blob: 94bbc10ad867999d5c02ae84e787c5501c12b286 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
Murray Kornelsen926f5022022-07-13 21:22:39 -04002 * Copyright (c) 2016-2022 Arm Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
SiCongLi410e21e2020-12-11 15:07:53 +000024#include "support/ToolchainSupport.h"
25
Manuel Bottinied753262019-05-15 15:30:47 +010026#include <cmath>
morgolock3155f772020-05-11 16:00:04 +010027#include <limits>
Manuel Bottinied753262019-05-15 15:30:47 +010028
Anthony Barbier6ff3b192017-09-04 18:44:23 +010029namespace arm_compute
30{
Alex Gildayc357c472018-03-21 13:54:09 +000031/** Logarithm polynomial coefficients */
Anthony Barbier6ff3b192017-09-04 18:44:23 +010032const std::array<float32x4_t, 8> log_tab =
33{
34 {
35 vdupq_n_f32(-2.29561495781f),
36 vdupq_n_f32(-2.47071170807f),
37 vdupq_n_f32(-5.68692588806f),
38 vdupq_n_f32(-0.165253549814f),
39 vdupq_n_f32(5.17591238022f),
40 vdupq_n_f32(0.844007015228f),
41 vdupq_n_f32(4.58445882797f),
42 vdupq_n_f32(0.0141278216615f),
43 }
44};
45
Manuel Bottinied753262019-05-15 15:30:47 +010046/** Sin polynomial coefficients */
47constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3)
48constexpr float te_sin_coeff3 = 0.05f; // 1/(4*5)
49constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7)
50constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)
51
Alex Gildayc357c472018-03-21 13:54:09 +000052#ifndef DOXYGEN_SKIP_THIS
Viet-Hoa Do86689cd2022-11-21 17:17:56 +000053inline float32x4_t prefer_vfmaq_f32(float32x4_t a, float32x4_t b, float32x4_t c)
54{
55#ifdef __aarch64__
56 return vfmaq_f32(a, b, c);
57#else // __aarch64__
58 return vmlaq_f32(a, b, c);
59#endif // __aarch64__
60}
61
Georgios Pinitasd8e765b2017-08-02 13:44:33 +010062inline float32x4_t vfloorq_f32(float32x4_t val)
63{
64 static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
65
66 const int32x4_t z = vcvtq_s32_f32(val);
67 const float32x4_t r = vcvtq_f32_s32(z);
68
69 return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r);
70}
71
Usama Arif0a5a57a2019-05-23 14:20:33 +010072inline float32x4_t vroundq_rte_f32(float32x4_t val)
73{
74#ifdef __aarch64__
75 return vrndnq_f32(val);
Manuel Bottini7bb56c62019-06-26 15:17:09 +010076#else // __aarch64__
Usama Arif0a5a57a2019-05-23 14:20:33 +010077 static const float32x4_t CONST_HALF_FLOAT = vdupq_n_f32(0.5f);
Manuel Bottini7bb56c62019-06-26 15:17:09 +010078 static const float32x4_t CONST_1_FLOAT = vdupq_n_f32(1.f);
79 static const int32x4_t CONST_1_INT = vdupq_n_s32(1);
80 const float32x4_t floor_val = vfloorq_f32(val);
81 const float32x4_t diff = vsubq_f32(val, floor_val);
Usama Arif0a5a57a2019-05-23 14:20:33 +010082
83 /*
84 * Select the floor value when (diff<0.5 || (diff==0.5 && floor_val%2==0).
