blob: e0079cf42aec5921838f58c15dddccf44b67ca48 [file] [log] [blame]
Sheri Zhangd813bab2021-04-30 16:53:41 +01001///
SiCong Li90e57202023-02-01 14:39:41 +00002/// Copyright (c) 2017-2023 Arm Limited.
Sheri Zhangd813bab2021-04-30 16:53:41 +01003///
4/// SPDX-License-Identifier: MIT
5///
6/// Permission is hereby granted, free of charge, to any person obtaining a copy
7/// of this software and associated documentation files (the "Software"), to
8/// deal in the Software without restriction, including without limitation the
9/// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10/// sell copies of the Software, and to permit persons to whom the Software is
11/// furnished to do so, subject to the following conditions:
12///
13/// The above copyright notice and this permission notice shall be included in all
14/// copies or substantial portions of the Software.
15///
16/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22/// SOFTWARE.
23///
24namespace arm_compute
25{
26/** @page how_to_build How to Build and Run Examples
27
28@tableofcontents
29
30@section S1_1_build_options Build options
31
32scons 2.3 or above is required to build the library.
Michalis Spyroua3f7cd22022-07-04 15:32:02 +010033To see the build options available simply run ```scons -h```
Freddie Liardetf289e572021-08-06 09:12:26 +010034
Sheri Zhangd813bab2021-04-30 16:53:41 +010035@section S1_2_linux Building for Linux
36
37@subsection S1_2_1_library How to build the library ?
38
39For Linux, the library was successfully built and tested using the following Linaro GCC toolchain:
40
41 - gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf
42 - gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu
43
44To cross-compile the library in debug mode, with Arm® Neon™ only support, for Linux 32bit:
45
46 scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=linux arch=armv7a
47
48To cross-compile the library in asserts mode, with OpenCL only support, for Linux 64bit:
49
Gunes Bayiree905002022-02-25 15:20:00 +000050 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=linux arch=armv8a
Sheri Zhangd813bab2021-04-30 16:53:41 +010051
52You can also compile the library natively on an Arm device by using <b>build=native</b>:
53
Gunes Bayiree905002022-02-25 15:20:00 +000054 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv8a build=native
Sheri Zhangd813bab2021-04-30 16:53:41 +010055 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=native
56
57@note g++ for Arm is mono-arch, therefore if you want to compile for Linux 32bit on a Linux 64bit platform you will have to use a cross compiler.
58
59For example on a 64bit Debian based system you would have to install <b>g++-arm-linux-gnueabihf</b>
60
61 apt-get install g++-arm-linux-gnueabihf
62
63Then run
64
65 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=cross_compile
66
67or simply remove the build parameter as build=cross_compile is the default value:
68
69 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a
70
71@subsection S1_2_2_examples How to manually build the examples ?
