blob: c09a7d9028f31a7693cb8e4fecbc41527034995c [file] [log] [blame]
Gian Marco58c57942017-11-28 09:10:03 +00001/*
Pablo Tello54e98d92019-02-05 16:16:19 +00002 * Copyright (c) 2017-2019 ARM Limited.
Gian Marco58c57942017-11-28 09:10:03 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Michalis Spyrouf4643372019-11-29 16:17:13 +000024#ifndef ARM_COMPUTE_NEASYMM_H
25#define ARM_COMPUTE_NEASYMM_H
Gian Marco58c57942017-11-28 09:10:03 +000026
Manuel Bottini7bb56c62019-06-26 15:17:09 +010027#include "arm_compute/core/NEON/NEMath.h"
Gian Marco58c57942017-11-28 09:10:03 +000028#include <arm_neon.h>
29
30namespace arm_compute
31{
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000032using qasymm8x8_t = uint8x8_t; /**< 8 bit quantized asymmetric vector with 8 elements */
33using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
34using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
35using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
36using qasymm8x16_t = uint8x16_t; /**< 8 bit quantized asymmetric vector with 16 elements */
37
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +000038using qasymm8x8_signed_t = int8x8_t; /**< 8 bit quantized signed asymmetric vector with 8 elements */
39using qasymm8x8x2_signed_t = int8x8x2_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
40using qasymm8x8x3_signed_t = int8x8x3_t; /**< 8 bit quantized signed asymmetric vector with 24 elements */
41using qasymm8x8x4_signed_t = int8x8x4_t; /**< 8 bit quantized signed asymmetric vector with 32 elements */
42using qasymm8x16_signed_t = int8x16_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
43
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000044/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
45 *
46 * vd*vs + vo
47 *
48 * @param[in] vd Input vector value in QASYMM8 format
49 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
50 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
51 *
52 * @return A 16-component vector in QASYMM8 format, saturated to fit
53 */
54uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);
Georgios Pinitasf72f9362018-01-12 16:29:45 +000055
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +000056/** Perform a multiply-accumulate on all 16 components of a QASYMM8_SIGNED vector
57 *
58 * vd*vs + vo
59 *
60 * @param[in] vd Input vector value in QASYMM8_SIGNED format
61 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
62 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
63 *
64 * @return A 16-component vector in QASYMM8_SIGNED format, saturated to fit
65 */
66int8x16_t vmlaq_qasymm8_signed(qasymm8x16_signed_t vd, float32x4_t vs, float32x4_t vo);
67
Georgios Pinitasf72f9362018-01-12 16:29:45 +000068/** Performs final quantization step on 16 elements
69 *
70 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
71 *
72 * @param in_s32 Input to be quantized.
73 * @param result_fixedpoint_multiplier Result multiplier parameter
74 * @param result_shift Result shift parameter
75 * @param result_offset_after_shift_s32 Result offset parameter
76 * @param min_u8 Relu lower bound
77 * @param max_u8 Relu upper bound
78 *
79 * @return Quantized values
80 */
81template <bool is_bounded_relu>
82uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
83 int result_fixedpoint_multiplier,
84 int32_t result_shift,
85 int32x4_t result_offset_after_shift_s32,
86 uint8x16_t min_u8,
87 uint8x16_t max_u8)
88{
89 const static int32x4_t zero_s32 = vdupq_n_s32(0);
90
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +000091 if(result_shift < 0)
92 {
93 in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
94 in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
95 in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
96 in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
Georgios Pinitasf72f9362018-01-12 16:29:45 +000097
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +000098 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
99 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
100 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
101 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
102 }
103 else
104 {
105 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
106 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
107 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
108 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
109 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
110
111 // Round to the nearest division by a power-of-two using result_shift_s32
112 in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
113 in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
114 in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
115 in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
116 }
Georgios Pinitasf72f9362018-01-12 16:29:45 +0000117
118 // Add the offset terms
119 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
120 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
121 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
122 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
123
124 // Saturate negative values
125 in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
126 in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
127 in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
128 in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
129
130 // Convert S32 to S16
131 const int16x8x2_t in_s16 =
132 {
133 {
134 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
135 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
136 }
137 };
138
139 // Convert S16 to U8
140 uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
141
142 if(is_bounded_relu)
143 {
144 out_u8 = vmaxq_u8(out_u8, min_u8);
145 out_u8 = vminq_u8(out_u8, max_u8);
146 }
147
148 return out_u8;
149}
Pablo Tello54e98d92019-02-05 16:16:19 +0000150
Georgios Pinitas448a81f2019-11-21 14:10:25 +0000151/** Performs final quantization step on 16 elements
152 *
153 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
154 *
155 * @param in_s32 Input to be quantized.