85 * This condition is checked by vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT) ,vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT) , vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT),CONST_1_INT))))
86 */
87
Manuel Bottini7bb56c62019-06-26 15:17:09 +010088 return vbslq_f32(vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT), vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT), vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT), CONST_1_INT)))),
89 floor_val, vaddq_f32(floor_val, CONST_1_FLOAT));
Usama Arif0a5a57a2019-05-23 14:20:33 +010090#endif // __aarch64__
91}
92
Georgios Pinitascdf51452017-08-31 14:21:36 +010093inline float32x2_t vinvsqrt_f32(float32x2_t x)
94{
95 float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
96 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
97 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
98
99 return sqrt_reciprocal;
100}
101
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100102inline float32x4_t vinvsqrtq_f32(float32x4_t x)
103{
104 float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
105 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
106 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
107
108 return sqrt_reciprocal;
109}
110
Georgios Pinitascdf51452017-08-31 14:21:36 +0100111inline float32x2_t vinv_f32(float32x2_t x)
112{
113 float32x2_t recip = vrecpe_f32(x);
114 recip = vmul_f32(vrecps_f32(x, recip), recip);
115 recip = vmul_f32(vrecps_f32(x, recip), recip);
116 return recip;
117}
118
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100119inline float32x4_t vinvq_f32(float32x4_t x)
120{
121 float32x4_t recip = vrecpeq_f32(x);
122 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
123 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
124 return recip;
125}
126
127inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
128{
129 float32x4_t A = vmlaq_f32(coeffs[0], coeffs[4], x);
130 float32x4_t B = vmlaq_f32(coeffs[2], coeffs[6], x);
131 float32x4_t C = vmlaq_f32(coeffs[1], coeffs[5], x);
132 float32x4_t D = vmlaq_f32(coeffs[3], coeffs[7], x);
133 float32x4_t x2 = vmulq_f32(x, x);
134 float32x4_t x4 = vmulq_f32(x2, x2);
135 float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
136 return res;
137}
138
Viet-Hoa Do86689cd2022-11-21 17:17:56 +0000139static const uint32_t exp_f32_coeff[] = {
140 0x3f7ffff6, // x^1: 0x1.ffffecp-1f
141 0x3efffedb, // x^2: 0x1.fffdb6p-2f
142 0x3e2aaf33, // x^3: 0x1.555e66p-3f
143 0x3d2b9f17, // x^4: 0x1.573e2ep-5f
144 0x3c072010, // x^5: 0x1.0e4020p-7f
145};
146
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100147inline float32x4_t vexpq_f32(float32x4_t x)
148{
Viet-Hoa Do86689cd2022-11-21 17:17:56 +0000149 const auto c1 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[0]));
150 const auto c2 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[1]));
151 const auto c3 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[2]));
152 const auto c4 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[3]));
153 const auto c5 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[4]));
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100154
Viet-Hoa Do86689cd2022-11-21 17:17:56 +0000155 const auto shift = vreinterpretq_f32_u32(vdupq_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
156 const auto inv_ln2 = vreinterpretq_f32_u32(vdupq_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
157 const auto neg_ln2_hi = vreinterpretq_f32_u32(vdupq_n_u32(0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
158 const auto neg_ln2_lo = vreinterpretq_f32_u32(vdupq_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100159
Viet-Hoa Do86689cd2022-11-21 17:17:56 +0000160 const auto inf = vdupq_n_f32(std::numeric_limits<float>::infinity());
161 const auto max_input = vdupq_n_f32(88.7f); // Approximately ln(0x1.fffffep+127)
162 const auto zero = vdupq_n_f32(0.f);
163 const auto min_input = vdupq_n_f32(-86.6f); // Approximately ln(2^-125)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100164
Viet-Hoa Do86689cd2022-11-21 17:17:56 +0000165 // Range reduction:
166 // e^x = 2^n * e^r
167 // where:
168 // n = floor(x / ln(2))
169 // r = x - n * ln(2)
170 //
171 // By adding x / ln(2) with 2^23 + 127 (shift):
172 // * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
173 // of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
174 // the whole fraction part of z in FP32 format.
175 // Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
176 // (i.e. n) because the decimal part has been pushed out and lost.
177 // * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
178 // in FP32 format. Left shifting z by 23 bits will result in 2^n.
179 const auto z = prefer_vfmaq_f32(shift, x, inv_ln2);
180 const auto n = z - shift;
181 const auto scale = vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23); // 2^n
182
183 // The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
184 // This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
185 const auto r_hi = prefer_vfmaq_f32(x, n, neg_ln2_hi);
186 const auto r = prefer_vfmaq_f32(r_hi, n, neg_ln2_lo);
187
188 // Compute the truncated Taylor series of e^r.
189 // poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
190 const auto r2 = r * r;
191
192 const auto p1 = c1 * r;
193 const auto p23 = prefer_vfmaq_f32(c2, c3, r);
194 const auto p45 = prefer_vfmaq_f32(c4, c5, r);
195 const auto p2345 = prefer_vfmaq_f32(p23, p45, r2);
196 const auto p12345 = prefer_vfmaq_f32(p1, p2345, r2);
197
198 auto poly = prefer_vfmaq_f32(scale, p12345, scale);
199
200 // Handle underflow and overflow.