72
73The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
74
75@note The following command lines assume the arm_compute libraries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built libraries with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
76
77To cross compile a Arm® Neon™ example for Linux 32bit:
78
Jakub Sujakee301b32021-06-04 09:46:08 +010079 arm-linux-gnueabihf-g++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -mfpu=neon -L. -larm_compute -larm_compute_core -o neon_cnn
Sheri Zhangd813bab2021-04-30 16:53:41 +010080
81To cross compile a Arm® Neon™ example for Linux 64bit:
82
Jakub Sujakee301b32021-06-04 09:46:08 +010083 aarch64-linux-gnu-g++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -L. -larm_compute -larm_compute_core -o neon_cnn
Sheri Zhangd813bab2021-04-30 16:53:41 +010084
85(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
86
87To cross compile an OpenCL example for Linux 32bit:
88
Jakub Sujakee301b32021-06-04 09:46:08 +010089 arm-linux-gnueabihf-g++ examples/cl_sgemm.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -mfpu=neon -L. -larm_compute -larm_compute_core -o cl_sgemm -DARM_COMPUTE_CL
Sheri Zhangd813bab2021-04-30 16:53:41 +010090
91To cross compile an OpenCL example for Linux 64bit:
92
Jakub Sujakee301b32021-06-04 09:46:08 +010093 aarch64-linux-gnu-g++ examples/cl_sgemm.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -L. -larm_compute -larm_compute_core -o cl_sgemm -DARM_COMPUTE_CL
Sheri Zhangd813bab2021-04-30 16:53:41 +010094
95(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
96
97To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
98
99i.e. to cross compile the "graph_lenet" example for Linux 32bit:
100
101 arm-linux-gnueabihf-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
102
103i.e. to cross compile the "graph_lenet" example for Linux 64bit:
104
105 aarch64-linux-gnu-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
106
107(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
108
109@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
110
111To compile natively (i.e directly on an Arm device) for Arm® Neon™ for Linux 32bit:
112
Jakub Sujakee301b32021-06-04 09:46:08 +0100113 g++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -mfpu=neon -larm_compute -larm_compute_core -o neon_cnn
Sheri Zhangd813bab2021-04-30 16:53:41 +0100114
115To compile natively (i.e directly on an Arm device) for Arm® Neon™ for Linux 64bit:
116
Jakub Sujakee301b32021-06-04 09:46:08 +0100117 g++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute -larm_compute_core -o neon_cnn
Sheri Zhangd813bab2021-04-30 16:53:41 +0100118
119(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
120
121To compile natively (i.e directly on an Arm device) for OpenCL for Linux 32bit or Linux 64bit:
122
Jakub Sujakee301b32021-06-04 09:46:08 +0100123 g++ examples/cl_sgemm.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute -larm_compute_core -o cl_sgemm -DARM_COMPUTE_CL
Sheri Zhangd813bab2021-04-30 16:53:41 +0100124
125To compile natively the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
126
127i.e. to natively compile the "graph_lenet" example for Linux 32bit:
128
129 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
130
131i.e. to natively compile the "graph_lenet" example for Linux 64bit:
132
133 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
134
135(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
136
137@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
138
Gunes Bayiree905002022-02-25 15:20:00 +0000139@note These two commands assume libarm_compute.so is available in your library path, if not add the path to it using -L (e.g. -Llib/linux-armv8a-neon-cl-asserts/)
Sheri Zhangd813bab2021-04-30 16:53:41 +0100140@note You might need to export the path to OpenCL library as well in your LD_LIBRARY_PATH if Compute Library was built with OpenCL enabled.
141
142To run the built executable simply run:
143
Jakub Sujakee301b32021-06-04 09:46:08 +0100144 LD_LIBRARY_PATH=build ./neon_cnn
Sheri Zhangd813bab2021-04-30 16:53:41 +0100145
146or
147
Jakub Sujakee301b32021-06-04 09:46:08 +0100148 LD_LIBRARY_PATH=build ./cl_sgemm
Sheri Zhangd813bab2021-04-30 16:53:41 +0100149
150@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
151
152For example:
153
154 LD_LIBRARY_PATH=. ./graph_lenet --help
155
156Below is a list of the common parameters among the graph examples :
157@snippet utils/CommonGraphOptions.h Common graph examples parameters
158
159@subsection S1_2_3_sve Build for SVE or SVE2
160
161In order to build for SVE or SVE2 you need a compiler that supports them. You can find more information in the following these links:
162 -# GCC: https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/sve-support
163 -# LLVM: https://developer.arm.com/tools-and-software/open-source-software/developer-tools/llvm-toolchain/sve-support
164
165@note You the need to indicate the toolchains using the scons "toolchain_prefix" parameter.