156 * @param result_fixedpoint_multiplier Result multiplier parameter
157 * @param result_shift Result shift parameter
158 * @param result_offset_after_shift_s32 Result offset parameter
159 * @param min_s8 Relu lower bound
160 * @param max_s8 Relu upper bound
161 *
162 * @return Quantized values
163 */
164template <bool is_bounded_relu>
165int8x16_t finalize_quantization(int32x4x4_t &in_s32,
166 int result_fixedpoint_multiplier,
167 int32_t result_shift,
168 int32x4_t result_offset_after_shift_s32,
169 int8x16_t min_s8,
170 int8x16_t max_s8)
171{
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000172 if(result_shift < 0)
173 {
174 in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
175 in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
176 in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
177 in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
Georgios Pinitas448a81f2019-11-21 14:10:25 +0000178
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000179 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
180 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
181 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
182 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
183 }
184 else
185 {
186 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
187 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
188 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
189 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
190 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
191
192 // Round to the nearest division by a power-of-two using result_shift_s32
193 in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
194 in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
195 in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
196 in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
197 }
Georgios Pinitas448a81f2019-11-21 14:10:25 +0000198
199 // Add the offset terms
200 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
201 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
202 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
203 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
204
205 // Convert S32 to S16
206 const int16x8x2_t in_s16 =
207 {
208 {
209 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
210 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
211 }
212 };
213
214 // Convert S16 to S8
215 int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
216
217 if(is_bounded_relu)
218 {
219 out_s8 = vmaxq_s8(out_s8, min_s8);
220 out_s8 = vminq_s8(out_s8, max_s8);
221 }
222
223 return out_s8;
224}
225
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100226/** Performs final quantization step on 16 elements for symmetric quantization
227 *
228 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
229 *
230 * @param in_s32 Input to be quantized.
231 * @param result_fixedpoint_multiplier Result multiplier parameter
232 * @param result_shift Result shift parameter
233 * @param result_offset_after_shift_s32 Result offset parameter
234 * @param min_s8 Relu lower bound
235 * @param max_s8 Relu upper bound
236 *
237 * @return Quantized values
238 */
239template <bool is_bounded_relu>
240inline int8x16_t finalize_quantization_symm(int32x4x4_t &in_s32,
241 const int32x4x4_t &result_fixedpoint_multiplier,
242 const int32x4x4_t &result_shift,
243 const int32x4_t &result_offset_after_shift_s32,
244 const int8x16_t &min_s8,
245 const int8x16_t &max_s8)
246{
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000247 const static int32x4_t one_s32 = vdupq_n_s32(1);
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100248
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000249 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
250 int32x4x4_t res_shift_gt0 =
251 {
252 vqrdmulhq_s32(in_s32.val[0], result_fixedpoint_multiplier.val[0]),
253 vqrdmulhq_s32(in_s32.val[1], result_fixedpoint_multiplier.val[1]),
254 vqrdmulhq_s32(in_s32.val[2], result_fixedpoint_multiplier.val[2]),
255 vqrdmulhq_s32(in_s32.val[3], result_fixedpoint_multiplier.val[3]),
256 };
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100257 // Round to the nearest division by a power-of-two using result_shift_s32
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000258 res_shift_gt0.val[0] = rounding_divide_by_pow2(res_shift_gt0.val[0], result_shift.val[0]);
259 res_shift_gt0.val[1] = rounding_divide_by_pow2(res_shift_gt0.val[1], result_shift.val[1]);