201 poly = vbslq_f32(vcltq_f32(x, min_input), zero, poly);
202 poly = vbslq_f32(vcgtq_f32(x, max_input), inf, poly);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100203
204 return poly;
205}
206
Murray Kornelsen926f5022022-07-13 21:22:39 -0400207#ifdef __aarch64__
208inline float32x4_t verfq_f32(float32x4_t x)
209{
210 static const float erffdata[4] = { 0.278393f, 0.230389f, 0.000972f, 0.078108f };
211 static const float32x4_t coeffdata = vld1q_f32(erffdata);
212 static const float32x4_t onev{ vdupq_n_f32(1.0f) };
213
214 uint32x4_t selector = vcltzq_f32(x);
215
216 float32x4_t absx = vabsq_f32(x);
217 float32x4_t absx2 = vmulq_f32(x, x);
218 float32x4_t absx3 = vmulq_f32(absx2, absx);
219 float32x4_t absx4 = vmulq_f32(absx2, absx2);
220
221 float32x4_t denom = onev;
222 denom = vfmaq_laneq_f32(denom, absx, coeffdata, 0);
223 denom = vfmaq_laneq_f32(denom, absx2, coeffdata, 1);
224 denom = vfmaq_laneq_f32(denom, absx3, coeffdata, 2);
225 denom = vfmaq_laneq_f32(denom, absx4, coeffdata, 3);
226
227 denom = vmulq_f32(denom, denom);
228 denom = vmulq_f32(denom, denom);
229
230 float32x4_t fract = onev;
231 fract = vdivq_f32(fract, denom);
232
233 float32x4_t result = onev;
234 result = vsubq_f32(result, fract);
235
236 float32x4_t inverse = vnegq_f32(result);
237
238 result = vbslq_f32(selector, inverse, result);
239
240 return result;
241}
242#endif // #ifdef __aarch64__
243
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100244inline float32x4_t vlogq_f32(float32x4_t x)
245{
246 static const int32x4_t CONST_127 = vdupq_n_s32(127); // 127
247 static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
248
249 // Extract exponent
250 int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
251 float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
252
253 // Polynomial Approximation
254 float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
255
256 // Reconstruct
257 poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
258
259 return poly;
260}
261
262inline float32x4_t vtanhq_f32(float32x4_t val)
263{
264 static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
265 static const float32x4_t CONST_2 = vdupq_n_f32(2.f);
266 static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
267 static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);
Aleksandr Nikolaev7e9f34d2021-05-04 16:46:27 +0100268 static const float32x4_t CONST_THR = vdupq_n_f32(5.e-3);
269 static const float32x4_t CONST_1_3 = vdupq_n_f32(0.3333333f);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100270
Sheri Zhang5dda2172021-10-15 19:54:17 +0100271 float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
Aleksandr Nikolaev7e9f34d2021-05-04 16:46:27 +0100272 // x * (1 - x^2/3) if |x| < 5.e-3 or (exp2x - 1) / (exp2x + 1) otherwise
273 float32x4_t exp2x = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vexpq_f32(vmulq_f32(CONST_2, x)), vmulq_f32(x, x));
274 float32x4_t num = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vsubq_f32(exp2x, CONST_1), vmulq_f32(CONST_1_3, exp2x));
275 float32x4_t den = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vaddq_f32(exp2x, CONST_1), vsubq_f32(CONST_1, num));
276 float32x4_t tanh = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vmulq_f32(num, vinvq_f32(den)), vmulq_f32(x, den));
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100277 return tanh;
278}
279
280inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
281{
282 return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
283}
Manuel Bottinied753262019-05-15 15:30:47 +0100284
285inline float32x4_t vsinq_f32(float32x4_t val)
286{
287 const float32x4_t pi_v = vdupq_n_f32(M_PI);
288 const float32x4_t pio2_v = vdupq_n_f32(M_PI / 2);
289 const float32x4_t ipi_v = vdupq_n_f32(1 / M_PI);
290
291 //Find positive or negative
292 const int32x4_t c_v = vabsq_s32(vcvtq_s32_f32(vmulq_f32(val, ipi_v)));
293 const uint32x4_t sign_v = vcleq_f32(val, vdupq_n_f32(0));
294 const uint32x4_t odd_v = vandq_u32(vreinterpretq_u32_s32(c_v), vdupq_n_u32(1));
295
296 uint32x4_t neg_v = veorq_u32(odd_v, sign_v);
297
298 //Modulus a - (n * int(a*(1/n)))
299 float32x4_t ma = vsubq_f32(vabsq_f32(val), vmulq_f32(pi_v, vcvtq_f32_s32(c_v)));
300 const uint32x4_t reb_v = vcgeq_f32(ma, pio2_v);
301
302 //Rebase a between 0 and pi/2
303 ma = vbslq_f32(reb_v, vsubq_f32(pi_v, ma), ma);
304
305 //Taylor series
306 const float32x4_t ma2 = vmulq_f32(ma, ma);
307
308 //2nd elem: x^3 / 3!
