blob: 56038dd8539a04b7749822afbb439d8c11b1a877 [file] [log] [blame]
Georgios Pinitas358ca202017-12-07 16:47:52 +00001/*
Giorgio Arena5b50f422021-02-17 11:43:05 +00002 * Copyright (c) 2017-2021 Arm Limited.
Georgios Pinitas358ca202017-12-07 16:47:52 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Michalis Spyrouf4643372019-11-29 16:17:13 +000024#ifndef ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H
25#define ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H
Georgios Pinitas358ca202017-12-07 16:47:52 +000026
Georgios Pinitas9be0c5a2018-02-19 12:46:29 +000027#include "arm_compute/core/Helpers.h"
Georgios Pinitas358ca202017-12-07 16:47:52 +000028#include "arm_compute/core/ITensorInfo.h"
Gian Marco Iodice7026b302019-06-26 17:18:11 +010029#include "arm_compute/core/KernelDescriptors.h"
Georgios Pinitas1250a5a2018-01-02 13:27:37 +000030#include "arm_compute/core/Utils.h"
Georgios Pinitas358ca202017-12-07 16:47:52 +000031
Georgios Pinitas77589b52018-08-21 14:41:35 +010032#include "arm_compute/core/utils/helpers/tensor_transform.h"
33
Gian Marco Iodiced2fab732018-03-02 11:18:12 +000034#include <cmath>
35
Georgios Pinitas358ca202017-12-07 16:47:52 +000036namespace arm_compute
37{
38namespace misc
39{
40namespace shape_calculator
41{
Pablo Telloa0a4ba12019-12-11 13:04:34 +000042/** Calculate the output tensor shape for the reduce mean operation
43 *
44 * @param[in] input Input tensor shape
45 * @param[in] reduction_axis Reduction axis
46 * @param[in] keep_dims Flag to indicate if dimensions are kept
47 *
48 * @return the calculated shape
49 */
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010050inline TensorShape calculate_reduce_mean_shape(ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims)
Pablo Telloa0a4ba12019-12-11 13:04:34 +000051{
52 const int reduction_ops = reduction_axis.num_dimensions();
53 Coordinates axis_local = reduction_axis;
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010054 const int input_dims = input->num_dimensions();
Pablo Telloa0a4ba12019-12-11 13:04:34 +000055 convert_negative_axis(axis_local, input_dims);
Manuel Bottinic58f0ad2020-08-07 16:49:15 +010056 TensorShape out_shape = input->tensor_shape();
Pablo Telloa0a4ba12019-12-11 13:04:34 +000057 // Configure reshape layer if we want to drop the dimensions
58 if(!keep_dims)
59 {
60 // We have to sort the reduction axis vectors in order for remove_dimension
61 // to work properly
62 std::sort(axis_local.begin(), axis_local.begin() + reduction_ops);
63 for(int i = 0; i < reduction_ops; ++i)
64 {
65 out_shape.remove_dimension(axis_local[i] - i);
66 }
67 return out_shape;
68 }
69 else
70 {
71 for(int i = 0; i < reduction_ops; ++i)
72 {
73 out_shape.set(axis_local[i], 1);
74 }
75 return out_shape;
76 }
77}
Michalis Spyroud33fe342019-01-04 17:10:25 +000078/** Calculate the output tensor shape of a vector input given the convolution dimensions
79 *
80 * @param[in] input Input tensor shape
81 * @param[in] conv_w Convolution width
82 * @param[in] conv_h Convolution height
83 * @param[in] data_layout Data layout
84 *
85 * @return the calculated shape
86 */
Abe Mbise7784c832018-05-31 16:48:41 +010087inline TensorShape compute_vector_to_tensor_output_shape(const TensorShape &input, size_t conv_w, size_t conv_h, const DataLayout &data_layout)
88{
89 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
90 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
91 const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
92
93 TensorShape output_shape(input);
94 output_shape.set(idx_w, conv_w);
95 output_shape.set(idx_h, conv_h);
96 output_shape.set(idx_c, input.x() / (conv_w * conv_h));
97
98 return output_shape;
99}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100100
Michalis Spyroud33fe342019-01-04 17:10:25 +0000101/** Calculate the permuted shape of an input given a permutation vector
102 *
103 * @param[in] input Input tensor info
104 * @param[in] perm Permutation vector
105 *
106 * @return the calculated shape
107 */
Pablo Tello00afd112018-01-04 10:34:24 +0000108inline TensorShape compute_permutation_output_shape(const ITensorInfo &input, const PermutationVector &perm)
109{
110 TensorShape output_shape = input.tensor_shape();
111 permute(output_shape, perm);
112 return output_shape;
113}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100114
Michalis Spyroud33fe342019-01-04 17:10:25 +0000115/** Calculate the output shape of the reorg layer given a stride
116 *
117 * @param[in] input Input tensor info
118 * @param[in] stride Stride
119 *
120 * @return the calculated shape
121 */
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100122inline TensorShape compute_reorg_output_shape(const ITensorInfo &input, int32_t stride)
123{
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100124 const size_t idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
125 const size_t idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
126 const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100127
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100128 ARM_COMPUTE_ERROR_ON(stride <= 0);
129 ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_width] % stride != 0), "The width of the input tensor must be a multiple of stride");
130 ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_height] % stride != 0), "The height of the input tensor must be a multiple of stride");
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100131
132 TensorShape output_shape{ input.tensor_shape() };
Gian Marco Iodice477531c2018-08-21 17:53:38 +0100133
134 output_shape.set(idx_width, output_shape[idx_width] / stride);
135 output_shape.set(idx_height, output_shape[idx_height] / stride);
136 output_shape.set(idx_channel, output_shape[idx_channel] * stride * stride);
Georgios Pinitasaa6a04a2018-08-29 12:53:41 +0100137
138 return output_shape;
139}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100140
Michalis Spyroud33fe342019-01-04 17:10:25 +0000141/** Calculate the reshaped shape of the weights
142 *
143 * @param[in] weights Weights tensor info
144 * @param[in] has_bias (Optional) Set to true if there is bias
145 * @param[in] num_groups (Optional) Number of groups
146 *
147 * @return the calculated shape of the reshaped weights
148 */
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100149inline TensorShape compute_weights_reshaped_shape(const ITensorInfo &weights, bool has_bias = false, unsigned int num_groups = 1)
Georgios Pinitas78c00902018-01-09 17:33:11 +0000150{
Giorgio Arena088c2b02018-08-07 16:59:05 +0100151 // Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100152 ARM_COMPUTE_ERROR_ON(num_groups == 0);
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100153 ARM_COMPUTE_ERROR_ON(weights.data_layout() == DataLayout::NHWC && num_groups > 1);
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100154 ARM_COMPUTE_ERROR_ON((weights.dimension(3) % num_groups) != 0);
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100155
Georgios Pinitas78c00902018-01-09 17:33:11 +0000156 // Calculate output shape
157 TensorShape weights_reshaped{ weights.tensor_shape() };
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100158 weights_reshaped.set(3, weights_reshaped[3] / num_groups);
159
Georgios Pinitas78c00902018-01-09 17:33:11 +0000160 weights_reshaped.collapse(3);
161 const size_t tmp_dim = weights_reshaped[0];
Gian Marco Iodice916d1bc2018-08-13 11:20:41 +0100162 weights_reshaped.set(0, weights_reshaped[1]);
Georgios Pinitas78c00902018-01-09 17:33:11 +0000163 weights_reshaped.set(1, tmp_dim + (has_bias ? 1 : 0));
Giorgio Arenac6aa49b2018-08-07 11:53:30 +0100164 if(weights.num_dimensions() < 5)
165 {
166 weights_reshaped.set(2, num_groups);
167 }
Georgios Pinitas78c00902018-01-09 17:33:11 +0000168
169 return weights_reshaped;
170}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100171
Michalis Spyroud33fe342019-01-04 17:10:25 +0000172/** Calculate the Left Hand Side matrix reshaped shape
173 *
174 * @param[in] a Input tensor info
175 * @param[in] lhs_info Left Hand Side matrix information
176 * @param[in] reinterpret_input_as_3d (Optional) Set to true if the input need to be interpreted as 3d
177 *
178 * @return the calculated shape
179 */
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000180inline TensorShape compute_lhs_reshaped_shape(const ITensorInfo &a, const GEMMLHSMatrixInfo &lhs_info, bool reinterpret_input_as_3d = false)
181{
182 ARM_COMPUTE_ERROR_ON(lhs_info.m0 == 0);
183 ARM_COMPUTE_ERROR_ON(lhs_info.k0 == 0);
184 ARM_COMPUTE_ERROR_ON(lhs_info.v0 == 0);
185
186 // Input width/height
187 const unsigned int input_width = a.dimension(0);
188 const unsigned int input_height = reinterpret_input_as_3d ? a.dimension(1) * a.dimension(2) : a.dimension(1);
189
190 // Number of horizontal/vertical blocks in the input tensor
191 const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(lhs_info.k0));
192 const unsigned int num_vert_blocks = std::ceil(input_height / static_cast<float>(lhs_info.m0));
193
194 // Block size
195 const unsigned int block_size = lhs_info.m0 * lhs_info.k0;
196
197 // Output width/height
198 const unsigned int output_width = block_size * num_horiz_blocks * lhs_info.v0;
199 const unsigned int output_height = std::ceil(num_vert_blocks / static_cast<float>(lhs_info.v0));
200
201 TensorShape lhs_shape{ a.tensor_shape() };
202 lhs_shape.set(0, output_width);
203 lhs_shape.set(1, output_height);
204
205 if((reinterpret_input_as_3d) && (lhs_shape.num_dimensions() > 2))
206 {
207 // When the data format is NHWC and the shapes are Nx1x1
208 // the tensor shape num_dimensions is automatically set to 1 instead of 3.