260 res_shift_gt0.val[2] = rounding_divide_by_pow2(res_shift_gt0.val[2], result_shift.val[2]);
261 res_shift_gt0.val[3] = rounding_divide_by_pow2(res_shift_gt0.val[3], result_shift.val[3]);
262
263 int32x4x4_t res_shift_lt0 =
264 {
265 vmulq_s32(in_s32.val[0], vshlq_s32(one_s32, vnegq_s32(result_shift.val[0]))),
266 vmulq_s32(in_s32.val[1], vshlq_s32(one_s32, vnegq_s32(result_shift.val[1]))),
267 vmulq_s32(in_s32.val[2], vshlq_s32(one_s32, vnegq_s32(result_shift.val[2]))),
268 vmulq_s32(in_s32.val[3], vshlq_s32(one_s32, vnegq_s32(result_shift.val[3]))),
269 };
270 res_shift_lt0.val[0] = vqrdmulhq_s32(res_shift_lt0.val[0], result_fixedpoint_multiplier.val[0]);
271 res_shift_lt0.val[1] = vqrdmulhq_s32(res_shift_lt0.val[1], result_fixedpoint_multiplier.val[1]);
272 res_shift_lt0.val[2] = vqrdmulhq_s32(res_shift_lt0.val[2], result_fixedpoint_multiplier.val[2]);
273 res_shift_lt0.val[3] = vqrdmulhq_s32(res_shift_lt0.val[3], result_fixedpoint_multiplier.val[3]);
274
275 // Select result depending on shift value
276 const uint32x4x4_t mask_lt0 =
277 {
278#ifdef __aarch64__
279 vcltzq_s32(result_shift.val[0]),
280 vcltzq_s32(result_shift.val[1]),
281 vcltzq_s32(result_shift.val[2]),
282 vcltzq_s32(result_shift.val[3]),
283#else //__aarch64__
284 vcltq_s32(result_shift.val[0], vdupq_n_s32(0)),
285 vcltq_s32(result_shift.val[1], vdupq_n_s32(0)),
286 vcltq_s32(result_shift.val[2], vdupq_n_s32(0)),
287 vcltq_s32(result_shift.val[3], vdupq_n_s32(0)),
288#endif //__aarch64__
289 };
290
291 in_s32.val[0] = vbslq_s32(mask_lt0.val[0], res_shift_lt0.val[0], res_shift_gt0.val[0]);
292 in_s32.val[1] = vbslq_s32(mask_lt0.val[1], res_shift_lt0.val[1], res_shift_gt0.val[1]);
293 in_s32.val[2] = vbslq_s32(mask_lt0.val[2], res_shift_lt0.val[2], res_shift_gt0.val[2]);
294 in_s32.val[3] = vbslq_s32(mask_lt0.val[3], res_shift_lt0.val[3], res_shift_gt0.val[3]);
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100295
296 // Add the offset terms
297 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
298 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
299 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
300 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
301
302 // Convert S32 to S16
303 const int16x8x2_t in_s16 =
304 {
305 {
306 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
307 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
308 }
309 };
310
311 // Convert S16 to S8
312 int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
313
314 if(is_bounded_relu)
315 {
316 out_s8 = vmaxq_s8(out_s8, min_s8);
317 out_s8 = vminq_s8(out_s8, max_s8);
318 }
319
320 return out_s8;
321}
322
George Wort2d7e6832019-02-22 16:37:41 +0000323/** Performs final quantization step on single element
324 *
325 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
326 *
327 * @param[in] in_value Input to be quantized.
328 * @param[in] result_fixedpoint_multiplier Result multiplier parameter
329 * @param[in] result_shift Result shift parameter
330 * @param[in] result_offset_after_shift_s32 Result offset parameter
331 * @param[in] min_u8 Relu lower bound
332 * @param[in] max_u8 Relu upper bound
333 *
334 * @return Quantized value
335 */
336template <bool is_bounded_relu>
337inline uint8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
338 int32_t result_shift, int32_t result_offset_after_shift_s32,
339 uint8_t min_u8, uint8_t max_u8)
340{
341 int32x4_t in_s32 = vdupq_n_s32(in_value);
342
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000343 if(result_shift < 0)
344 {
345 in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
346 }
347 else
348 {
349 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
350 in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
351 // Shift value by result_shift_s32
352 in_value = rounding_divide_by_pow2(in_value, result_shift);
353 }
George Wort2d7e6832019-02-22 16:37:41 +0000354
355 // Add the offset term
356 in_value += result_offset_after_shift_s32;
357
358 // Bound the result
Georgios Pinitas6fa26382019-03-18 10:05:34 +0000359 uint8_t out_u8 = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
George Wort2d7e6832019-02-22 16:37:41 +0000360 if(is_bounded_relu)
361 {
362 out_u8 = static_cast<uint8_t>(std::max(min_u8, std::min(max_u8, out_u8)));
363 }
364
365 return out_u8;
366}
367
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100368/** Performs final quantization step on single element
369 *
370 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
371 *
372 * @param[in] in_value Input to be quantized.
