 9; // 3x3
372 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
373
374 // Get input and output address
375 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
376
377 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
378
379 VEC_DATA_TYPE(DATA_TYPE, 3)
380 row0 = vload3(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
381 VEC_DATA_TYPE(DATA_TYPE, 3)
382 row1 = vload3(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
383 VEC_DATA_TYPE(DATA_TYPE, 3)
384 row2 = vload3(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
385
386#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
387 // Put 0 if the value is out-of-bound
388 int3 x = (int3)xi + (int3)(0, 1, 2);
389 int3 y = (int3)yi + (int3)(0, 1, 2);
390
391 VEC_DATA_TYPE(COND_DATA_TYPE, 3)
392 cond0 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s0 >= 0 && y.s0 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
393 VEC_DATA_TYPE(COND_DATA_TYPE, 3)
394 cond1 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s1 >= 0 && y.s1 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
395 VEC_DATA_TYPE(COND_DATA_TYPE, 3)
396 cond2 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s2 >= 0 && y.s2 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
397
398 row0 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row0, cond0);
399 row1 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row1, cond1);
400 row2 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row2, cond2);
401#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
402
403 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, (__global DATA_TYPE *)output_ptr);
404 *((__global DATA_TYPE *)output_ptr + 8) = row2.s2;
405
406#ifdef HAS_BIAS
407 if(ch == (KERNEL_DEPTH - 1))
408 {
409 *((__global DATA_TYPE *)output_ptr + 9) = 1.0f;
410 }
411#endif // HAS_BIAS
412}
413
414/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 5x5
415 *
416 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
417 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
418 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
419 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
420 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
421 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
422 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
423 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
424 *
425 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
426 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
427 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
428 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
429 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
430 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
431 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
432 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
433 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
434 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
435 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
436 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
437 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
438 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
439 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
440 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
441 */
442__kernel void im2col5x5_dchw(
443 TENSOR3D_DECLARATION(src),
444 IMAGE_DECLARATION(dst),
445 uint src_stride_w,
446 uint dst_stride_w)
447{
448 const int xc = get_global_id(0); // x coordinate in the convolved tensor
449 const int yc = get_global_id(1); // y coordinate in the convolved tensor
450 const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
451 const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
452
453 // Calculate input indices
454 const int xi = xc * STRIDE_X - PAD_LEFT;
455 const int yi = yc * STRIDE_Y - PAD_TOP;
456
457 // Calculate output indices
458 const int xo = ch * 25; // 5x5
459 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
460
461#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
462 // Put 0 if the value is out-of-bound
463 int4 x0 = (int4)xi + (int4)(0, 1, 2, 3);
464 int4 y0 = (int4)yi + (int4)(0, 1, 2, 3);
465 int x1 = xi + 4;
466 int y1 = yi + 4;
467
468 // Check if we could have out-of-bounds elements in the x direction
469 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
470 x0_condition = CONVERT((x0 >= (int4)0 && x0 < (int4)SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
471 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
472 y0_condition = CONVERT((y0 >= (int4)0 && y0 < (int4)SRC_HEIGHT), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
473 COND_DATA_TYPE x1_condition = (COND_DATA_TYPE)(x1 >= 0 && x1 < SRC_WIDTH);
474 COND_DATA_TYPE y1_condition = (COND_DATA_TYPE)(y1 >= 0 && y1 < SRC_HEIGHT);
475#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
476
477 // Get input and output address
478 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
479
480 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
481
482 {
483 VEC_DATA_TYPE(DATA_TYPE, 4)
484 row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
485 DATA_TYPE
486 row01 = *((__global DATA_TYPE *)input_ptr + 4);
487
488 input_ptr += src_stride_y;
489
490 VEC_DATA_TYPE(DATA_TYPE, 4)
491 row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
492 DATA_TYPE
493 row11 = *((__global DATA_TYPE *)input_ptr + 4);
494
495#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
496 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
497 cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s0;
498 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
499 cond10 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s1;
500 COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s0);
501 COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s1);
502
503 // Replace with 0 if the value is not valid
504 row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
505 row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
506 row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
507 row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
508#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
509
510 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