309 float32x4_t elem = vmulq_f32(vmulq_f32(ma, ma2), vdupq_n_f32(te_sin_coeff2));
310 float32x4_t res = vsubq_f32(ma, elem);
311
312 //3rd elem: x^5 / 5!
313 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff3));
314 res = vaddq_f32(res, elem);
315
316 //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
317 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff4));
318 res = vsubq_f32(res, elem);
319
320 //5th elem: x^9 / 9!
321 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff5));
322 res = vaddq_f32(res, elem);
323
324 //Change of sign
325 neg_v = vshlq_n_u32(neg_v, 31);
326 res = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(res), neg_v));
327 return res;
328}
329
330inline float32x2_t vsin_f32(float32x2_t val)
331{
332 const float32x2_t pi_v = vdup_n_f32(M_PI);
333 const float32x2_t pio2_v = vdup_n_f32(M_PI / 2);
334 const float32x2_t ipi_v = vdup_n_f32(1 / M_PI);
335
336 //Find positive or negative
337 const int32x2_t c_v = vabs_s32(vcvt_s32_f32(vmul_f32(val, ipi_v)));
338 const uint32x2_t sign_v = vcle_f32(val, vdup_n_f32(0));
339 const uint32x2_t odd_v = vand_u32(vreinterpret_u32_s32(c_v), vdup_n_u32(1));
340
341 uint32x2_t neg_v = veor_u32(odd_v, sign_v);
342
343 //Modulus a - (n * int(a*(1/n)))
344 float32x2_t ma = vsub_f32(vabs_f32(val), vmul_f32(pi_v, vcvt_f32_s32(c_v)));
345 const uint32x2_t reb_v = vcge_f32(ma, pio2_v);
346
347 //Rebase a between 0 and pi/2
348 ma = vbsl_f32(reb_v, vsub_f32(pi_v, ma), ma);
349
350 //Taylor series
351 const float32x2_t ma2 = vmul_f32(ma, ma);
352
353 //2nd elem: x^3 / 3!
354 float32x2_t elem = vmul_f32(vmul_f32(ma, ma2), vdup_n_f32(te_sin_coeff2));
355 float32x2_t res = vsub_f32(ma, elem);
356
357 //3rd elem: x^5 / 5!
358 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff3));
359 res = vadd_f32(res, elem);
360
361 //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
362 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff4));
363 res = vsub_f32(res, elem);
364
365 //5th elem: x^9 / 9!