373 * @param[in] result_fixedpoint_multiplier Result multiplier parameter
374 * @param[in] result_shift Result shift parameter
375 * @param[in] result_offset_after_shift_s32 Result offset parameter
376 * @param[in] min_s8 Relu lower bound
377 * @param[in] max_s8 Relu upper bound
378 *
379 * @return Quantized value
380 */
381template <bool is_bounded_relu>
382inline int8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
383 int32_t result_shift, int32_t result_offset_after_shift_s32,
384 int8_t min_s8, int8_t max_s8)
385{
386 int32x4_t in_s32 = vdupq_n_s32(in_value);
387
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000388 if(result_shift < 0)
389 {
390 in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
391 }
392 else
393 {
394 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
395 in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100396
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000397 // Shift value by result_shift_s32
398 in_value = rounding_divide_by_pow2(in_value, result_shift);
399 }
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100400
401 // Add the offset term
402 in_value += result_offset_after_shift_s32;
403
404 // Bound the result
405 int8_t out_s8 = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
406 if(is_bounded_relu)
407 {
408 out_s8 = static_cast<int8_t>(std::max(min_s8, std::min(max_s8, out_s8)));
409 }
410
411 return out_s8;
412}
413
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100414/** Dequantize a neon vector holding 8 quantized values.
415 *
416 * @param[in] qv Input values to be dequantized.
417 * @param[in] qi Quantization information to be used in the computation.
418 *
419 * @return Dequantized values in a neon vector
420 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100421inline float32x4x2_t vdequantize(const uint8x8_t &qv, const UniformQuantizationInfo &qi)
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100422{
423 const float scale = qi.scale;
424 const int offset = qi.offset;
425 const int32x4_t voffset = vdupq_n_s32(offset);
426 const float32x4_t vscale = vdupq_n_f32(scale);
427 const float32x4x2_t vdequantized_input =
428 {
429 {
430 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(qv)))), voffset)), vscale),
431 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(qv)))), voffset)), vscale),
432 }
433 };
434 return vdequantized_input;
435}
436
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +0000437/** Dequantize a neon vector holding 8 singed quantized values.
438 *
439 * @param[in] qv Input values to be dequantized.
440 * @param[in] qi Quantization information to be used in the computation.
441 *
442 * @return Dequantized values in a neon vector
443 */
444inline float32x4x2_t vdequantize(const int8x8_t &qv, const UniformQuantizationInfo &qi)
445{
446 const float scale = qi.scale;
447 const int offset = qi.offset;
448 const int32x4_t voffset = vdupq_n_s32(offset);
449 const float32x4_t vscale = vdupq_n_f32(scale);
450 const float32x4x2_t vdequantized_input =
451 {
452 {
453 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(qv))), voffset)), vscale),
454 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(qv))), voffset)), vscale),
455 }
456 };
457 return vdequantized_input;
458}
459
Pablo Tello54e98d92019-02-05 16:16:19 +0000460/** Dequantize a neon vector holding 16 quantized values.
461 *
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100462 * @param[in] qv Input values to be dequantized.
463 * @param[in] qi Quantization information to be used in the computation.
Pablo Tello54e98d92019-02-05 16:16:19 +0000464 *
465 * @return Dequantized values in a neon vector
466 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100467inline float32x4x4_t vdequantize(const uint8x16_t &qv, const UniformQuantizationInfo &qi)
Pablo Tello54e98d92019-02-05 16:16:19 +0000468{
469 const float scale = qi.scale;
470 const int offset = qi.offset;
471 const int32x4_t voffset = vdupq_n_s32(offset);
472 const float32x4_t vscale = vdupq_n_f32(scale);
473 const float32x4x4_t vdequantized_input =
474 {
475 {
476 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
477 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
478 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
479 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
480 }
481 };
482 return vdequantized_input;
483}
484
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +0000485/** Dequantize a neon vector holding 16 signed quantized values.
486 *
487 * @param[in] qv Input values to be dequantized.
488 * @param[in] qi Quantization information to be used in the computation.