511 row10.s012),
512 0, (__global DATA_TYPE *)output_ptr);
513 vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
514
515 input_ptr += src_stride_y;
516 output_ptr += 10 * dst_stride_x;
517 }
518
519 {
520 VEC_DATA_TYPE(DATA_TYPE, 4)
521 row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
522 DATA_TYPE
523 row01 = *((__global DATA_TYPE *)input_ptr + 4);
524
525 input_ptr += src_stride_y;
526
527 VEC_DATA_TYPE(DATA_TYPE, 4)
528 row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
529 DATA_TYPE
530 row11 = *((__global DATA_TYPE *)input_ptr + 4);
531
532#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
533 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
534 cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s2;
535 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
536 cond10 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s3;
537 COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s2);
538 COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s3);
539
540 // Replace with 0 if the value is not valid
541 row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
542 row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
543 row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
544 row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
545#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
546
547 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
548 row10.s012),
549 0, (__global DATA_TYPE *)output_ptr);
550 vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
551
552 input_ptr += src_stride_y;
553 output_ptr += 10 * dst_stride_x;
554 }
555
556 {
557 VEC_DATA_TYPE(DATA_TYPE, 4)
558 row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
559 DATA_TYPE
560 row01 = *((__global DATA_TYPE *)input_ptr + 4);
561
562 input_ptr += src_stride_y;
563
564#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
565 VEC_DATA_TYPE(COND_DATA_TYPE, 4)
566 cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y1_condition;
567 COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y1_condition);
568
569 // Replace with 0 if the value is not valid
570 row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
571 row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
572#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
573
574 vstore4(row00, 0, (__global DATA_TYPE *)output_ptr);
575 *((__global DATA_TYPE *)output_ptr + 4) = row01;
576
577 output_ptr += 5 * dst_stride_x;
578 }
579
580#ifdef HAS_BIAS
581 if(ch == (KERNEL_DEPTH - 1))
582 {
583 *((__global DATA_TYPE *)output_ptr) = 1.0f;
584 }
585#endif // HAS_BIAS
586}
587#endif // defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
588
589#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_DEPTH)
590/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 11x11
591 *
592 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
593 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
594 * @note The kernel depth must be passed at compile time using -DKERNEL_DEPTH: e.g. -DKERNEL_DEPTH=3
595 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
596 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
597 *
598 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
599 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
600 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
601 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
602 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
603 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
604 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
605 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
606 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
607 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
608 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
609 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
610 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
611 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
612 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
613 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
614 */
615__kernel void im2col11x11_padx0_pady0_dchw(
616 TENSOR3D_DECLARATION(src),
617 IMAGE_DECLARATION(dst),
618 uint src_stride_w,
619 uint dst_stride_w)
620{
621 const int xc = get_global_id(0); // x coordinate in the convolved tensor
622 const int yc = get_global_id(1); // y coordinate in the convolved tensor
623 const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
624 const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
625
626 // Calculate input indices
627 const int xi = xc * STRIDE_X;
628 const int yi = yc * STRIDE_Y;
629
630 // Calculate output indices
631 const int xo = ch * 121; // 11x11
632 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
633
634 // Get input and output address
635 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
636
637 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
638 {
639 VEC_DATA_TYPE(DATA_TYPE, 8)
640 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
641 VEC_DATA_TYPE(DATA_TYPE, 3)
642 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
643
644 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
645 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
646
647 input_ptr += src_stride_y;
648 output_ptr += 11 * src_stride_x;
649 }
650
651 {
652 VEC_DATA_TYPE(DATA_TYPE, 8)
653 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
654 VEC_DATA_TYPE(DATA_TYPE, 3)
655 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
656
657 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
658 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
659
660 input_ptr += src_stride_y;
661 output_ptr += 11 * src_stride_x;
662 }
663
664 {
665 VEC_DATA_TYPE(DATA_TYPE, 8)
666 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
667 VEC_DATA_TYPE(DATA_TYPE, 3)
668 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
669
670 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
671 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
672
673 input_ptr += src_stride_y;
674 output_ptr += 11 * src_stride_x;
675 }
676
677 {
678 VEC_DATA_TYPE(DATA_TYPE, 8)
679 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
680 VEC_DATA_TYPE(DATA_TYPE, 3)