209 // To avoid failures by removing a dimension that doesn't exist
210 // check if the number of dimensions is greater than 2.
211 lhs_shape.remove_dimension(2);
212 }
213
214 return lhs_shape;
215}
216
Michalis Spyroud33fe342019-01-04 17:10:25 +0000217/** Calculate the Right Hand Side matrix reshaped shape
218 *
219 * @param[in] a Input tensor info
220 * @param[in] rhs_info Right Hand Side matrix information
221 *
222 * @return the calculated shape
223 */
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000224inline TensorShape compute_rhs_reshaped_shape(const ITensorInfo &a, const GEMMRHSMatrixInfo &rhs_info)
225{
226 ARM_COMPUTE_ERROR_ON(rhs_info.n0 == 0);
227 ARM_COMPUTE_ERROR_ON(rhs_info.k0 == 0);
228 ARM_COMPUTE_ERROR_ON(rhs_info.h0 == 0);
229
230 // Input width/height
231 const unsigned int input_width = a.dimension(0);
232 const unsigned int input_height = a.dimension(1);
233
234 // Number of horizontal/vertical blocks in the input tensor
235 const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(rhs_info.n0));
236 const unsigned int num_vert_blocks = std::ceil(input_height / static_cast<float>(rhs_info.k0));
237
238 // Block size
239 const unsigned int block_size = rhs_info.n0 * rhs_info.k0;
240
241 // Output width/height
242 const unsigned int output_width = block_size * num_vert_blocks * rhs_info.h0;
243 const unsigned int output_height = std::ceil(num_horiz_blocks / static_cast<float>(rhs_info.h0));
244
245 TensorShape rhs_shape{ a.tensor_shape() };
246 rhs_shape.set(0, output_width);
247 rhs_shape.set(1, output_height);
248
249 return rhs_shape;
250}
251
Michalis Spyroud33fe342019-01-04 17:10:25 +0000252/** Calculate the interleaved shape of an input tensor
253 *
254 * @param[in] a Input tensor info
255 * @param[in] mult_interleave4x4_height (Optional) Interleave4x4 height
256 * @param[in] reinterpret_input_as_3d (Optional) Set to true if the input need to be interpreted as 3d
257 *
258 * @return the calculated shape
259 */
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100260inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_interleave4x4_height = 1, bool reinterpret_input_as_3d = false)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000261{
Gian Marco36a0a462018-01-12 10:21:40 +0000262 // The interleaved output matrix will have the following shape: [ a_height * W, ceil(a_width / W) ] where W = 4 * mult_interleave4x4_height
263 ARM_COMPUTE_ERROR_ON(mult_interleave4x4_height < 1);
264 const int interleave_width = 4 * mult_interleave4x4_height;
Georgios Pinitas358ca202017-12-07 16:47:52 +0000265 TensorShape shape_interleaved_a{ a.tensor_shape() };
Gian Marco36a0a462018-01-12 10:21:40 +0000266 shape_interleaved_a.set(0, a.dimension(0) * interleave_width);
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100267 if(reinterpret_input_as_3d)
268 {
269 const int M = a.dimension(1) * a.dimension(2);
270 const int height = std::ceil(M / static_cast<float>(interleave_width));
271 shape_interleaved_a.set(1, height);
Isabella Gottardi089695f2018-10-17 18:04:15 +0100272
273 // When the data format is NHWC and the shapes are Nx1x1
274 // the tensor shape num_dimensions is automatically set to 1 instead of 3.
275 // To avoid failures by removing a dimension that doesn't exist
276 // check if the number of dimensions is greater than 2.
277 if(shape_interleaved_a.num_dimensions() > 2)
278 {
279 shape_interleaved_a.remove_dimension(2);
280 }
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100281 }
282 else
283 {
284 shape_interleaved_a.set(1, std::ceil(a.dimension(1) / static_cast<float>(interleave_width)));
285 }
Georgios Pinitas358ca202017-12-07 16:47:52 +0000286
287 return shape_interleaved_a;
288}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100289
giuros016d109962019-01-07 17:47:19 +0000290/** Calculate the reshaped shape of the weights to use in depthwise convolution
291 *
292 * @param[in] input Input tensor info
293 * @param[in] info Depthwise convolution information to be used for reshaping.
294 *
295 * @return the calculated shape
296 */
297inline TensorShape compute_reshaped_depthwise_weights_shape(const ITensorInfo &input, const DepthwiseConvolutionReshapeInfo &info)
298{
299 const auto data_layout = input.data_layout();
300 TensorShape weights_shape{};
301
302 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
303 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
304 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
305 const size_t num_channels = input.dimension(channel_idx);
306 const size_t num_rows = input.dimension(height_idx);
307 const size_t num_cols = input.dimension(width_idx);
308
309 weights_shape.set(0, num_rows * num_cols * info.c0);
310 weights_shape.set(1, DIV_CEIL(num_channels, info.c0));
311 return weights_shape;
312}
313
Michalis Spyroud33fe342019-01-04 17:10:25 +0000314/** Calculate the transposed 1xW shape
315 *
316 * @param[in] b Input tensor info
317 *
318 * @return the calculated shape
319 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000320inline TensorShape compute_transpose1xW_shape(const ITensorInfo &b)
321{
322 // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
323 TensorShape shape_transposed1xW_b{ b.tensor_shape() };
324 shape_transposed1xW_b.set(0, b.dimension(1) * 16);
325 shape_transposed1xW_b.set(1, std::ceil(b.dimension(0) / 16.f));
326
327 return shape_transposed1xW_b;
328}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100329
Michalis Spyroud33fe342019-01-04 17:10:25 +0000330/** Calculate the transposed 1xW width element shape
331 *
332 * @param[in] b Input tensor info
333 * @param[in] mult_transpose1xW_width (Optional) Transpose1xW width
334 *
335 * @return the calculated shape
336 */
Gian Marco36a0a462018-01-12 10:21:40 +0000337inline TensorShape compute_transpose1xW_with_element_size_shape(const ITensorInfo &b, int mult_transpose1xW_width = 1)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000338{
Gian Marco36a0a462018-01-12 10:21:40 +0000339 // Note: mult_transpose1xW_width expresses the number of chunks with size 1x(W) we want to store on the same row
340 // The transpose1xW output matrix will have the following shape:
341 // [ b_height * W, ceil(b_width / W) ] where W = (16 / element size of the tensor) * mult_transpose1xW_width
342 ARM_COMPUTE_ERROR_ON(mult_transpose1xW_width < 1);
Georgios Pinitas358ca202017-12-07 16:47:52 +0000343 TensorShape shape_transposed1xW_b{ b.tensor_shape() };
Gian Marco36a0a462018-01-12 10:21:40 +0000344 const size_t transpose_width = (16 / b.element_size()) * mult_transpose1xW_width;
Georgios Pinitas358ca202017-12-07 16:47:52 +0000345 shape_transposed1xW_b.set(0, b.dimension(1) * transpose_width);
346 shape_transposed1xW_b.set(1, static_cast<size_t>(std::ceil(b.dimension(0) / static_cast<float>(transpose_width))));
347
348 return shape_transposed1xW_b;
349}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100350
Michalis Spyroud33fe342019-01-04 17:10:25 +0000351/** Calculate the reductionA shape used in GEMMLowp
352 *
353 * @param[in] b Input tensor info
354 *
355 * @return the calculated shape
356 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000357inline TensorShape compute_reductionA_shape(const ITensorInfo &b)
358{
359 TensorShape shape_vector_sum_col{ b.tensor_shape() };
360 if(shape_vector_sum_col.num_dimensions() > 1)
361 {
362 shape_vector_sum_col.remove_dimension(1);
363 }
364
365 return shape_vector_sum_col;
366}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100367
Michalis Spyroud33fe342019-01-04 17:10:25 +0000368/** Calculate the reductionB shape used in GEMMLowp
369 *
370 * @param[in] a Input tensor info
371 *
372 * @return the calculated shape
373 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000374inline TensorShape compute_reductionB_shape(const ITensorInfo &a)
375{
376 TensorShape shape_vector_sum_row{ a.tensor_shape() };
377 shape_vector_sum_row.set(Window::DimX, a.dimension(1));
Georgios Pinitas932491f2018-09-21 16:33:15 +0100378 if(shape_vector_sum_row.num_dimensions() > 1)
Georgios Pinitas358ca202017-12-07 16:47:52 +0000379 {
380 shape_vector_sum_row.remove_dimension(1);
381 }
382
383 return shape_vector_sum_row;
384}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100385
Michalis Spyroud33fe342019-01-04 17:10:25 +0000386/** Calculate the Col2Im shape
387 *
388 * @param[in] input Input tensor info
389 * @param[in] convolved_dims Convolved dimensions
