blob: 4665d612f546037b1bd2879f5a828fc0f3a2f524 [file] [log] [blame]
SiCongLiafa19722021-10-24 19:12:33 +01001/*
2 * Copyright (c) 2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "fp_post_ops_act_eltwise_op_act.h"
26#include "gemm_helpers.h"
27#include "repeat.h"
28
29/** (EXPERIMENTAL_POST_OPS) gemm_mm_native kernel */
30#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
31#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
32
33#define VFMA(a, b, c) \
34 ({ \
35 c = fma(a, b, c); \
36 })
37
38#if M0 == 1
39#define RHS_VFMA_M0xN0(i, a, b, c) \
40 ({ \
41 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
42 })
43#elif M0 == 2 // M0 == 2
44#define RHS_VFMA_M0xN0(i, a, b, c) \
45 ({ \
46 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
47 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
48 })
49#elif M0 == 3 // M0 == 3
50#define RHS_VFMA_M0xN0(i, a, b, c) \
51 ({ \
52 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
53 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
54 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
55 })
56#elif M0 == 4 // M0 == 4
57#define RHS_VFMA_M0xN0(i, a, b, c) \
58 ({ \
59 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
60 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
61 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
62 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
63 })
64#elif M0 == 5 // M0 == 5
65#define RHS_VFMA_M0xN0(i, a, b, c) \
66 ({ \
67 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
68 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
69 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
70 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
71 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
72 })
73#elif M0 == 6 // M0 == 6
74#define RHS_VFMA_M0xN0(i, a, b, c) \
75 ({ \
76 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
77 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
78 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
79 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
80 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
81 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
82 })
83#elif M0 == 7 // M0 == 7
84#define RHS_VFMA_M0xN0(i, a, b, c) \
85 ({ \
86 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
87 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
88 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
89 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
90 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
91 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
92 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
93 })
94#elif M0 == 8 // M0 == 8
95#define RHS_VFMA_M0xN0(i, a, b, c) \
96 ({ \
97 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
98 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
99 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
100 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
101 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
102 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
103 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
104 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
105 })
106#else // M0 not supported
107#error "M0 not supported"
108#endif // M0 not supported
109
110/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
111 * Post op 1: activation (optional)
112 * Post op 2: elementwise op
113 * Post op 3: activation (optional)
114 *
115 * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
116 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
117 * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
118 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
119 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
120 *
121 * All parameters are similarly defined in kernel gemm_mm_native, with these additions:
122 *
123 * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
124 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
125 * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
126 * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
127 * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
128 * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
129 */
130__kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
131 IMAGE_DECLARATION(rhs),
132#if defined(BETA)
133 IMAGE_DECLARATION(bias),
134#endif // defined(BETA)
135 IMAGE_DECLARATION(dst),
SiCongLid9287352021-11-03 19:01:22 +0000136 // Post Op arguments
SiCongLiafa19722021-10-24 19:12:33 +0100137 IMAGE_DECLARATION(eltwise_operand),
138 uint lhs_stride_z,
139 uint rhs_stride_z,
140#if defined(BETA)
141 uint bias_stride_z,
142#endif //defined(BETA)
143 uint dst_stride_z,
144 uint eltwise_operand_stride_z
145#if defined(REINTERPRET_INPUT_AS_3D)
146 ,
147 uint lhs_cross_plane_pad
148#endif // REINTERPRET_INPUT_AS_3D
149#if defined(REINTERPRET_OUTPUT_AS_3D)
150 ,
151 uint dst_cross_plane_pad
152#endif // REINTERPRET_OUTPUT_AS_3D
153 )
154{
155 // Block size
156#define RHS_BLOCK_SIZE ((K0) * (N0))
157
158 // RHS offset and step X
159#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
160
161 uint x = get_global_id(0);
162 uint y = get_global_id(1);
163 uint z = get_global_id(2);
164
165#if defined(DUMMY_WORK_ITEMS)
166 if((x * N0 >= N) || (y * M0 >= M))
167 {
168 return;
169 }
170#endif // defined(DUMMY_WORK_ITEMS)
171
172 // Compute LHS matrix address
SiCongLi71cbd282021-11-03 12:17:06 +0000173 uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
SiCongLiafa19722021-10-24 19:12:33 +0100174
175 // Compute RHS matrix address
176 uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
177
178#if defined(MATRIX_B_DEPTH)
179 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
180 rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
181#else // defined(MATRIX_B_DEPTH)
182 rhs_offset += z * rhs_stride_z;
183#endif // defined(MATRIX_B_DEPTH)
184
185 REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
186 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
187
188#if defined(REINTERPRET_INPUT_AS_3D)
189 // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