489 *
490 * @return Dequantized values in a neon vector
491 */
492inline float32x4x4_t vdequantize(const int8x16_t &qv, const UniformQuantizationInfo &qi)
493{
494 const float scale = qi.scale;
495 const int offset = qi.offset;
496 const int32x4_t voffset = vdupq_n_s32(offset);
497 const float32x4_t vscale = vdupq_n_f32(scale);
498 const float32x4x4_t vdequantized_input =
499 {
500 {
501 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
502 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
503 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
504 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
505 }
506 };
507 return vdequantized_input;
508}
509
Georgios Pinitas3d13af82019-06-04 13:04:16 +0100510/** Dequantize following an asymmetric quantization scheme a neon vector holding 16 quantized values.
511 *
512 * @param[in] qv Input values to be dequantized.
513 * @param[in] scale Quantization scaling factor.
514 * @param[in] offset Zero quantization offset.
515 *
516 * @return Dequantized values in a neon vector
517 */
518inline float32x4x4_t vdequantize(const uint8x16_t &qv, float scale, int32_t offset)
519{
520 const int32x4_t voffset = vdupq_n_s32(offset);
521 const float32x4_t vscale = vdupq_n_f32(scale);
522 const float32x4x4_t vdequantized_input =
523 {
524 {
525 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
526 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
527 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
528 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
529 }
530 };
531 return vdequantized_input;
532}
533
Sang-Hoon Parkd8176472019-12-04 09:46:28 +0000534/** Dequantize a vector of 16 values stored as signed asymmetric.
535 *
536 * @param[in] qv Input values to be dequantized.
537 * @param[in] scale Quantization scaling factor.
538 * @param[in] offset Zero quantization offset.
539 *
540 * @return Dequantized values in a neon vector
541 */
542inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale, int32_t offset)
543{
544 const int32x4_t voffset = vdupq_n_s32(offset);
545 const float32x4_t vscale = vdupq_n_f32(scale);
546 const float32x4x4_t vdequantized_input =
547 {
548 {
549 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
550 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
551 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
552 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
553 }
554 };
555 return vdequantized_input;
556}
557
Georgios Pinitas8217c8e2019-11-11 18:24:22 +0000558/** Dequantize following symmetric quantization scheme a neon vector holding 16 quantized values.
Michalis Spyrou3f632f32019-08-22 16:52:00 +0100559 *
Georgios Pinitas8217c8e2019-11-11 18:24:22 +0000560 * @param[in] qv Input values to be dequantized.
561 * @param[in] vscale Vector containing quantization scaling factors.
Michalis Spyrou3f632f32019-08-22 16:52:00 +0100562 *
563 * @return Dequantized values in a neon vector
564 */
Georgios Pinitas8217c8e2019-11-11 18:24:22 +0000565inline float32x4x4_t vdequantize(const int8x16_t &qv, const float32x4x4_t vscale)
Michalis Spyrou3f632f32019-08-22 16:52:00 +0100566{
567 const float32x4x4_t vdequantized_input =
568 {
569 {
Georgios Pinitas8217c8e2019-11-11 18:24:22 +0000570 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[0]),
571 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[1]),
572 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[2]),
573 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[3]),
Michalis Spyrou3f632f32019-08-22 16:52:00 +0100574 }
575 };
576 return vdequantized_input;
577}
578
Georgios Pinitas3d13af82019-06-04 13:04:16 +0100579/** Dequantize following a symmetric quantization scheme a neon vector holding 16 quantized values.
580 *
581 * @param[in] qv Input values to be dequantized.
582 * @param[in] scale Quantization scaling factor.
583 *
584 * @return Dequantized values in a neon vector
585 */
586inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale)
587{
588 const float32x4_t vscale = vdupq_n_f32(scale);
589 const float32x4x4_t vdequantized_input =
590 {
591 {
592 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
593 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
594 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
595 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
596 }
597 };
598 return vdequantized_input;
599}
600
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100601/** Quantize a neon vector holding 8 floating point values.
602 *
603 * @param[in] qv Input values to be quantized.
604 * @param[in] qi Quantization information to be used in the computation.