166
167An example build command with SVE is:
168
Gunes Bayiree905002022-02-25 15:20:00 +0000169 scons arch=armv8.2-a-sve os=linux build_dir=arm64 -j55 standalone=0 opencl=0 openmp=0 validation_tests=1 neon=1 cppthreads=1 toolchain_prefix=aarch64-none-linux-gnu-
Sheri Zhangd813bab2021-04-30 16:53:41 +0100170
Viet-Hoa Do03b29712022-06-01 11:47:14 +0100171@subsection S1_2_4_sme Build for SME2
172
173In order to build for SME2 you need to use a compiler that supports SVE2 and enable SVE2 in the build as well.
174
175@note You the need to indicate the toolchains using the scons "toolchain_prefix" parameter.
176
177An example build command with SME2 is:
178
179 scons arch=armv8.6-a-sve2-sme2 os=linux build_dir=arm64 -j55 standalone=0 opencl=0 openmp=0 validation_tests=1 neon=1 cppthreads=1 toolchain_prefix=aarch64-none-linux-gnu-
180
Sheri Zhangd813bab2021-04-30 16:53:41 +0100181@section S1_3_android Building for Android
182
183For Android, the library was successfully built and tested using Google's standalone toolchains:
Gunes Bayiree905002022-02-25 15:20:00 +0000184 - clang++ from NDK r20b for armv8a
185 - clang++ from NDK r20b for armv8.2-a with FP16 support
Sheri Zhangd813bab2021-04-30 16:53:41 +0100186
SiCong Li90e57202023-02-01 14:39:41 +0000187(From 23.02, NDK >= r20b is highly recommended) For NDK r18 or older, here is a guide to <a href="https://developer.android.com/ndk/guides/standalone_toolchain.html">create your Android standalone toolchains from the NDK</a>:
Sheri Zhangd813bab2021-04-30 16:53:41 +0100188- Download the NDK r18b from here: https://developer.android.com/ndk/downloads/index.html to directory $NDK
189- Make sure you have Python 2.7 installed on your machine.
Jakub Sujakee301b32021-06-04 09:46:08 +0100190- Generate the 32 and/or 64 toolchains by running the following commands to your toolchain directory $MY_TOOLCHAINS:
Sheri Zhangd813bab2021-04-30 16:53:41 +0100191
192 $NDK/build/tools/make_standalone_toolchain.py --arch arm64 --install-dir $MY_TOOLCHAINS/aarch64-linux-android-ndk-r18b --stl libc++ --api 21
SiCong Li56c3ca82022-05-19 18:43:33 +0100193
Sheri Zhangd813bab2021-04-30 16:53:41 +0100194 $NDK/build/tools/make_standalone_toolchain.py --arch arm --install-dir $MY_TOOLCHAINS/arm-linux-android-ndk-r18b --stl libc++ --api 21
195
196For NDK r19 or newer, you can directly <a href="https://developer.android.com/ndk/downloads">Download</a> the NDK package for your development platform, without the need to launch the make_standalone_toolchain.py script. You can find all the prebuilt binaries inside $NDK/toolchains/llvm/prebuilt/$OS_ARCH/bin/.
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100197
SiCong Life1b1f62022-05-19 18:58:31 +0100198@parblock
199@attention The building script will look for a binary named "aarch64-linux-android-clang++", while the prebuilt binaries will have their API version as a suffix to their filename (e.g. "aarch64-linux-android21-clang++"). You can instruct scons to use the correct version by using a combination of the toolchain_prefix and the "CC" "CXX" environment variables.
200@attention For this particular example, you can specify:
Sheri Zhangd813bab2021-04-30 16:53:41 +0100201
SiCong Life1b1f62022-05-19 18:58:31 +0100202 CC=clang CXX=clang++ scons toolchain_prefix=aarch64-linux-android21-
203
204@attention or:
205
206 CC=aarch64-linux-android21-clang CXX=aarch64-linux-android21-clang++ scons toolchain_prefix=""
207
208@endparblock
209
210@parblock
Sheri Zhangd813bab2021-04-30 16:53:41 +0100211@attention We used to use gnustl but as of NDK r17 it is deprecated so we switched to libc++
SiCong Life1b1f62022-05-19 18:58:31 +0100212@endparblock
Sheri Zhangd813bab2021-04-30 16:53:41 +0100213
214@note Make sure to add the toolchains to your PATH:
215
216 export PATH=$PATH:$MY_TOOLCHAINS/aarch64-linux-android-ndk-r18b/bin:$MY_TOOLCHAINS/arm-linux-android-ndk-r18b/bin
217
218@subsection S1_3_1_library How to build the library ?