390 * @param[in] batch_size_on_z True if batch size is on z axis
391 * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution
392 *
393 * @return the calculated shape
394 */
Giorgio Arena226e4b92018-08-23 12:00:02 +0100395inline TensorShape compute_col2im_shape(const ITensorInfo &input, const Size2D &convolved_dims, bool batch_size_on_z, unsigned int num_groups = 1)
Georgios Pinitas78c00902018-01-09 17:33:11 +0000396{
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100397 ARM_COMPUTE_ERROR_ON(num_groups == 0);
Giorgio Arena226e4b92018-08-23 12:00:02 +0100398 ARM_COMPUTE_ERROR_ON(input.tensor_shape()[1] != (convolved_dims.area()));
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100399 ARM_COMPUTE_ERROR_ON((num_groups > 1) && input.tensor_shape()[2] != num_groups);
400
Georgios Pinitase55b40a2018-09-13 17:20:04 +0100401 const DataLayout data_layout = input.data_layout();
402 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
403 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
404 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Michele Di Giorgio980002b2018-08-08 09:25:51 +0100405
Georgios Pinitase55b40a2018-09-13 17:20:04 +0100406 TensorShape col2im_shape{ input.tensor_shape() };
407 // If batches start on 3rd dimension shift dimensions right by 1 to retain upper tensor shape,
408 // as first three will be override by H,W,C data
409 if(batch_size_on_z && num_groups == 1)
410 {
411 col2im_shape.shift_right(1);
412 }
413 col2im_shape.set(width_idx, convolved_dims.width);
414 col2im_shape.set(height_idx, convolved_dims.height);
415 col2im_shape.set(channel_idx, input.tensor_shape()[0] * num_groups);
Georgios Pinitas78c00902018-01-09 17:33:11 +0000416
417 return col2im_shape;
418}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100419
Michalis Spyroud33fe342019-01-04 17:10:25 +0000420/** Calculate the transposed shape of a tensor
421 *
422 * @param[in] input Input tensor info
423 *
424 * @return the calculated shape
425 */
Georgios Pinitas358ca202017-12-07 16:47:52 +0000426inline TensorShape compute_transposed_shape(const ITensorInfo &input)
427{
428 TensorShape shape_transposed{ input.tensor_shape() };
429
430 shape_transposed.set(0, input.dimension(1));
431 shape_transposed.set(1, input.dimension(0));
432
433 return shape_transposed;
434}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100435
Michalis Spyroud33fe342019-01-04 17:10:25 +0000436/** Calculate the depthwise convolution output shape of a tensor
437 *
438 * @param[in] input Input tensor info
439 * @param[in] weights Weights tensor info
440 * @param[in] conv_info Padding and stride information to use for the convolution.
441 * @param[in] depth_multiplier Multiplier to apply to the input's depth in order to retrieve the output's depth.
Usama Arife73686a2019-04-08 17:30:48 +0100442 * @param[in] dilation Dilation, in elements, across x and y. Defaults to (1, 1).
Michalis Spyroud33fe342019-01-04 17:10:25 +0000443 *
444 * @return the calculated shape
445 */
Usama Arife73686a2019-04-08 17:30:48 +0100446inline TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info, unsigned int depth_multiplier, const Size2D &dilation = Size2D(1U,
447 1U))
Georgios Pinitas1250a5a2018-01-02 13:27:37 +0000448{
449 const TensorShape input_shape{ input.tensor_shape() };
450 const TensorShape weights_shape{ weights.tensor_shape() };
451
Giorgio Arenadfca60b2018-01-31 10:30:59 +0000452 const DataLayout data_layout = input.data_layout();
453 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
454 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Giorgio Arena76572242018-04-04 17:44:26 +0100455 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Giorgio Arenadfca60b2018-01-31 10:30:59 +0000456
Usama Arife73686a2019-04-08 17:30:48 +0100457 const DataLayout weights_data_layout = weights.data_layout();
458 const int weights_width_idx = get_data_layout_dimension_index(weights_data_layout, DataLayoutDimension::WIDTH);
459 const int weights_height_idx = get_data_layout_dimension_index(weights_data_layout, DataLayoutDimension::HEIGHT);
giuros016d109962019-01-07 17:47:19 +0000460
461 unsigned int output_width = 0;
462 unsigned int output_height = 0;
463 std::tie(output_width, output_height) = scaled_dimensions(input_shape[width_idx], input_shape[height_idx],
Usama Arife73686a2019-04-08 17:30:48 +0100464 weights_shape[weights_width_idx], weights_shape[weights_height_idx],
465 conv_info, dilation);
giuros016d109962019-01-07 17:47:19 +0000466
467 TensorShape output_shape{ input_shape };
468 output_shape.set(width_idx, output_width);
469 output_shape.set(height_idx, output_height);
470 output_shape.set(channel_idx, input_shape[channel_idx] * depth_multiplier);
471
472 return output_shape;
473}
474
Michalis Spyroud33fe342019-01-04 17:10:25 +0000475/** Calculate the upsampled output shape used for deconvolution
476 *
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100477 * @param[in] input Input tensor info
478 * @param[in] weights Weights tensor shape
479 * @param[in] sx Stride on x axis
480 * @param[in] sy Stride on y axis
481 * @param[in] out_dims Output shape dimensions
482 * @param[in] padx Padding on x axis
483 * @param[in] pady Padding on y axis
Michalis Spyroud33fe342019-01-04 17:10:25 +0000484 *
485 * @return the calculated shape
486 */
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100487inline TensorShape compute_deconvolution_upsampled_shape(const ITensorInfo &input, const ITensorInfo &weights, unsigned int sx, unsigned int sy,
Manuel Bottini6e10aa32020-04-30 13:28:23 +0100488 std::pair<unsigned int, unsigned int> &out_dims, uint32_t &padx, uint32_t &pady)
Michalis Spyrou780db4e2017-11-23 09:49:51 +0000489{
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100490 const DataLayout data_layout = input.data_layout();
491 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
492 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
493
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100494 // Find the upsampled dimensions
Manuel Bottinic1b76fa2019-06-17 12:04:40 +0100495 unsigned int out_x = (input.dimension(idx_w) - 1) * sx + 1;
496 unsigned int out_y = (input.dimension(idx_h) - 1) * sy + 1;
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100497
498 // Find the padding needed for the convolution with stride 1 in order to match output shape
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100499 padx = out_dims.first - (out_x - weights.dimension(idx_w) + 1);
500 pady = out_dims.second - (out_y - weights.dimension(idx_h) + 1);
Michalis Spyrouafbc5ff2018-10-03 14:18:19 +0100501 out_x += padx;
502 out_y += pady;
503
504 TensorShape scale_out_shape(input.tensor_shape());
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100505 scale_out_shape.set(idx_w, out_x);
506 scale_out_shape.set(idx_h, out_y);
Michalis Spyrou780db4e2017-11-23 09:49:51 +0000507
508 return scale_out_shape;
509}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100510
Michalis Spyroud33fe342019-01-04 17:10:25 +0000511/** Calculate the output shape of the deconvolution layer
512 *
513 * @param[in] out_dims Output x and y shape dimensions
514 * @param[in] input Input tensor info
515 * @param[in] weights Weights tensor shape
516 *
517 * @return the calculated shape
518 */
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100519inline TensorShape compute_deconvolution_output_shape(const std::pair<unsigned int, unsigned int> &out_dims, const ITensorInfo &input, const ITensorInfo &weights)
520{
521 const TensorShape input_shape{ input.tensor_shape() };
522 const TensorShape weights_shape{ weights.tensor_shape() };
523
524 const DataLayout data_layout = input.data_layout();
525 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
526 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
527 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
528 const int batch_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
529
530 TensorShape out_shape{ input_shape };
531 out_shape.set(width_idx, out_dims.first);
532 out_shape.set(height_idx, out_dims.second);
533 out_shape.set(channel_idx, weights_shape[batch_idx]);
534 return out_shape;
535}
536
Michalis Spyroud33fe342019-01-04 17:10:25 +0000537/** Calculate the im2col output shape of a tensor
538 *
539 * @param[in] input Input tensor info
540 * @param[in] kernel_dims The kernel dimensions (width and height).