681 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
682
683 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
684 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
685
686 input_ptr += src_stride_y;
687 output_ptr += 11 * src_stride_x;
688 }
689
690 {
691 VEC_DATA_TYPE(DATA_TYPE, 8)
692 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
693 VEC_DATA_TYPE(DATA_TYPE, 3)
694 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
695
696 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
697 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
698
699 input_ptr += src_stride_y;
700 output_ptr += 11 * src_stride_x;
701 }
702
703 {
704 VEC_DATA_TYPE(DATA_TYPE, 8)
705 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
706 VEC_DATA_TYPE(DATA_TYPE, 3)
707 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
708
709 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
710 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
711
712 input_ptr += src_stride_y;
713 output_ptr += 11 * src_stride_x;
714 }
715
716 {
717 VEC_DATA_TYPE(DATA_TYPE, 8)
718 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
719 VEC_DATA_TYPE(DATA_TYPE, 3)
720 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
721
722 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
723 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
724
725 input_ptr += src_stride_y;
726 output_ptr += 11 * src_stride_x;
727 }
728
729 {
730 VEC_DATA_TYPE(DATA_TYPE, 8)
731 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
732 VEC_DATA_TYPE(DATA_TYPE, 3)
733 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
734
735 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
736 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
737
738 input_ptr += src_stride_y;
739 output_ptr += 11 * src_stride_x;
740 }
741
742 {
743 VEC_DATA_TYPE(DATA_TYPE, 8)
744 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
745 VEC_DATA_TYPE(DATA_TYPE, 3)
746 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
747
748 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
749 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
750
751 input_ptr += src_stride_y;
752 output_ptr += 11 * src_stride_x;
753 }
754
755 {
756 VEC_DATA_TYPE(DATA_TYPE, 8)
757 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
758 VEC_DATA_TYPE(DATA_TYPE, 3)
759 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
760
761 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
762 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
763
764 input_ptr += src_stride_y;
765 output_ptr += 11 * src_stride_x;
766 }
767
768 {
769 VEC_DATA_TYPE(DATA_TYPE, 8)
770 row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
771 VEC_DATA_TYPE(DATA_TYPE, 3)
772 row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
773
774 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
775 vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
776
777 output_ptr += 11 * src_stride_x;
778 }
779
780#ifdef HAS_BIAS
781 if(ch == (KERNEL_DEPTH - 1))
782 {
783 *((__global DATA_TYPE *)output_ptr) = 1.0f;
784 }
785#endif // HAS_BIAS
786}
787#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_DEPTH)
788#endif // !defined(FIXED_POINT_POSITION)
789
790#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
791/** This kernel reshapes the input tensor to a tensor used to perform convolution using GEMM when
792 * the kernel width is greater than 1 (except when the kernel size is 3x3) and pad_x == pad_y == 0.
793 *
794 * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float.
795 * @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=4.
796 * @note The width modulo vector size must be passed at compile time using -DWIDTH_MOD_VECTOR_SIZE e.g. -DWIDTH_MOD_VECTOR_SIZE=3.
797 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
798 *
799 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
800 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
801 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
802 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
803 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
804 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
805 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
806 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
807 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
808 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
809 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
810 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
811 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
812 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
813 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
814 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
815 */
816__kernel void im2col_generic_padx0_pady0_dchw(
817 TENSOR3D_DECLARATION(src),
818 IMAGE_DECLARATION(dst),
819 uint src_stride_w,
820 uint dst_stride_w)
821{
822 const int xc = get_global_id(0); // x coordinate in the convolved tensor
823 const int yc = get_global_id(1); // y coordinate in the convolved tensor
824 const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
825 const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
826
827 // Calculate input indices
828 const int xi = xc * STRIDE_X;
829 const int yi = yc * STRIDE_Y;
830 // Calculate output indices
831 const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
832 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
833 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
834 __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
835 // Linearize convolution elements
836 for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
837 {
838 int last_x = 0;
839 for(int x = xi, x_e = xi + KERNEL_WIDTH; x + VECTOR_SIZE <= x_e; x += VECTOR_SIZE, output_ptr += VECTOR_SIZE)
840 {
841 VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
842 row = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
843 VSTORE(VECTOR_SIZE)
844 (row, 0, output_ptr);
845 last_x = x;
846 }
847 // Copy the remainder of the row by doing VLOAD(WIDTH_MOD_VECTOR_SIZE) and VSTORE(WIDTH_MOD_VECTOR_SIZE).
848 // Note that x and output_ptr have already been incremented by VECTOR_SIZE by the loop just before exit.