219
220To cross-compile the library in debug mode, with Arm® Neon™ only support, for Android 32bit:
221
222 CXX=clang++ CC=clang scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=android arch=armv7a
223
224To cross-compile the library in asserts mode, with OpenCL only support, for Android 64bit:
225
Gunes Bayiree905002022-02-25 15:20:00 +0000226 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=android arch=armv8a
Sheri Zhangd813bab2021-04-30 16:53:41 +0100227
228@subsection S1_3_2_examples How to manually build the examples ?
229
230The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
231
232@note The following command lines assume the arm_compute libraries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built libraries with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
233
234Once you've got your Android standalone toolchain built and added to your path you can do the following:
235
236To cross compile a Arm® Neon™ example:
237
238 #32 bit:
Jakub Sujakee301b32021-06-04 09:46:08 +0100239 arm-linux-androideabi-clang++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute-static -larm_compute_core-static -L. -o neon_cnn_arm -static-libstdc++ -pie
Sheri Zhangd813bab2021-04-30 16:53:41 +0100240 #64 bit:
Jakub Sujakee301b32021-06-04 09:46:08 +0100241 aarch64-linux-android-clang++ examples/neon_cnn.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute-static -larm_compute_core-static -L. -o neon_cnn_aarch64 -static-libstdc++ -pie
Sheri Zhangd813bab2021-04-30 16:53:41 +0100242
243To cross compile an OpenCL example:
244
245 #32 bit:
Jakub Sujakee301b32021-06-04 09:46:08 +0100246 arm-linux-androideabi-clang++ examples/cl_sgemm.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute-static -larm_compute_core-static -L. -o cl_sgemm_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Sheri Zhangd813bab2021-04-30 16:53:41 +0100247 #64 bit:
Jakub Sujakee301b32021-06-04 09:46:08 +0100248 aarch64-linux-android-clang++ examples/cl_sgemm.cpp utils/Utils.cpp -I. -Iinclude -std=c++14 -larm_compute-static -larm_compute_core-static -L. -o cl_sgemm_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Sheri Zhangd813bab2021-04-30 16:53:41 +0100249
250To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the library arm_compute_graph also.
251
252 #32 bit:
253 arm-linux-androideabi-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
254 #64 bit:
255 aarch64-linux-android-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++14 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
256
257@note Due to some issues in older versions of the Arm® Mali™ OpenCL DDK (<= r13p0), we recommend to link arm_compute statically on Android.