541 * @param[in] conv_info Contains padding and stride information
542 * @param[in] has_bias In case biases are provided expands the matrix with 1
543 * @param[in] dilation Dilation, in elements, across x and y
544 * @param[in] batch_size_on_z True if batch size is on z axis
545 * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution
546 *
547 * @return the calculated shape
548 */
Giorgio Arena0f170392018-07-18 16:13:12 +0100549inline TensorShape compute_im2col_conv_shape(const ITensorInfo *input, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, bool batch_size_on_z,
550 unsigned int num_groups = 1)
Giorgio Arena156fcf32018-03-09 15:30:43 +0000551{
Giorgio Arena0f170392018-07-18 16:13:12 +0100552 // The output shape will be the 3D shape [ out_channels * kernel_area, num_elems_per_out_channel, batches ] if batch_size_on_z == true
553 // or the 4D shape [ out_channels * kernel_area / num_groups, num_elems_per_out_channel, num_groups, batches ] if batch_size_on_z == false
554
555 ARM_COMPUTE_ERROR_ON(num_groups == 0);
556 ARM_COMPUTE_ERROR_ON(num_groups > 1 && input->data_layout() != DataLayout::NCHW);
557 ARM_COMPUTE_ERROR_ON(num_groups > 1 && batch_size_on_z);
Giorgio Arena156fcf32018-03-09 15:30:43 +0000558
559 TensorShape output_shape{ input->tensor_shape() };
560
561 const DataLayout data_layout = input->data_layout();
562 const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
563 const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
564 const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
565
566 std::pair<unsigned int, unsigned int> out_dims = scaled_dimensions(output_shape[width_idx], output_shape[height_idx], kernel_dims.width, kernel_dims.height, conv_info, dilation);
Giorgio Arena0f170392018-07-18 16:13:12 +0100567 output_shape.set(0, (output_shape[channel_idx] / num_groups * kernel_dims.area() + (has_bias ? 1 : 0))); // NOLINT
Giorgio Arenaf485a102018-04-20 16:06:21 +0100568 output_shape.set(1, (out_dims.first * out_dims.second));
Gian Marco Iodice597a8562018-08-01 15:06:06 +0100569 if(batch_size_on_z && output_shape.num_dimensions() >= 3)
570 {
571 output_shape.remove_dimension(2);
572 }
573 else
574 {
Giorgio Arena0f170392018-07-18 16:13:12 +0100575 output_shape.set(2, num_groups);
Gian Marco Iodice597a8562018-08-01 15:06:06 +0100576 }
Giorgio Arena156fcf32018-03-09 15:30:43 +0000577
578 return output_shape;
579}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100580
Michalis Spyroud33fe342019-01-04 17:10:25 +0000581/** Calculate the flattened output shape of a tensor
582 *
583 * @param[in] input Input tensor info
584 *
585 * @return the calculated shape
586 */
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100587inline TensorShape compute_flatten_shape(const ITensorInfo *input)
Ioan-Cristian Szabob4e3e1c2017-11-30 17:17:17 +0000588{
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100589 // The output shape will be the flatten version of the input (i.e. [ width * height * channels, num_batches, ... ] ). Used for FlattenLayer and FullyConnectedLayer.
590
Ioan-Cristian Szabob4e3e1c2017-11-30 17:17:17 +0000591 TensorShape output_shape{ input->tensor_shape() };
592
Gian Marco Iodice215b4ea2018-06-28 16:29:29 +0100593 output_shape.collapse(3);
Giorgio Arena156fcf32018-03-09 15:30:43 +0000594
595 return output_shape;
596}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100597
Michalis Spyroud33fe342019-01-04 17:10:25 +0000598/** Calculate the softmax output shape of a tensor
599 *
600 * @param[in] input Input tensor info
601 * @param[in] axis (Optional) Softmax axis
602 *
603 * @return the calculated shape
604 */
giuros01efbf6c82018-09-03 09:53:53 +0100605inline TensorShape compute_softmax_shape(const ITensorInfo *input, size_t axis = 1)
606{
607 // The output shape will be a 2D version of the input. For instance:
608 // - [x,y,z] and axis 1 will return [x, y*z]
609 // - [x,y,z,w] and axis 2 will return [x*y, w*z]
610 // - [x,y,z,w] and axis 3 will return [x*y*z, w]
611 TensorShape shape2D = input->tensor_shape();
612
613 if(axis < input->num_dimensions())
614 {
615 // Collapse from axis onward (this changes the shape)
616 shape2D.collapse_from(axis);
617
618 // Collapse the rest (collapse is inclusive)
619 shape2D.collapse(shape2D.num_dimensions() - 1);
620 }
621 else
622 {
623 // Collapse everything
624 shape2D.collapse(shape2D.num_dimensions());
625 }
626
627 if(axis == 0)
628 {
629 // If axis is zero the first dim should be one. Since
630 // collapse is an inclusive operation we need to shift
631 shape2D.shift_right(1);
632 }
633
634 return shape2D;
635}
636
Michalis Spyroud33fe342019-01-04 17:10:25 +0000637/** Calculate the winograd filter transform shape
638 *
639 * @param[in] input Input tensor info
640 * @param[in] winograd_info Winograd information
641 *
642 * @return the calculated shape
643 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000644inline TensorShape compute_winograd_filter_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000645{
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000646 TensorShape tensor_shape{ input.tensor_shape() };
647
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000648 const Size2D kernel_size = winograd_info.kernel_size;
649 const Size2D output_tile_size = winograd_info.output_tile_size;
650 const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);
Giorgio Arena2d9de0a2018-03-15 17:58:20 +0000651
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000652 tensor_shape.remove_dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH));
653 tensor_shape.set(Window::DimX, input.dimension(3));
654 tensor_shape.set(Window::DimY, input.dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL)));
655 tensor_shape.set(Window::DimZ, input_tile_size.area());
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000656
657 return tensor_shape;
658}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100659
Michalis Spyroud33fe342019-01-04 17:10:25 +0000660/** Calculate the winograd input transform shape
661 *
662 * @param[in] input Input tensor info
663 * @param[in] winograd_info Winograd information
664 *
665 * @return the calculated shape
666 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000667inline TensorShape compute_winograd_input_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000668{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000669 const PadStrideInfo conv_info = winograd_info.convolution_info;
670 const Size2D kernel_size = winograd_info.kernel_size;
671 const Size2D output_tile_size = winograd_info.output_tile_size;
672 const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);
673
Giorgio Arenac42f28d2018-04-26 11:33:05 +0100674 const size_t idx_w = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
675 const size_t idx_h = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
676 const size_t idx_c = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000677
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100678 // Compute the number of output tiles along the x and y direction of size "output_tile_size"
679 const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input.tensor_shape()[idx_w], input.tensor_shape()[idx_h]),
680 kernel_size,
681 output_tile_size,
682 conv_info);
Giorgio Arenac42f28d2018-04-26 11:33:05 +0100683
684 const unsigned int width = input.tensor_shape()[idx_c];
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100685 const unsigned int height = num_tiles.area();
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000686 const unsigned int depth = input_tile_size.area();
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000687
688 TensorShape output_shape{ input.tensor_shape() };
689 output_shape.set(0, width);
690 output_shape.set(1, height);
691 output_shape.set(2, depth);
692
693 return output_shape;
694}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100695
Michalis Spyroud33fe342019-01-04 17:10:25 +0000696/** Calculate the winograd output transform shape
697 *
698 * @param[in] input Input tensor info
699 * @param[in] winograd_info Winograd information
700 *
701 * @return the calculated shape
702 */