849#if WIDTH_MOD_VECTOR_SIZE == 1
850 *output_ptr = *((__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
851#elif WIDTH_MOD_VECTOR_SIZE > 1
852 VEC_DATA_TYPE(DATA_TYPE, WIDTH_MOD_VECTOR_SIZE)
853 row = VLOAD(WIDTH_MOD_VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
854 VSTORE(WIDTH_MOD_VECTOR_SIZE)
855 (row, 0, output_ptr);
856#endif /* WIDTH_MOD_VECTOR_SIZE */
857 output_ptr += WIDTH_MOD_VECTOR_SIZE;
858 } /* End of loop over KERNEL_HEIGHT */
859
860#ifdef HAS_BIAS
861 if(ch == (KERNEL_DEPTH - 1))
862 {
863#ifdef FIXED_POINT_POSITION
864 *output_ptr = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
865#else // FIXED_POINT_POSITION
866 *output_ptr = 1.0f;
867#endif // FIXED_POINT_POSITION
868 }
869#endif // HAS_BIAS
870}
871#endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
872
873#if defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
874/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
875 *
876 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
877 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
878 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
879 * @note The kernel width, height and depth must be passed at compile time using -DKERNEL_WIDTH, -DKERNEL_HEIGHT and -DKERNEL_DEPTH: e.g. -DKERNEL_WIDTH=3, -DKERNEL_HEIGHT=3 and -DKERNEL_DEPTH=64
880 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
881 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
882 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
Alex Gilday7da29b62018-03-23 14:16:00 +0000883 * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
Gian Marco76faef82018-01-29 12:15:32 +0000884 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
885 *
886 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
887 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
888 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
889 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
890 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
891 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
892 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
893 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
894 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
895 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
896 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
897 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
898 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
899 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
900 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
901 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
902 */
903__kernel void im2col_generic_dchw(
904 TENSOR3D_DECLARATION(src),
905 IMAGE_DECLARATION(dst),
906 uint src_stride_w,
907 uint dst_stride_w)
908{
909 const int xc = get_global_id(0); // x coordinate in the convolved tensor
910 const int yc = get_global_id(1); // y coordinate in the convolved tensor
911 const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
912 const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
913
914 // Calculate input indices
915 const int xi = xc * STRIDE_X - PAD_LEFT;
916 const int yi = yc * STRIDE_Y - PAD_TOP;
917
918 // Calculate output indices
919 const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
920 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
921
922 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
923 __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
924
925 // Linearize convolution elements
Alex Gilday7da29b62018-03-23 14:16:00 +0000926 for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
Gian Marco76faef82018-01-29 12:15:32 +0000927 {
Alex Gilday7da29b62018-03-23 14:16:00 +0000928 int y = yi + yk * DILATION_Y;
929 for(int xk = 0; xk < KERNEL_WIDTH; ++xk, ++output_ptr)
Gian Marco76faef82018-01-29 12:15:32 +0000930 {
Alex Gilday7da29b62018-03-23 14:16:00 +0000931 int x = xi + xk * DILATION_X;
Gian Marco76faef82018-01-29 12:15:32 +0000932#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
933 *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
934#else // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
935 if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
936 {
937 *output_ptr = PAD_VALUE;
938 }
939 else
940 {
941 *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
942 }
943#endif // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
944 }
945 }
946
947#ifdef HAS_BIAS
948 if(ch == (KERNEL_DEPTH - 1))
949 {
950#ifdef FIXED_POINT_POSITION
951 *output_ptr = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
952#else // FIXED_POINT_POSITION
953 *output_ptr = 1.0f;
954#endif // FIXED_POINT_POSITION
955 }
956#endif // HAS_BIAS
957}
958#endif // defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
959
960/**This kernel reshapes the input tensor to a tensor used to perform convolution using GEMM when
961 * the kernel width and height are the same of width and height of the input tensor
962 *
963 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
964 * @note In case biases will be added in late stage, -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
965 *
966 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QASYMM8/QS16/F16/F32
967 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
968 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
969 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
970 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
971 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
972 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
973 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
974 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
975 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
976 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
977 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
978 * @param[in] width The width of the input tensor
979 * @param[in] height The height of the input tensor
980 */
981__kernel void im2col_reduced_dchw(
982 TENSOR3D_DECLARATION(src),
983 VECTOR_DECLARATION(dst),
984 uint width, uint height)
985{
986 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
987
988 const uint image_size = width * height;
989
990 __global uchar *tmp_out_ptr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) + get_global_id(1) * width + get_global_id(2) * image_size) * dst_stride_x;
991
992 *((__global DATA_TYPE *)tmp_out_ptr) = *((__global DATA_TYPE *)src.ptr);
993
994#ifdef HAS_BIAS
995 // If it is the last thread in the 3 dimensional workgroup
996 if(get_global_id(0) == (get_global_size(0) - 1) && get_global_id(1) == (get_global_size(1) - 1) && get_global_id(2) == (get_global_size(2) - 1))
997 {
998 tmp_out_ptr += dst_stride_x;
999#ifdef FIXED_POINT_POSITION
1000 *((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
1001#else // FIXED_POINT_POSITION
1002 *((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)1.0f;
1003#endif // FIXED_POINT_POSITION
1004 }
1005#endif // HAS_BIAS
1006}
Pablo Tello4a626a72018-04-04 10:01:14 +01001007#endif // defined(DATA_TYPE) && defined(ELEMENT_SIZE)