258@note When linked statically the arm_compute_graph library currently needs the --whole-archive linker flag in order to work properly
259
260Then you need to do is upload the executable and the shared library to the device using ADB:
261
Jakub Sujakee301b32021-06-04 09:46:08 +0100262 adb push neon_cnn_arm /data/local/tmp/
263 adb push cl_sgemm_arm /data/local/tmp/
Sheri Zhangd813bab2021-04-30 16:53:41 +0100264 adb push gc_absdiff_arm /data/local/tmp/
265 adb shell chmod 777 -R /data/local/tmp/
266
267And finally to run the example:
268
Jakub Sujakee301b32021-06-04 09:46:08 +0100269 adb shell /data/local/tmp/neon_cnn_arm
270 adb shell /data/local/tmp/cl_sgemm_arm
Sheri Zhangd813bab2021-04-30 16:53:41 +0100271 adb shell /data/local/tmp/gc_absdiff_arm
272
273For 64bit:
274
Jakub Sujakee301b32021-06-04 09:46:08 +0100275 adb push neon_cnn_aarch64 /data/local/tmp/
276 adb push cl_sgemm_aarch64 /data/local/tmp/
Sheri Zhangd813bab2021-04-30 16:53:41 +0100277 adb push gc_absdiff_aarch64 /data/local/tmp/
278 adb shell chmod 777 -R /data/local/tmp/
279
280And finally to run the example:
281
Jakub Sujakee301b32021-06-04 09:46:08 +0100282 adb shell /data/local/tmp/neon_cnn_aarch64
283 adb shell /data/local/tmp/cl_sgemm_aarch64
Sheri Zhangd813bab2021-04-30 16:53:41 +0100284 adb shell /data/local/tmp/gc_absdiff_aarch64
285
286@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
287
288For example:
289 adb shell /data/local/tmp/graph_lenet --help
290
Jakub Sujakee301b32021-06-04 09:46:08 +0100291In this case the first argument of LeNet (like all the graph examples) is the target (i.e 0 to run on Neon™, 1 to run on OpenCL if available, 2 to run on OpenCL using the CLTuner), the second argument is the path to the folder containing the npy files for the weights and finally the third argument is the number of batches to run.
Sheri Zhangd813bab2021-04-30 16:53:41 +0100292
293@section S1_4_macos Building for macOS
294
295The library was successfully natively built for Apple Silicon under macOS 11.1 using clang v12.0.0.
296
297To natively compile the library with accelerated CPU support:
298
Gunes Bayiree905002022-02-25 15:20:00 +0000299 scons Werror=1 -j8 neon=1 opencl=0 os=macos arch=armv8a build=native
Sheri Zhangd813bab2021-04-30 16:53:41 +0100300
301@note Initial support disables feature discovery through HWCAPS and thread scheduling affinity controls
302
303@section S1_5_bare_metal Building for bare metal
304
305For bare metal, the library was successfully built using linaro's latest (gcc-linaro-6.3.1-2017.05) bare metal toolchains:
306 - arm-eabi for armv7a
Gunes Bayiree905002022-02-25 15:20:00 +0000307 - aarch64-elf for armv8a
Sheri Zhangd813bab2021-04-30 16:53:41 +0100308
Gunes Bayiree905002022-02-25 15:20:00 +0000309Download linaro for <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/arm-eabi/">armv7a</a> and <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-elf/">armv8a</a>.
Sheri Zhangd813bab2021-04-30 16:53:41 +0100310
311@note Make sure to add the toolchains to your PATH: export PATH=$PATH:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-elf/bin:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_arm-eabi/bin
312
313@subsection S1_5_1_library How to build the library ?
314
Gunes Bayiree905002022-02-25 15:20:00 +0000315To cross-compile the library with Arm® Neon™ support for baremetal armv8a:
Sheri Zhangd813bab2021-04-30 16:53:41 +0100316
Gunes Bayiree905002022-02-25 15:20:00 +0000317 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=bare_metal arch=armv8a build=cross_compile cppthreads=0 openmp=0 standalone=1
Sheri Zhangd813bab2021-04-30 16:53:41 +0100318
319@subsection S1_5_2_examples How to manually build the examples ?
320
321Examples are disabled when building for bare metal. If you want to build the examples you need to provide a custom bootcode depending on the target architecture and link against the compute library. More information about bare metal bootcode can be found <a href="http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0527a/index.html">here</a>.
322
Jakub Sujak117e17e2023-02-21 10:52:57 +0000323@section S1_6_windows_host Building on a Windows® host system (cross-compile)
Sheri Zhangd813bab2021-04-30 16:53:41 +0100324
Jakub Sujak117e17e2023-02-21 10:52:57 +0000325Using `scons` directly from the Windows® command line is known to cause
Sheri Zhangd813bab2021-04-30 16:53:41 +0100326problems. The reason seems to be that if `scons` is setup for cross-compilation
Jakub Sujak117e17e2023-02-21 10:52:57 +0000327it gets confused about Windows® style paths (using backslashes). Thus it is
Sheri Zhangd813bab2021-04-30 16:53:41 +0100328recommended to follow one of the options outlined below.