366 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff5));
367 res = vadd_f32(res, elem);
368
369 //Change of sign
370 neg_v = vshl_n_u32(neg_v, 31);
371 res = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(res), neg_v));
372 return res;
373}
374
Alex Gildayc357c472018-03-21 13:54:09 +0000375#endif /* DOXYGEN_SKIP_THIS */
376
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100377inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent)
378{
379 const int32x4_t shift_vec = vnegq_s32(exponent);
380 const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
381 const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
382 return vrshlq_s32(fixed_up_x, shift_vec);
383}
384
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100385inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent)
386{
387 const int32x4_t shift_vec = vdupq_n_s32(-exponent);
388 const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
389 const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
390 return vrshlq_s32(fixed_up_x, shift_vec);
391}
392
393inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
394{
395 const int32_t mask = (1 << exponent) - 1;
396 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
397 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
398}
399
Manuel Bottini21079dd2019-10-29 17:20:09 +0000400inline float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in)
401{
402 float32x4x4_t out;
403
404 const auto tmp1 = vmovl_u8(vget_low_u8(in));
405 out.val[0] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1)));
406 out.val[1] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1)));
407
408 const auto tmp2 = vmovl_u8(vget_high_u8(in));
409 out.val[2] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp2)));
410 out.val[3] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp2)));
411 return out;
412}
413
Sang-Hoon Parkc3a74202019-11-22 16:05:46 +0000414inline float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in)
415{
416 float32x4x4_t out;
417
418 const auto tmp1 = vmovl_s8(vget_low_s8(in));
419 out.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp1)));
420 out.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp1)));
421
422 const auto tmp2 = vmovl_s8(vget_high_s8(in));
423 out.val[2] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp2)));
424 out.val[3] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp2)));
425 return out;
426}
427
Manuel Bottini4370cff2020-02-07 16:31:59 +0000428template <>
429inline float32x4x4_t convert_to_float32x4x4(const uint8x16_t &in)
430{
431 return convert_uint8x16_to_float32x4x4(in);
432}
433
434template <>
435inline float32x4x4_t convert_to_float32x4x4(const int8x16_t &in)
436{
437 return convert_int8x16_to_float32x4x4(in);
438}
439
Manuel Bottini21079dd2019-10-29 17:20:09 +0000440inline void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out)
441{
442 out.val[0] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[0])),
443 vqmovn_u32(vcvtq_u32_f32(in2.val[0]))));
444 out.val[1] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[1])),
445 vqmovn_u32(vcvtq_u32_f32(in2.val[1]))));
446 out.val[2] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[2])),
447 vqmovn_u32(vcvtq_u32_f32(in2.val[2]))));
448}
449
Sang-Hoon Parkc3a74202019-11-22 16:05:46 +0000450inline void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out)
Manuel Bottini21079dd2019-10-29 17:20:09 +0000451{
452 const auto low = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[0])),
453 vqmovn_u32(vcvtq_u32_f32(in.val[1])));
454 const auto high = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[2])),
455 vqmovn_u32(vcvtq_u32_f32(in.val[3])));
456 out = vcombine_u8(vqmovn_u16(low), vqmovn_u16(high));
457}
458
Sang-Hoon Parkc3a74202019-11-22 16:05:46 +0000459inline void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out)
460{
461 const auto low = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[0])),
462 vqmovn_s32(vcvtq_s32_f32(in.val[1])));
463 const auto high = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[2])),
464 vqmovn_s32(vcvtq_s32_f32(in.val[3])));
465 out = vcombine_s8(vqmovn_s16(low), vqmovn_s16(high));
466}
467
Sang-Hoon Parkdcf3c7e2021-03-04 17:03:46 +0000468template <>
469inline uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
470{
471 uint8x16_t out;
472 convert_float32x4x4_to_uint8x16(in, out);
473 return out;
474}
475
476template <>
477inline float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