605 *
606 * @return A neon vector holding the quantized values
607 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100608inline uint8x8_t vquantize(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100609{
610 const float scale = qi.scale;
611 const int offset = qi.offset;
612 const float32x4_t voffset = vdupq_n_f32(offset);
613 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
614 const int32x4x4_t rf =
615 {
616 {
617#ifdef __aarch64__
618 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
619 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
620#else //__aarch64__
621 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
622 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
623#endif //__aarch64__
624 }
625 };
626 return vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
627}
628
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +0000629/** Quantize a neon vector holding 8 floating point values.
630 *
631 * @param[in] qv Input values to be quantized.
632 * @param[in] qi Quantization information to be used in the computation.
633 *
634 * @return A neon vector holding the singed quantized values
635 */
636inline int8x8_t vquantize_signed(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
637{
638 const float scale = qi.scale;
639 const int offset = qi.offset;
640 const float32x4_t voffset = vdupq_n_f32(offset);
641 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
642 const int32x4x4_t rf =
643 {
644 {
645#ifdef __aarch64__
646 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
647 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
648#else //__aarch64__
649 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
650 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
651#endif //__aarch64__
652 }
653 };
654 return vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
655}
656
Pablo Tello54e98d92019-02-05 16:16:19 +0000657/** Quantize a neon vector holding 16 floating point values.
658 *
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100659 * @param[in] qv Input values to be quantized.
660 * @param[in] qi Quantization information to be used in the computation.
Pablo Tello54e98d92019-02-05 16:16:19 +0000661 *
662 * @return A neon vector holding the quantized values
663 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100664inline uint8x16_t vquantize(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
Pablo Tello54e98d92019-02-05 16:16:19 +0000665{
666 const float scale = qi.scale;
667 const int offset = qi.offset;
668 const float32x4_t voffset = vdupq_n_f32(offset);
669 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
670 const int32x4x4_t rf =
671 {
672 {
673#ifdef __aarch64__
674 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
675 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
676 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
677 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
678#else //__aarch64__
679 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
680 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
681 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
682 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
683#endif //__aarch64__
684 }
685 };
686 const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
687 const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
688 return vcombine_u8(pa, pb);
689}
Michele Di Giorgiod64a46c2019-10-01 12:25:49 +0100690
Michalis Spyrou8d4d1b82019-11-28 11:31:23 +0000691/** Signed quantize a neon vector holding 16 floating point values.
692 *
693 * @param[in] qv Input values to be quantized.
694 * @param[in] qi Quantization information to be used in the computation.
695 *
696 * @return A neon vector holding the quantized values
697 */
698
699inline int8x16_t vquantize_signed(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
700{
701 const float scale = qi.scale;
702 const int offset = qi.offset;
703 const float32x4_t voffset = vdupq_n_f32(offset);
704 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
705 const int32x4x4_t rf =
706 {
707 {
708#ifdef __aarch64__
709 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
710 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
711 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
712 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
713#else //__aarch64__
714 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
715 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
716 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
717 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
718#endif //__aarch64__
719
720 }
721 };
722 const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
723 const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
724 return vcombine_s8(pa, pb);
725}
726
Michele Di Giorgiod64a46c2019-10-01 12:25:49 +0100727/** Quantize to QASYMM16 a neon vector holding 16 floating point values.
728 *
729 * @param[in] qv Input values to be quantized.
730 * @param[in] qi Quantization information to be used in the computation.
731 *
732 * @return A neon vector holding the quantized values
733 */
734inline uint16x8x2_t vquantize_qasymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
735{
736 const float scale = qi.scale;
737 const int offset = qi.offset;
738 const float32x4_t voffset = vdupq_n_f32(offset);
739 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
740 const int32x4x4_t rf =
741 {
742 {
743#ifdef __aarch64__
744 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
745 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
746 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
747 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
748#else //__aarch64__
749 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
750 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
751 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
752 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
753#endif //__aarch64__
754 }
755 };
756 const uint16x8_t pa = vcombine_u16(vqmovun_s32(rf.val[0]), vqmovun_s32(rf.val[1]));
757 const uint16x8_t pb = vcombine_u16(vqmovun_s32(rf.val[2]), vqmovun_s32(rf.val[3]));
758 return { pa, pb };
759}
Gian Marco58c57942017-11-28 09:10:03 +0000760} // namespace arm_compute
761#include "arm_compute/core/NEON/NEAsymm.inl"
Michalis Spyrouf4643372019-11-29 16:17:13 +0000762#endif // ARM_COMPUTE_NEASYMM_H