329
Jakub Sujak117e17e2023-02-21 10:52:57 +0000330@subsection S1_6_1_ubuntu_on_windows Bash on Ubuntu on Windows® (cross-compile)
Sheri Zhangd813bab2021-04-30 16:53:41 +0100331
332The best and easiest option is to use
Jakub Sujak117e17e2023-02-21 10:52:57 +0000333<a href="https://msdn.microsoft.com/en-gb/commandline/wsl/about">Ubuntu on Windows®</a>.
Sheri Zhangd813bab2021-04-30 16:53:41 +0100334This feature is still marked as *beta* and thus might not be available.
335However, if it is building the library is as simple as opening a *Bash on
Jakub Sujak117e17e2023-02-21 10:52:57 +0000336Ubuntu on Windows®* shell and following the general guidelines given above.
Sheri Zhangd813bab2021-04-30 16:53:41 +0100337
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100338@subsection S1_6_2_cygwin Cygwin (cross-compile)
Sheri Zhangd813bab2021-04-30 16:53:41 +0100339
Jakub Sujak117e17e2023-02-21 10:52:57 +0000340If the Windows® subsystem for Linux is not available <a href="https://www.cygwin.com/">Cygwin</a>
Sheri Zhangd813bab2021-04-30 16:53:41 +0100341can be used to install and run `scons`, the minimum Cygwin version must be 3.0.7 or later. In addition
342to the default packages installed by Cygwin `scons` has to be selected in the installer. (`git` might
343also be useful but is not strictly required if you already have got the source
344code of the library.) Linaro provides pre-built versions of
345<a href="http://releases.linaro.org/components/toolchain/binaries/">GCC cross-compilers</a>
346that can be used from the Cygwin terminal. When building for Android the
347compiler is included in the Android standalone toolchain. After everything has
348been set up in the Cygwin terminal the general guide on building the library
349can be followed.
350
Jakub Sujak117e17e2023-02-21 10:52:57 +0000351@subsection S1_6_3_WoA Windows® on Arm™ (native build)
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100352
Jakub Sujak117e17e2023-02-21 10:52:57 +0000353 Native builds on Windows® are experimental and some features from the library interacting with the OS are missing.
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100354
Jakub Sujak117e17e2023-02-21 10:52:57 +0000355It's possible to build Compute Library natively on a Windows® system running on Arm™.
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100356
Jakub Sujak117e17e2023-02-21 10:52:57 +0000357Windows® on Arm™ (WoA) systems provide compatibility emulating x86 binaries on aarch64. Unfortunately Visual Studio 2022 does not work on aarch64 systems because it's an x86_64bit application and these binaries cannot be exectuted on WoA yet.
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100358
Jakub Sujak117e17e2023-02-21 10:52:57 +0000359Because we cannot use Visual Studio to build Compute Library we have to set up a native standalone toolchain to compile C++ code for arm64 on Windows®.