SiCongLi71cbd282021-11-03 12:17:06 +0000190 CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
SiCongLiafa19722021-10-24 19:12:33 +0100191
192 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
193 // multiply lhs_stride_z by DEPTH_GEMM3D
194 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
195
196#else // defined(REINTERPRET_INPUT_AS_3D)
197
198 // Add offset for batched GEMM
199 lhs_offset += z * lhs_stride_z;
200
201#endif // defined(REINTERPRET_INPUT_AS_3D)
202
203 // Initialize the accumulators
204 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
205
206 int i = 0;
207#if K0 > 1
208 for(; i <= (K - K0); i += K0)
209 {
210 // Supported cases (M0, K0):
211 // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
212 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
213 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
214 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
215 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
216 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
217 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
218 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
219 // Load values from LHS matrix
220 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
221
222 // Load values from RHS matrix
223 LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);
224
225 RHS_VFMA_M0xN0(0, a, b0, c);
226 RHS_VFMA_M0xN0(1, a, b1, c);
227#if K0 > 2
228 RHS_VFMA_M0xN0(2, a, b2, c);
229#endif // K0 > 2
230#if K0 > 3
231 RHS_VFMA_M0xN0(3, a, b3, c);
232#endif // K0 > 3
233#if K0 > 4
234 RHS_VFMA_M0xN0(4, a, b4, c);
235 RHS_VFMA_M0xN0(5, a, b5, c);
236 RHS_VFMA_M0xN0(6, a, b6, c);
237 RHS_VFMA_M0xN0(7, a, b7, c);
238#endif // K0 > 4
239#if K0 > 8
240 RHS_VFMA_M0xN0(8, a, b8, c);
241 RHS_VFMA_M0xN0(9, a, b9, c);
242 RHS_VFMA_M0xN0(A, a, bA, c);
243 RHS_VFMA_M0xN0(B, a, bB, c);
244 RHS_VFMA_M0xN0(C, a, bC, c);
245 RHS_VFMA_M0xN0(D, a, bD, c);
246 RHS_VFMA_M0xN0(E, a, bE, c);
247 RHS_VFMA_M0xN0(F, a, bF, c);
248#endif // K0 > 8
249
250 lhs_offset += K0 * sizeof(DATA_TYPE);
251 rhs_offset += K0 * rhs_stride_y;
252 }
253#endif // K0 > 1
254 // Left-over accumulations
255 for(; i < K; ++i)
256 {
257 // Load values from LHS matrix
258 VEC_DATA_TYPE(DATA_TYPE, 2)
259 a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
260#if M0 > 1
261 VEC_DATA_TYPE(DATA_TYPE, 2)
262 a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
263#endif // M0 > 1
264#if M0 > 2
265 VEC_DATA_TYPE(DATA_TYPE, 2)
266 a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
267#endif // M0 > 2
268#if M0 > 3
269 VEC_DATA_TYPE(DATA_TYPE, 2)
270 a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
271#endif // M0 > 3
272#if M0 > 4
273 VEC_DATA_TYPE(DATA_TYPE, 2)
274 a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
275#endif // M0 > 4
276#if M0 > 5
277 VEC_DATA_TYPE(DATA_TYPE, 2)
278 a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
279#endif // M0 > 5
280#if M0 > 6
281 VEC_DATA_TYPE(DATA_TYPE, 2)
282 a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
283#endif // M0 > 6
284#if M0 > 7
285 VEC_DATA_TYPE(DATA_TYPE, 2)
286 a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
287#endif // M0 > 7
288
289 VEC_DATA_TYPE(DATA_TYPE, N0)
290 b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
291 RHS_VFMA_M0xN0(0, a, b, c);
292
293 lhs_offset += sizeof(DATA_TYPE);
294 rhs_offset += rhs_stride_y;
295 }
296
SiCongLi71cbd282021-11-03 12:17:06 +0000297 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
SiCongLiafa19722021-10-24 19:12:33 +0100298
299 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
300
SiCongLiafa19722021-10-24 19:12:33 +0100301#if defined(REINTERPRET_OUTPUT_AS_3D)
302 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
SiCongLi71cbd282021-11-03 12:17:06 +0000303 CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
SiCongLiafa19722021-10-24 19:12:33 +0100304
305 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
306 // multiply dst_stride_z by DEPTH_GEMM3D
307 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
308
309#else // defined(REINTERPRET_OUTPUT_AS_3D)
310
311 // Add offset for batched GEMM
312 dst_addr += z * dst_stride_z;
313
314#endif // defined(REINTERPRET_OUTPUT_AS_3D)
315
316 // Multiply by the weight of matrix-matrix product and store the result
317#if defined(ALPHA)
318 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
319#endif // defined(ALPHA)
320
321 // Add beta*bias
322#if defined(BETA)
323#if defined(BROADCAST_BIAS)
324 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
325
SiCongLi71cbd282021-11-03 12:17:06 +0000326 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
SiCongLiafa19722021-10-24 19:12:33 +0100327
328#ifndef UNIT_BETA
329 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
330#endif // UNIT_BIAS
331
332 // c = c + bias[broadcasted]
333 ADD_BLOCK_BROADCAST(M0, c, bias0);
334
335#else // defined(BROADCAST_BIAS)
SiCongLi71cbd282021-11-03 12:17:06 +0000336 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
SiCongLiafa19722021-10-24 19:12:33 +0100337
SiCongLi71cbd282021-11-03 12:17:06 +0000338 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
SiCongLiafa19722021-10-24 19:12:33 +0100339
340#ifndef UNIT_BETA
341 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
342#endif // UNIT_BIAS
343
344 // c = c + bias
345 ADD_BLOCK(M0, c, bias);
346
347#endif // defined(BROADCAST_BIAS)
348#endif // defined(BETA)
349
SiCongLi71cbd282021-11-03 12:17:06 +0000350 const bool cond_y = y == 0;
351 const bool cond_x = ((x + 1) * N0 >= N);
352
SiCongLiafa19722021-10-24 19:12:33 +0100353 // c = act(c)
354 POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
355 // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
SiCongLi71cbd282021-11-03 12:17:06 +0000356 POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
SiCongLiafa19722021-10-24 19:12:33 +0100357 // c = act(c)
358 POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
359
360 // Store output block
361 STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
362}
363#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
364#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)