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000703inline TensorShape compute_winograd_output_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000704{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000705 const PadStrideInfo conv_info = winograd_info.convolution_info;
706 const Size2D kernel_size = winograd_info.kernel_size;
707 const Size2D input_dimensions = winograd_info.input_dimensions;
708 const DataLayout data_layout = winograd_info.output_data_layout;
709
710 // Compute output shape
711 unsigned int output_width = 0;
712 unsigned int output_height = 0;
713 std::tie(output_width, output_height) = scaled_dimensions(input_dimensions.width, input_dimensions.height,
714 kernel_size.width, kernel_size.height, conv_info);
715
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000716 TensorShape tensor_shape{ input.tensor_shape() };
717
718 // Output dimension
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000719 const unsigned int out_w = output_width;
720 const unsigned int out_h = output_height;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000721 const unsigned int out_c = input.dimension(0);
722
723 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH), out_w);
724 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT), out_h);
725 tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL), out_c);
726
727 return tensor_shape;
728}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100729
Michalis Spyroud33fe342019-01-04 17:10:25 +0000730/** Calculate the deep convolution shape output shape of a tensor
731 *
732 * @param[in] input Input tensor info
733 * @param[in] weights Weights tensor info
734 * @param[in] conv_info Contains padding and stride information
735 *
736 * @return the calculated shape
737 */
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000738inline TensorShape compute_deep_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info)
739{
740 const TensorShape input_shape{ input.tensor_shape() };
741 const TensorShape weights_shape{ weights.tensor_shape() };
742
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000743 const size_t idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
744 const size_t idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
745 const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);
746
Giorgio Arenac0f54432018-03-16 14:02:34 +0000747 const unsigned int input_width = input_shape[idx_width];
748 const unsigned int input_height = input_shape[idx_height];
749 const unsigned int weights_width = weights_shape[idx_width];
750 const unsigned int weights_height = weights_shape[idx_height];
751 const unsigned int weights_out_channel = weights_shape[3];
752 unsigned int output_width = 0;
753 unsigned int output_height = 0;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000754 std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, weights_width, weights_height, conv_info);
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000755
756 TensorShape output_shape{ input_shape };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000757 output_shape.set(idx_width, output_width);
758 output_shape.set(idx_height, output_height);
Giorgio Arenac0f54432018-03-16 14:02:34 +0000759 output_shape.set(idx_channel, weights_out_channel);
Georgios Pinitasd8734b52017-12-22 15:27:52 +0000760
761 return output_shape;
762}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100763
Michalis Spyroud33fe342019-01-04 17:10:25 +0000764/** Calculate the min/max shape output shape of a tensor
765 *
766 * @param[in] input Input tensor info
767 *
768 * @return the calculated shape
769 */
Alex Gilday60954c62018-03-05 16:22:48 +0000770inline TensorShape compute_min_max_shape(const ITensorInfo *input)
771{
772 TensorShape output_shape{ input->tensor_shape() };
773 output_shape.set(Window::DimX, 2);
774 output_shape.remove_dimension(1);
775 output_shape.remove_dimension(1);
776
777 return output_shape;
778}
779
Michalis Spyroud33fe342019-01-04 17:10:25 +0000780/** Calculate the output pool shape of a tensor
781 *
782 * @param[in] input Input tensor info
783 * @param[in] pool_info Pooling layer info
784 *
785 * @return the calculated shape
786 */
Michalis Spyroue74b2012018-04-18 09:49:16 +0100787inline TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
788{
789 unsigned int pooled_w = 0;
790 unsigned int pooled_h = 0;
791
Giorgio Arena3c520c52018-05-01 11:47:24 +0100792 TensorShape output_shape{ input.tensor_shape() };
Michalis Spyroue74b2012018-04-18 09:49:16 +0100793
Sang-Hoon Park0cb3da62020-01-15 12:39:56 +0000794 const bool is_global_pooling = pool_info.is_global_pooling;
Giorgio Arena3c520c52018-05-01 11:47:24 +0100795 const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
796 const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
Sang-Hoon Park0cb3da62020-01-15 12:39:56 +0000797 const unsigned int pool_size_x = is_global_pooling ? output_shape[idx_width] : pool_info.pool_size.width;
798 const unsigned int pool_size_y = is_global_pooling ? output_shape[idx_height] : pool_info.pool_size.height;
Giorgio Arena3c520c52018-05-01 11:47:24 +0100799
800 std::tie(pooled_w, pooled_h) = scaled_dimensions(output_shape[idx_width],
801 output_shape[idx_height],
Michalis Spyroue74b2012018-04-18 09:49:16 +0100802 pool_size_x,
803 pool_size_y,
Sang-Hoon Park0cb3da62020-01-15 12:39:56 +0000804 pool_info.pad_stride_info);
Michalis Spyroue74b2012018-04-18 09:49:16 +0100805
Giorgio Arena3c520c52018-05-01 11:47:24 +0100806 output_shape.set(idx_width, pooled_w);
807 output_shape.set(idx_height, pooled_h);
Michalis Spyroue74b2012018-04-18 09:49:16 +0100808
809 return output_shape;
810}
811
morgolock37722d92020-04-09 14:17:48 +0100812/** Calculate the output unpool shape of a tensor
813 *
814 * @param[in] input Input tensor info
815 * @param[in] pool_info Pooling layer info
816 *
817 * @return the calculated shape
818 */
819inline TensorShape compute_unpool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
820{
821 const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
822 const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
823 const TensorShape input_shape = input.tensor_shape();
824 ARM_COMPUTE_ERROR_ON(input_shape[idx_height] <= 1 || input_shape[idx_width] <= 1);
825 const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
826 const unsigned int stride_x = pad_stride_info.stride().first;
827 const unsigned int stride_y = pad_stride_info.stride().second;
828
829 const int pad_left = pad_stride_info.pad_left();
830 const int pad_top = pad_stride_info.pad_top();
831 const int pad_right = pad_stride_info.pad_right();
832 const int pad_bottom = pad_stride_info.pad_bottom();
833
834 TensorShape output_shape = input_shape;
835 const unsigned int out_width = (input_shape[idx_width] - 1) * stride_x - pad_left - pad_right + pool_info.pool_size.width;
836 const unsigned int out_height = (input_shape[idx_height] - 1) * stride_y - pad_top - pad_bottom + pool_info.pool_size.height;
837
838 output_shape.set(idx_width, out_width);
839 output_shape.set(idx_height, out_height);
840 return output_shape;
841}
842
George Wort44b4e972019-01-08 11:41:54 +0000843/** Calculate the output roi align shape of a tensor
844 *
845 * @param[in] input Input tensor info
846 * @param[in] rois Rois tensor info
847 * @param[in] pool_info Pooling layer info
848 *
849 * @return the calculated shape
850 */
851inline TensorShape compute_roi_align_shape(const ITensorInfo &input, const ITensorInfo &rois, ROIPoolingLayerInfo pool_info)
852{
853 TensorShape output_shape{ input.tensor_shape() };
854
855 const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
856 const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
857
858 output_shape.set(idx_width, pool_info.pooled_width());
859 output_shape.set(idx_height, pool_info.pooled_height());
860 output_shape.set(3, rois.dimension(1));
861
862 return output_shape;
863}
864
Michalis Spyroud33fe342019-01-04 17:10:25 +0000865/** Calculate the RNN shape of a tensor
866 *
867 * @param[in] input Input tensor info
868 * @param[in] batch_size Batch size
869 *
870 * @return the calculated shape
871 */