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100360
361Native arm64 toolchain installation for WoA:
362- LLVM+Clang-12 which can be downloaded from: https://github.com/llvm/llvm-project/releases/download/llvmorg-12.0.0/LLVM-12.0.0-woa64.exe
363- Arm64 VC Runtime which can be downloaded from https://aka.ms/vs/17/release/vc_redist.arm64.exe
364
365- While full VS22 cannot be installed on WoA, we can install some components
366 -# Desktop development with C++ and all Arm64 components for Visual Studio, refer to: https://developer.arm.com/documentation/102528/0100/Install-Visual-Studio
367 -# VS22 build tools: https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2022
368
369There are some additional tools we need to install to build Compute Library:
370
371- git https://git-scm.com/download/win
372- python 3 https://www.python.org/downloads/windows/
373- scons can be installed with pip install scons
374
Jakub Sujak117e17e2023-02-21 10:52:57 +0000375In order to use clang to build Windows® binaries natively we have to initialize the environment variables from VS22 correctly so that the compiler could find the arm64 C++ libraries. This can be done by pressing the key windows + r and running the command:
Pablo Marquez Telloab659ad2022-07-21 13:55:27 +0100376
377 cmd /k "C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\Build\vcvarsx86_arm64.bat"
378
379To build Compute Library type:
380
381 scons opencl=0 neon=1 os=windows examples=0 validation_tests=1 benchmark_examples=0 build=native arch=armv8a Werror=0 exceptions=1 standalone=1
382
Sheri Zhangd813bab2021-04-30 16:53:41 +0100383@section S1_7_cl_requirements OpenCL DDK Requirements
384
385@subsection S1_7_1_cl_hard_requirements Hard Requirements
386
387Compute Library requires OpenCL 1.1 and above with support of non uniform workgroup sizes, which is officially supported in the Arm® Mali™ OpenCL DDK r8p0 and above as an extension (respective extension flag is \a -cl-arm-non-uniform-work-group-size).
388
389Enabling 16-bit floating point calculations require \a cl_khr_fp16 extension to be supported. All Arm® Mali™ GPUs with compute capabilities have native support for half precision floating points.
390
391@subsection S1_7_2_cl_performance_requirements Performance improvements
392
393Integer dot product built-in function extensions (and therefore optimized kernels) are available with Arm® Mali™ OpenCL DDK r22p0 and above for the following GPUs : G71, G76. The relevant extensions are \a cl_arm_integer_dot_product_int8, \a cl_arm_integer_dot_product_accumulate_int8 and \a cl_arm_integer_dot_product_accumulate_int16.
394
395OpenCL kernel level debugging can be simplified with the use of printf, this requires the \a cl_arm_printf extension to be supported.
396
397SVM allocations are supported for all the underlying allocations in Compute Library. To enable this OpenCL 2.0 and above is a requirement.
398
David Svantessone0c42ef2022-12-15 16:25:57 +0000399@section S1_8_experimental_builds Experimental Bazel and CMake builds
400
401In addition to the scons build the repository includes experimental Bazel and CMake builds.
402Both are similar to the scons multi_isa build. It compiles all libraries with Neon (TM) support, as well as SVE and SVE2 libraries. The build is CPU only, not including OpenCL support. Both were successfully built with gcc / g++ version 10.2.
403
404@subsection S1_8_1_bazel_build Bazel build
405
406@subsubsection S1_8_1_1_file_structure File structure
407
408File structure for all files included in the Bazel build:
409
410 .
411 ├── .bazelrc
412 ├── BUILD
413 ├── WORKSPACE
414 ├── arm_compute
415 │  └── BUILD
416 ├── examples
417 │  └── BUILD
418 ├── include
419 │  └── BUILD
420 ├── scripts
421 │ ├── print_version_file.py
422 │  └── BUILD
423 ├── src
424 │  └── BUILD
425 ├── support
426 │  └── BUILD
427 ├── tests
428 │ ├── BUILD
429 │  └── framework
430 │  └── BUILD
431 └── utils
432 └── BUILD
433
434@subsubsection S1_8_1_2_build_options Build options
435
436Available build options:
437
438 - debug: Enable ['-O0','-g','-gdwarf-2'] compilation flags
439 - Werror: Enable -Werror compilation flag
440 - logging: Enable logging
441 - cppthreads: Enable C++11 threads backend
442 - openmp: Enable OpenMP backend
443
444@subsubsection S1_8_1_3_example_builds Example builds
445
446Build everything (libraries, examples, tests):
447
448 bazel build //...