478{
479 return convert_uint8x16_to_float32x4x4(in);
480}
481
482template <>
483inline int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
484{
485 int8x16_t out;
486 convert_float32x4x4_to_int8x16(in, out);
487 return out;
488}
489
490template <>
491inline float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
492{
493 return convert_int8x16_to_float32x4x4(in);
494}
495
Sheri Zhang5dda2172021-10-15 19:54:17 +0100496inline float vreduce(const float32x4_t &v)
497{
498 const float32x2_t v0 = vget_high_f32(v);
499 const float32x2_t v1 = vget_low_f32(v);
500 const float32x2_t v_out = vadd_f32(v0, v1);
501
502 const float a = vget_lane_f32(v_out, 0);
503 const float b = vget_lane_f32(v_out, 1);
504
505 return a + b;
506}
507
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000508#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Alex Gildayc357c472018-03-21 13:54:09 +0000509/** Exponent polynomial coefficients */
Alex Gildayc357c472018-03-21 13:54:09 +0000510/** Logarithm polynomial coefficients */
Alex Gildayc357c472018-03-21 13:54:09 +0000511#ifndef DOXYGEN_SKIP_THIS
Georgios Pinitas565bf2d2018-08-31 11:46:49 +0100512inline float16x8_t vfloorq_f16(float16x8_t val)
513{
514 static const float16x8_t CONST_1 = vdupq_n_f16(1.f);
515
516 const int16x8_t z = vcvtq_s16_f16(val);
517 const float16x8_t r = vcvtq_f16_s16(z);
518
519 return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r);
520}
Usama Arif0a5a57a2019-05-23 14:20:33 +0100521
522inline float16x8_t vroundq_rte_f16(float16x8_t val)
523{
524 return vrndnq_f16(val);
525}
526
Georgios Pinitascdf51452017-08-31 14:21:36 +0100527inline float16x4_t vinvsqrt_f16(float16x4_t x)
528{
529 float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
530 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
531 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
532 return sqrt_reciprocal;
533}
534
Pablo Tello91654c42017-07-05 11:32:17 +0100535inline float16x8_t vinvsqrtq_f16(float16x8_t x)
536{
537 float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
538 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
539 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
Pablo Tello91654c42017-07-05 11:32:17 +0100540 return sqrt_reciprocal;
541}
Pablo Tellodf246182017-07-03 16:25:09 +0100542
Georgios Pinitascdf51452017-08-31 14:21:36 +0100543inline float16x4_t vinv_f16(float16x4_t x)
544{
545 float16x4_t recip = vrecpe_f16(x);
546 recip = vmul_f16(vrecps_f16(x, recip), recip);
547 recip = vmul_f16(vrecps_f16(x, recip), recip);
548 return recip;
549}
550
Pablo Tellodf246182017-07-03 16:25:09 +0100551inline float16x8_t vinvq_f16(float16x8_t x)
552{
553 float16x8_t recip = vrecpeq_f16(x);
554 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
555 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
556 return recip;
557}
558
Jonathan Deakin2bc8cfe2022-10-13 10:50:25 +0000559inline float16x4_t vtanh_rational_approx_f16(float16x4_t x16)
Pablo Tello91654c42017-07-05 11:32:17 +0100560{
Jonathan Deakin2bc8cfe2022-10-13 10:50:25 +0000561 // Calculate rational approximation part of tanh exactly on a half-register of F16 by using F32s
562 // Note: doesn't handle overflows, needs truncating at |x| = 4.508
563 const float32x4_t x = vcvt_f32_f16(x16);
564
565 const float32x4_t ONE = vdupq_n_f32(1.0f);
566 const float32x4_t C1 = vdupq_n_f32(0.43760237f);
567 const float32x4_t C2 = vdupq_n_f32(0.104402f);
568 const float32x4_t C3 = vdupq_n_f32(0.013442706f);
569 const float32x4_t C4 = vdupq_n_f32(0.00073561433f);
570
571 const float32x4_t x2 = vmulq_f32(x,x);
572
573 // Denominator polynomial 1 + C1*x^2 + C3*x^4
574 float32x4_t denom = vfmaq_f32(C1, C3, x2);
575 denom = vfmaq_f32(ONE, x2, denom);
576
577 // Numerator polynomial x*(1 + C2*x^2 + C4*x^4)
578 float32x4_t numer = vfmaq_f32(C2, C4, x2);
579 numer = vfmaq_f32(ONE, x2, numer);
580 numer = vmulq_f32(numer, x);
581
582 return vcvt_f16_f32(vdivq_f32(numer, denom));
583}
584
585inline float16x8_t vtanhq_f16(float16x8_t x)
586{
587 // Split into high/low and use rational approximation on both parts exactly
588 const float16x8_t tanh = vcombine_f16(vtanh_rational_approx_f16( vget_low_f16(x)),
589 vtanh_rational_approx_f16(vget_high_f16(x)));
590
591 // tanh(x) == sign(x) to F16 precision for |x| >= 4.508, use sign after this
592 const float16x8_t ONE = vdupq_n_f16(1.0f);
593 const float16x8_t MAX_X = vdupq_n_f16(4.508f);
594 const auto at_limit = vcageq_f16(x, MAX_X); // |x| >= 4.508