Michalis Spyrou36a559e2018-03-20 10:30:58 +0000872inline TensorShape compute_rnn_shape(const ITensorInfo *input, const unsigned int batch_size)
873{
874 TensorShape output_shape{ input->tensor_shape() };
875 output_shape.set(1, batch_size);
876
877 return output_shape;
878}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100879
Michalis Spyroud33fe342019-01-04 17:10:25 +0000880/** Calculate the matrix multiplication output shape of two tensors
881 *
882 * @param[in] input0 First input tensor info
883 * @param[in] input1 Second input tensor info
884 * @param[in] is_interleaved_transposed True if the input is interleaved transposed
885 * @param[in] reshape_info GEMM reshape info
886 *
887 * @return the calculated shape
888 */
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100889inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
890{
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000891 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100892 ARM_COMPUTE_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The first input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100893
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100894 const bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000895 const bool reinterpret_output_as_3d = reshape_info.depth_output_gemm3d() != 0;
896 const int depth_output_gemm3d = reinterpret_output_as_3d ? reshape_info.depth_output_gemm3d() : 1;
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100897 const int m = reshape_info.reinterpret_input_as_3d() ? input0.dimension(1) * input0.dimension(2) : input0.dimension(1);
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000898
899 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
900 // dimension of the output tensor
901 const int dim0 = is_interleaved_transposed ? reshape_info.n() : input1.dimension(0);
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000902 const int dim1 = is_interleaved_transposed ? reshape_info.m() / depth_output_gemm3d : m / depth_output_gemm3d;
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100903 const int dim2 = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
904 const int dim3 = reinterpret_input_as_3d ? 1 : input0.tensor_shape()[3];
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000905
906 TensorShape output_shape{ input0.tensor_shape() };
907
908 output_shape.set(0, dim0);
909 output_shape.set(1, dim1);
Gian Marco Iodice3139f032018-11-05 14:26:32 +0000910 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : dim2);
Gian Marco Iodice68a3f562018-07-26 11:44:03 +0100911 output_shape.set(3, reinterpret_output_as_3d ? dim2 : dim3);
912 output_shape.set(4, reinterpret_output_as_3d ? dim3 : 1);
Isabella Gottardi8e74f442018-03-01 16:42:00 +0000913
914 return output_shape;
Gian Marco Iodice750641d2018-05-08 12:01:57 +0100915}
Georgios Pinitase1a352c2018-09-03 12:42:19 +0100916
Michalis Spyroud33fe342019-01-04 17:10:25 +0000917/** Calculate the matrix multiplication output shape of two tensors
918 *
919 * @param[in] input0 First input tensor info
920 * @param[in] input1 Second input tensor info
921 * @param[in] gemm_info GEMM reshape info
922 *
923 * @return the calculated shape
924 */
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000925inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMReshapeInfo &gemm_info)
926{
Michalis Spyrou6bff1952019-10-02 17:22:11 +0100927 ARM_COMPUTE_UNUSED(input1);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000928 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
929
Gian Marco Iodice926afe12019-03-19 11:44:13 +0000930 const bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000931 const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d() != 0;
932 const int depth_output_gemm3d = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d() : 1;
933
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000934 TensorShape output_shape{ input0.tensor_shape() };
935
Vidhya Sudhan Loganathanae1a89e2019-05-03 09:13:55 +0100936 if(!reinterpret_input_as_3d && !reinterpret_output_as_3d)
937 {
938 output_shape.set(0, gemm_info.n());
939 output_shape.set(1, gemm_info.m());
940 }
941 else
942 {
943 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
944 // dimension of the output tensor
945 const int batch_size = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
946 output_shape.set(0, gemm_info.n());
947 output_shape.set(1, gemm_info.m() / depth_output_gemm3d);
948 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : batch_size);
949 output_shape.set(3, reinterpret_output_as_3d ? batch_size : 1);
950 }
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000951
952 return output_shape;
953}
954
Michalis Spyroud33fe342019-01-04 17:10:25 +0000955/** Calculate the matrix multiplication output shape of two tensors
956 *
Gian Marco Iodice7026b302019-06-26 17:18:11 +0100957 * @param[in] input0 First input tensor info
958 * @param[in] input1 Second input tensor info
959 * @param[in] gemm_info GEMM kernel info used to retrieve the original dimensions of the input matrices
960 *
961 * @return the calculated shape
962 */
963inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMKernelInfo &gemm_info)
964{
Michalis Spyrou6bff1952019-10-02 17:22:11 +0100965 ARM_COMPUTE_UNUSED(input1);
Gian Marco Iodice7026b302019-06-26 17:18:11 +0100966 ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
967
968 const bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
969 const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
970 const unsigned int depth_output_gemm3d = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d : 1;
971
972 TensorShape output_shape{ input0.tensor_shape() };
973
974 if(!reinterpret_input_as_3d && !reinterpret_output_as_3d)
975 {
976 output_shape.set(0, gemm_info.n);
977 output_shape.set(1, gemm_info.m);
978 }
979 else
980 {
981 // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
982 // dimension of the output tensor
983 const unsigned int batch_size = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
984 output_shape.set(0, gemm_info.n);
985 output_shape.set(1, gemm_info.m / depth_output_gemm3d);
986 output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : batch_size);
987 output_shape.set(3, reinterpret_output_as_3d ? batch_size : 1);
988 }
989
990 return output_shape;
991}
992
993/** Calculate the matrix multiplication output shape of two tensors
994 *
Michalis Spyroud33fe342019-01-04 17:10:25 +0000995 * @param[in] input Input tensor info
996 * @param[in] gemm_3d_depth (Optional) GEMM 3d depth
997 * @param[in] batch_size_on_z (Optional) True if batch size is on z axis
998 *
999 * @return the calculated shape
1000 */
Georgios Pinitas932491f2018-09-21 16:33:15 +01001001inline TensorShape compute_output_stage_shape(const ITensorInfo &input, unsigned int gemm_3d_depth = 1, bool batch_size_on_z = false)
Georgios Pinitas041f36d2018-09-18 18:38:37 +01001002{
1003 ARM_COMPUTE_ERROR_ON(input.data_layout() != DataLayout::NHWC && gemm_3d_depth > 1);
1004
1005 TensorShape output_shape = input.tensor_shape();
1006 if(gemm_3d_depth > 1)
1007 {
Georgios Pinitas932491f2018-09-21 16:33:15 +01001008 if(batch_size_on_z)
1009 {
1010 output_shape.shift_right(1);
1011 }
Georgios Pinitas041f36d2018-09-18 18:38:37 +01001012 output_shape.set(0, input.tensor_shape().x());
1013 output_shape.set(1, input.tensor_shape().y() / gemm_3d_depth);
1014 output_shape.set(2, gemm_3d_depth);
1015 }
1016
1017 return output_shape;
1018}
1019
Michalis Spyroud33fe342019-01-04 17:10:25 +00001020/** Calculate the strided slice output shape of a tensor
1021 *
1022 * @param[in] input Input tensor info
1023 * @param[in] starts The starts of the dimensions of the input tensor to be sliced
1024 * @param[in] ends The ends of the dimensions of the input tensor to be sliced
1025 * @param[in] strides The strides of the dimensions of the input tensor to be sliced
1026 * @param[in] begin_mask If the ith bit of begin_mask is set, starts[i] is ignored and the fullest possible range in that dimension is used instead.
1027 * @param[in] end_mask If the ith bit of end_mask is set, ends[i] is ignored and the fullest possible range in that dimension is used instead.