449
450Build libraries:
451
452 bazel build //:all
453
454Build arm_compute only:
455
456 bazel build //:arm_compute
457
458Build examples:
459
460 bazel build //examples:all
461
462Build resnet50 example:
463
464 bazel build //examples:graph_resnet50
465
466Build validation and benchmarking:
467
468 bazel build //tests:all
469
470@subsection S1_8_2_cmake_build CMake build
471
472@subsubsection S1_8_2_1_file_structure File structure
473
474File structure for all files included in the CMake build:
475
476 .
477 ├── CMakeLists.txt
478 ├── cmake
479 │ ├── Options.cmake
480 │ ├── Version.cmake
481 │  └── toolchains
482 │  └── aarch64_linux_toolchain.cmake
483 ├── examples
484 │  └── CMakeLists.txt
485 ├── src
486 │ └── CMakeLists.txt
487 └── tests
488 ├── CMakeLists.txt
489 ├── benchmark
490 │ └── CMakeLists.txt
491 └── validation
492 └── CMakeLists.txt
493
494@subsubsection S1_8_2_2_build_options Build options
495
496Available build options:
497
498 - DEBUG: Enable ['-O0','-g','-gdwarf-2'] compilation flags
499 - WERROR: Enable -Werror compilation flag
500 - EXCEPTIONS: If disabled ARM_COMPUTE_EXCEPTIONS_DISABLED is enabled
501 - LOGGING: Enable logging
502 - BUILD_EXAMPLES: Build examples
503 - BUILD_TESTING: Build tests
504 - CPPTHREADS: Enable C++11 threads backend
505 - OPENMP: Enable OpenMP backend
506
507@subsubsection S1_8_2_3_example_builds Example builds
508
509To build libraries, examples and tests:
510
511 mkdir build
512 cd build
David Svantesson45370892023-02-22 11:08:57 +0000513 cmake .. -DOPENMP=1 -DWERROR=0 -DDEBUG=0 -DBUILD_EXAMPLES=1 -DBUILD_TESTING=1 -DCMAKE_INSTALL_LIBDIR=.
David Svantessone0c42ef2022-12-15 16:25:57 +0000514 cmake --build . -j32
515
Nathan John Sircombed7113e42023-04-26 15:02:43 +0100516@section S1_8_fixed_format Building with support for fixed format kernels
517
518@subsection S1_8_1_intro_to_fixed_format_kernels What are fixed format kernels?
519
520The GEMM kernels used for convolutions and fully-connected layers in Compute Library employ memory layouts optimized for each kernel implementation. This then requires the supplied weights to be re-ordered into a buffer ready for consumption by the GEMM kernel. Where Compute Library is being called from a framework or library which implements operator caching, the re-ordering of the inputted weights into an intermediate buffer may no longer be desirable. When using a cached operator, the caller may wish to re-write the weights tensor, and re-run the operator using the updated weights. With the default GEMM kernels in Compute Library, the GEMM will be executed with the old weights, leading to incorrect results.
521
522To address this, Compute Library provides a set of GEMM kernels which use a common blocked memory format. These kernels consume the input weights directly from the weights buffer and do not execute an intermediate pre-transpose step. With this approach, it is the responsibility of the user (in this case the calling framework) to ensure that the weights are re-ordered into the required memory format. @ref NEGEMM::has_opt_impl is a static function that queries whether there exists fixed-format kernel, and if so will return in the expected weights format. The supported weight formats are enumerated in @ref arm_compute::WeightFormat.
523
524@subsection S1_8_2_building_fixed_format Building with fixed format kernels
525
526Fixed format kernels are only available for the CPU backend. To build Compute Library with fixed format kernels set fixed_format_kernels=1:
527
528 scons Werror=1 debug=0 neon=1 opencl=0 embed_kernels=0 os=linux multi_isa=1 build=native cppthreads=1 openmp=0 fixed_format_kernels=1
529
Sheri Zhangd813bab2021-04-30 16:53:41 +0100530*/
531} // namespace arm_compute