595 const float16x8_t sign_x = vbslq_f16(vclezq_f16(x), -ONE, ONE);
596 return vbslq_f16(at_limit, sign_x, tanh);
Pablo Tello91654c42017-07-05 11:32:17 +0100597}
598
Pablo Tellodf246182017-07-03 16:25:09 +0100599inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
600{
601 const float16x8_t A = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
602 const float16x8_t B = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
603 const float16x8_t C = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
604 const float16x8_t D = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
605 const float16x8_t x2 = vmulq_f16(x, x);
606 const float16x8_t x4 = vmulq_f16(x2, x2);
607 const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
608 return res;
609}
610
611inline float16x8_t vexpq_f16(float16x8_t x)
612{
Michele Di Giorgio1c948d42018-11-20 16:03:01 +0000613 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
614 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
Anthony Barbier3a6163e2018-08-10 17:36:36 +0100615
Georgios Pinitasf2cdce32019-12-09 18:35:57 +0000616 const float16x8_t res = vcombine_f16(vcvt_f16_f32(vexpq_f32(x_low)), vcvt_f16_f32(vexpq_f32(x_high)));
Michele Di Giorgio1c948d42018-11-20 16:03:01 +0000617 return res;
Pablo Tellodf246182017-07-03 16:25:09 +0100618}
619
Murray Kornelsen926f5022022-07-13 21:22:39 -0400620#ifdef __aarch64__
621inline float16x8_t verfq_f16(float16x8_t x)
622{
623 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
624 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
625
626 const float16x8_t res = vcombine_f16(vcvt_f16_f32(verfq_f32(x_low)), vcvt_f16_f32(verfq_f32(x_high)));
627 return res;
628}
629#endif // #ifdef __aarch64__
630
Pablo Tellodf246182017-07-03 16:25:09 +0100631inline float16x8_t vlogq_f16(float16x8_t x)
632{
Georgios Pinitas5a594532018-12-03 14:30:05 +0000633 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
634 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
Anthony Barbier3a6163e2018-08-10 17:36:36 +0100635
Georgios Pinitasf2cdce32019-12-09 18:35:57 +0000636 const float16x8_t res = vcombine_f16(vcvt_f16_f32(vlogq_f32(x_low)), vcvt_f16_f32(vlogq_f32(x_high)));
Georgios Pinitas5a594532018-12-03 14:30:05 +0000637 return res;
Pablo Tellodf246182017-07-03 16:25:09 +0100638}
639
640inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
641{
Gian Marco Iodicef2cde9b2018-08-23 15:29:16 +0100642 float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n));
643 float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n));
644 float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
645 float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));
646
647 float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
648 float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));
649
650 return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
Pablo Tellodf246182017-07-03 16:25:09 +0100651}
Manuel Bottinied753262019-05-15 15:30:47 +0100652
653inline float16x8_t vsinq_f16(float16x8_t val)
654{
655 const float32x4_t val_high = vcvt_f32_f16(vget_high_f16(val));
656 const float32x4_t val_low = vcvt_f32_f16(vget_low_f16(val));
657
658 const float32x4_t res_high = vsinq_f32(val_high);
659 const float32x4_t res_low = vsinq_f32(val_low);
660
661 return vcombine_f16(vcvt_f16_f32(res_low), vcvt_f16_f32(res_high));
662}
663
664inline float16x4_t vsin_f16(float16x4_t val)
665{
666 const float32x4_t val_f32 = vcvt_f32_f16(val);
667 const float32x2_t val_high = vget_high_f32(val_f32);
668 const float32x2_t val_low = vget_low_f32(val_f32);
669
670 const float32x2_t res_high = vsin_f32(val_high);
671 const float32x2_t res_low = vsin_f32(val_low);
672
673 return vcvt_f16_f32(vcombine_f32(res_low, res_high));
674}
675
Sheri Zhang5dda2172021-10-15 19:54:17 +0100676inline float16_t vreduce(const float16x8_t &v)
677{
678 const float16x4_t v0 = vget_high_f16(v);
679 const float16x4_t v1 = vget_low_f16(v);
680 const float16x4_t v_out = vadd_f16(v0, v1);
681
682 const float16_t a = vget_lane_f16(v_out, 0);
683 const float16_t b = vget_lane_f16(v_out, 1);
684 const float16_t c = vget_lane_f16(v_out, 2);
685 const float16_t d = vget_lane_f16(v_out, 3);
686
687 return a + b + c + d;
688}
Alex Gildayc357c472018-03-21 13:54:09 +0000689#endif /* DOXYGEN_SKIP_THIS */
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000690#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Gian Marco Iodice356f6432017-09-22 11:32:21 +0100691} // namespace arm_compute