1028 * @param[in] shrink_axis_mask If the ith bit of shrink_axis_mask is set, it implies that the ith specification shrinks the dimensionality by 1
1029 *
1030 * @return the calculated shape
1031 */
Georgios Pinitas77589b52018-08-21 14:41:35 +01001032inline TensorShape compute_strided_slice_shape(const ITensorInfo &input,
1033 const Coordinates &starts, const Coordinates &ends, const Coordinates &strides,
1034 int32_t begin_mask, int32_t end_mask, int32_t shrink_axis_mask)
1035{
1036 using namespace arm_compute::helpers::tensor_transform;
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001037 return compute_strided_slice_output_shape(input.tensor_shape(), starts, ends, strides, begin_mask, end_mask, shrink_axis_mask);
1038}
Georgios Pinitas77589b52018-08-21 14:41:35 +01001039
Michalis Spyroud33fe342019-01-04 17:10:25 +00001040/** Calculate the slice output shape of a tensor
1041 *
1042 * @param[in] input_shape Input tensor info
1043 * @param[in] starts The starts of the dimensions of the input tensor to be sliced
1044 * @param[in] ends The ends of the dimensions of the input tensor to be sliced
1045 *
1046 * @return the calculated shape
1047 */
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001048inline TensorShape compute_slice_shape(const TensorShape &input_shape, const Coordinates &starts, const Coordinates &ends)
1049{
1050 using namespace arm_compute::helpers::tensor_transform;
Georgios Pinitas77589b52018-08-21 14:41:35 +01001051
Georgios Pinitasb4af2c62018-12-10 18:45:35 +00001052 return compute_strided_slice_output_shape(input_shape,
1053 starts, ends, BiStrides(),
1054 0, construct_slice_end_mask(ends), 0);
Georgios Pinitas77589b52018-08-21 14:41:35 +01001055}
Georgios Pinitase1a352c2018-09-03 12:42:19 +01001056
Michalis Spyroud33fe342019-01-04 17:10:25 +00001057/** Calculate the batch to space output shape of a tensor
1058 *
1059 * @param[in] input Input tensor info
1060 * @param[in] block_x Block shape x value
1061 * @param[in] block_y Block shape y value
1062 *
1063 * @return the calculated shape
1064 */
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001065inline TensorShape compute_batch_to_space_shape(const ITensorInfo *input, const int block_x, const int block_y)
1066{
1067 ARM_COMPUTE_ERROR_ON(block_x <= 0 || block_y <= 0);
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001068
1069 const DataLayout data_layout = input->data_layout();
1070 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1071 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001072 const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001073
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001074 TensorShape output_shape{ input->tensor_shape() };
Michalis Spyrouf1addb62018-09-11 11:16:47 +01001075 output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_x);
1076 output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_y);
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001077 output_shape.set(idx_batch, input->tensor_shape()[idx_batch] / (block_x * block_y));
Michalis Spyrou6a8d3b62018-08-31 10:07:09 +01001078
1079 return output_shape;
1080}
Georgios Pinitas77589b52018-08-21 14:41:35 +01001081
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001082/** Calculate the depth to space output shape of a tensor
1083 *
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001084 * @param[in] input_shape Input tensor shape
1085 * @param[in] data_layout Operation data layout
1086 * @param[in] block Block shape value
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001087 *
1088 * @return the calculated shape
1089 */
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001090inline TensorShape compute_depth_to_space_shape(const TensorShape &input_shape, DataLayout data_layout, int block)
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001091{
1092 ARM_COMPUTE_ERROR_ON(block < 2);
1093
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001094 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1095 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1096 const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001097
Georgios Pinitas8a14b2c2020-09-04 20:20:56 +01001098 TensorShape output_shape{ input_shape };
1099 output_shape.set(idx_width, input_shape[idx_width] * block);
1100 output_shape.set(idx_height, input_shape[idx_height] * block);
1101 output_shape.set(idx_channel, input_shape[idx_channel] / (block * block));
Michalis Spyrou22f917c2019-05-21 13:30:10 +01001102
1103 return output_shape;
1104}
1105
Michalis Spyroud33fe342019-01-04 17:10:25 +00001106/** Calculate the split output shape of a tensor
1107 *
1108 * @param[in] input Input tensor info
1109 * @param[in] axis Axis on which to split the input
1110 * @param[in] num_splits Number of splits
1111 *
1112 * @return the calculated shape
1113 */
Georgios Pinitase1a352c2018-09-03 12:42:19 +01001114inline TensorShape compute_split_shape(const ITensorInfo *input, unsigned int axis, unsigned int num_splits)
1115{
1116 TensorShape empty_shape;
1117 empty_shape.set(0, 0);
1118
1119 TensorShape out_shape{ input->tensor_shape() };
1120
1121 // Return empty shape if axis is invalid
1122 if(axis > input->tensor_shape().num_dimensions())
1123 {
1124 return empty_shape;
1125 }
1126
1127 size_t axis_size = out_shape[axis];
1128
1129 // Return empty shape if num_split is not valid
1130 if(axis_size % num_splits)
1131 {
1132 return empty_shape;
1133 }
1134
1135 out_shape[axis] = axis_size / num_splits;
1136 return out_shape;
1137}
1138
Michalis Spyroud33fe342019-01-04 17:10:25 +00001139/** Calculate the space to batch output shape of a tensor
1140 *
1141 * @param[in] input Input tensor info
1142 * @param[in] block_x Block shape x value
1143 * @param[in] block_y Block shape y value
1144 * @param[in] padding_left Left padding values
1145 * @param[in] padding_right Right padding values
1146 *
1147 * @return the calculated shape
1148 */
Michalis Spyrou16934a52018-08-21 18:03:58 +01001149inline TensorShape compute_space_to_batch_shape(const ITensorInfo *input, const int block_x, const int block_y, const Size2D &padding_left, const Size2D &padding_right)
1150{
1151 TensorShape output_shape{ input->tensor_shape() };
Michalis Spyrou13a51e12018-09-18 13:09:30 +01001152
1153 const DataLayout data_layout = input->data_layout();
1154 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1155 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1156 const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
1157
SiCong Li18bdfae2020-11-08 21:58:01 +00001158 ARM_COMPUTE_ERROR_ON((input->tensor_shape()[idx_width] + padding_left.x() + padding_right.x()) % block_x != 0);
1159 ARM_COMPUTE_ERROR_ON((input->tensor_shape()[idx_height] + padding_left.y() + padding_right.y()) % block_y != 0);
1160
1161 output_shape.set(idx_width, (input->tensor_shape()[idx_width] + padding_left.x() + padding_right.x()) / block_x);
1162 output_shape.set(idx_height, (input->tensor_shape()[idx_height] + padding_left.y() + padding_right.y()) / block_y);
1163 output_shape.set(idx_batch, input->tensor_shape()[idx_batch] * block_x * block_y);
Michalis Spyrou16934a52018-08-21 18:03:58 +01001164
1165 return output_shape;
1166}
Pablo Tello32521432018-11-15 14:43:10 +00001167
Manuel Bottini5b7d5372019-05-17 14:04:22 +01001168/** Calculate the space to batch output shape of a tensor
1169 *
1170 * @param[in] input Input tensor info
1171 * @param[in] block_shape Block shape value
1172 *
1173 * @return the calculated shape
1174 */
1175inline TensorShape compute_space_to_depth_shape(const ITensorInfo *input, int32_t block_shape)
1176{
1177 TensorShape output_shape{ input->tensor_shape() };
1178
1179 const DataLayout data_layout = input->data_layout();
1180 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1181 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1182 const int idx_depth = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
1183
1184 output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_shape);
1185 output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_shape);
1186 output_shape.set(idx_depth, input->tensor_shape()[idx_depth] / (block_shape * block_shape));
1187
1188 return output_shape;
1189}
1190
Michalis Spyroud33fe342019-01-04 17:10:25 +00001191/** Calculate the prior box output shape of a tensor
1192 *
1193 * @param[in] input Input tensor info
1194 * @param[in] info PriorBoxLayer info
1195 *
1196 * @return the calculated shape
1197 */
Michalis Spyrou6c7c38e2018-08-29 16:28:11 +01001198inline TensorShape compute_prior_box_shape(const ITensorInfo &input, const PriorBoxLayerInfo &info)
1199{
1200 DataLayout data_layout = input.data_layout();
1201 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1202 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Pablo Tello32521432018-11-15 14:43:10 +00001203 const int num_priors = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size();
Michalis Spyrou6c7c38e2018-08-29 16:28:11 +01001204
1205 TensorShape output_shape{};
1206 output_shape.set(0, input.dimension(idx_w) * input.dimension(idx_h) * num_priors * 4);
1207 output_shape.set(1, 2);
1208
1209 return output_shape;
1210}
Michalis Spyrou16934a52018-08-21 18:03:58 +01001211
Michalis Spyroud33fe342019-01-04 17:10:25 +00001212/** Calculate the padded shape of a tensor
1213 *
1214 * @param[in] input_shape Input tensor shape
1215 * @param[in] padding Paddings list
1216 *
1217 * @return the calculated shape
1218 */
Giuseppe Rossinid7647d42018-07-17 18:13:13 +01001219inline TensorShape compute_padded_shape(const TensorShape &input_shape, const PaddingList &padding)
1220{
1221 TensorShape padded_shape = input_shape;
1222 for(size_t dim = 0; dim < padding.size(); ++dim)
1223 {
Georgios Pinitasdea2d2d2018-12-19 16:23:17 +00001224 const auto &padding_pair = padding[dim];
1225 const uint32_t shape_on_index = (padded_shape.num_dimensions() <= dim) ? 1 : input_shape[dim];
1226 padded_shape.set(dim, padding_pair.first + shape_on_index + padding_pair.second);
Giuseppe Rossinid7647d42018-07-17 18:13:13 +01001227 }
1228 return padded_shape;
1229}
1230
Michalis Spyroud33fe342019-01-04 17:10:25 +00001231/** Calculate the tiled shape of a tensor
1232 *
1233 * @param[in] input_shape Input tensor shape
1234 * @param[in] multiples Paddings list
1235 *
1236 * @return the calculated shape
1237 */
giuros013175fcf2018-11-21 09:59:17 +00001238inline TensorShape compute_tiled_shape(const TensorShape &input_shape, const Multiples &multiples)
1239{
1240 TensorShape tiled_shape = input_shape;
1241 for(size_t dim = 0; dim < multiples.size(); ++dim)
1242 {
1243 tiled_shape.set(dim, input_shape[dim] * multiples[dim]);
1244 }
1245 return tiled_shape;
1246}
1247
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001248/** Calculate the reduced shape of a tensor given an axis
1249 *
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001250 * @param[in] input Input tensor info
1251 * @param[in] axis Axis on which to perform reduction
1252 * @param[in] keep_dims (Optional) Whether to keep the dimension after reduction operation. Defaults to true.
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001253 *
1254 * @return the calculated shape
1255 */
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001256inline TensorShape compute_reduced_shape(const TensorShape &input, unsigned int axis, bool keep_dims = true)
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001257{
1258 TensorShape output_shape{ input };
Sang-Hoon Park2697fd82019-10-15 16:49:24 +01001259
1260 if(!keep_dims)
1261 {
1262 output_shape.remove_dimension(axis);
1263 }
1264 else
1265 {
1266 output_shape.set(axis, 1);
1267 }
Michalis Spyrouaea14c62019-01-03 11:10:25 +00001268
1269 return output_shape;
1270}
1271
Michalis Spyroud33fe342019-01-04 17:10:25 +00001272/** Calculate the upsampled shape of a tensor
1273 *
1274 * @param[in] input Input tensor info
1275 * @param[in] info Contains stride information (x and y)
1276 *
1277 * @return the calculated shape
1278 */
Michalis Spyrouceb889e2018-09-17 18:24:41 +01001279inline TensorShape compute_upsample_shape(const ITensorInfo &input, const Size2D &info)
1280{
1281 const DataLayout data_layout = input.data_layout();
1282 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
1283 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
1284
1285 TensorShape scale_out_shape(input.tensor_shape());
1286 const unsigned int out_x = input.dimension(idx_width) * info.x();
1287 const unsigned int out_y = input.dimension(idx_height) * info.y();
1288 scale_out_shape.set(idx_width, out_x);
1289 scale_out_shape.set(idx_height, out_y);
1290
1291 return scale_out_shape;
1292}
1293
Michalis Spyroud33fe342019-01-04 17:10:25 +00001294/** Get the tensor shape
1295 *
1296 * @param[in] data Input data
1297 *
1298 * @return the extracted tensor shape
1299 */
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001300template <typename T>
Georgios Pinitase2220552018-07-20 13:23:44 +01001301inline TensorShape extract_shape(T *data)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001302{
Georgios Pinitase2220552018-07-20 13:23:44 +01001303 return data->info()->tensor_shape();
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001304}
1305
John Kesapidescafec8f2019-02-19 15:53:59 +00001306inline TensorShape extract_shape(ITensorInfo *data)
John Kesapides917959c2019-02-04 12:37:29 +00001307{
1308 return data->tensor_shape();
1309}
John Kesapidescafec8f2019-02-19 15:53:59 +00001310inline TensorShape extract_shape(const ITensorInfo *data)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001311{
Georgios Pinitase2220552018-07-20 13:23:44 +01001312 return data->tensor_shape();
1313}
1314
1315inline TensorShape extract_shape(const TensorShape *data)
1316{
1317 return *data;
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001318}
1319
Michalis Spyroua9c44722019-04-05 17:18:36 +01001320inline TensorShape extract_shape(TensorShape *data)
1321{
1322 return *data;
1323}
1324
Michalis Spyroud33fe342019-01-04 17:10:25 +00001325/** Calculate the unstack shape of a tensor
1326 *
1327 * @param[in] input_shape Input tensor shape
1328 * @param[in] axis Axis on which to perform the unstack operation
1329 *
1330 * @return the calculated shape
1331 */
Pablo Tello54303692018-11-22 16:14:36 +00001332inline TensorShape calculate_unstack_shape(TensorShape input_shape, unsigned int axis)
1333{
1334 ARM_COMPUTE_ERROR_ON(axis > input_shape.num_dimensions());
1335 input_shape.remove_dimension(axis);
1336 return input_shape;
1337}
1338
Pablo Tello3dd5b682019-03-04 14:14:02 +00001339/** Calculate the concatenate output shape of the concatenate operation along a single axis
Michalis Spyroud33fe342019-01-04 17:10:25 +00001340 *
Pablo Tello3dd5b682019-03-04 14:14:02 +00001341 * @param[in] input Vector containing the shapes of the inputs
1342 * @param[in] axis Axis along which to concatenate the input tensors
Michalis Spyroud33fe342019-01-04 17:10:25 +00001343 *
1344 * @return the calculated shape
1345 */
Georgios Pinitase29acf12018-07-16 14:40:09 +01001346template <typename T>
Pablo Tello3dd5b682019-03-04 14:14:02 +00001347inline TensorShape calculate_concatenate_shape(const std::vector<T *> &input, size_t axis)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001348{
Pablo Tello3dd5b682019-03-04 14:14:02 +00001349 TensorShape out_shape = extract_shape(input[0]);
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001350
Georgios Pinitasdcd949d2019-04-17 11:04:28 +01001351#if defined(ARM_COMPUTE_ASSERTS_ENABLED)
Michalis Spyroua9c44722019-04-05 17:18:36 +01001352 // All dimensions must match except the axis one
1353 for(unsigned int i = 0; i < MAX_DIMS; ++i)
1354 {
1355 if(i == axis)
1356 {
1357 continue;
1358 }
1359
1360 for(const auto &tensor : input)
1361 {
1362 ARM_COMPUTE_ERROR_ON(tensor == nullptr);
1363 const TensorShape shape = extract_shape(tensor);
1364 ARM_COMPUTE_ERROR_ON(out_shape[i] != shape[i]);
1365 }
1366 }
Georgios Pinitasdcd949d2019-04-17 11:04:28 +01001367#endif // defined(ARM_COMPUTE_ASSERTS_ENABLED)
Michalis Spyroua9c44722019-04-05 17:18:36 +01001368
1369 // Calculate output shape
Pablo Tello3dd5b682019-03-04 14:14:02 +00001370 size_t new_size = 0;
1371 for(const auto &tensor : input)
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001372 {
Georgios Pinitase2220552018-07-20 13:23:44 +01001373 const TensorShape shape = extract_shape(tensor);
Pablo Tello3dd5b682019-03-04 14:14:02 +00001374 new_size += shape[axis];
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001375 }
1376
Pablo Tello3dd5b682019-03-04 14:14:02 +00001377 out_shape.set(axis, new_size);
Michalis Spyrou55b3d122018-05-09 09:59:23 +01001378
1379 return out_shape;
1380}
Michalis Spyroud33fe342019-01-04 17:10:25 +00001381/** Calculate the stack output shape of a tensor
1382 *
1383 * @param[in] a Input tensor info
1384 * @param[in] axis Axis on which to perform the stack operation
1385 * @param[in] num_tensors Number of tensors to stack
1386 *
1387 * @return the calculated shape
1388 */
Gian Marco Iodice8aa985e2018-11-27 15:58:08 +00001389inline TensorShape compute_stack_shape(const ITensorInfo &a, unsigned int axis, unsigned int num_tensors)
1390{
1391 ARM_COMPUTE_ERROR_ON(axis > a.num_dimensions());
1392 ARM_COMPUTE_ERROR_ON(a.num_dimensions() > 4);
1393
1394 TensorShape shape_out{ a.tensor_shape() };
1395 shape_out.set(axis, num_tensors);
1396
1397 unsigned int i_shift = 0;
1398
1399 for(unsigned int i = 0; i < a.num_dimensions(); ++i)
1400 {
1401 if(i == axis)
1402 {
1403 i_shift++;
1404 }
1405
1406 shape_out.set(i + i_shift, a.tensor_shape()[i]);
1407 }
1408 return shape_out;
1409}
Manuel Bottini8529bd62018-11-21 11:53:04 +00001410
1411inline TensorShape compute_gather_shape(const TensorShape &input_shape, const TensorShape &indices_shape, uint32_t actual_axis)
1412{
1413 ARM_COMPUTE_ERROR_ON(indices_shape.num_dimensions() > 1);
1414 ARM_COMPUTE_ERROR_ON(input_shape.num_dimensions() > 4);
1415 ARM_COMPUTE_ERROR_ON(actual_axis >= input_shape.num_dimensions());
1416
1417 TensorShape output_shape = input_shape;
1418 output_shape[actual_axis] = indices_shape[0];
1419
1420 return output_shape;
1421}
Georgios Pinitas358ca202017-12-07 16:47:52 +00001422} // namespace shape_calculator
1423} // namespace misc
1424} // namespace arm_compute
Michalis Spyrouf4643372019-11-29 16:17:13 +00001425#endif /* ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H */