blob: 952e2033611da98d5c847cc18ff17f0d1d7b4613 [file] [log] [blame]
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Contains classes that hold commands for the high-level command stream (one command per DMA or NPU stripe).
from enum import Enum, IntEnum
import numpy as np
from .operation import NpuBlockType
from .numeric_util import round_up_divide
from .range_set import MemoryAccessSet, AccessDirection
class Box:
def __init__(self, start_coord, end_coord):
self.start_coord = list(start_coord)
self.end_coord = list(end_coord)
assert len(self.start_coord) == len(end_coord)
for i in range(len(self.start_coord)):
assert self.start_coord[i] <= self.end_coord[i]
def transform_with_strides_and_skirt(
self, strides, skirt, ifm_shape, npu_block_type, concat_axis=0, concat_offset=0, split_offset=None, k_height=1
):
new_start_coord = list(self.start_coord)
new_end_coord = list(self.end_coord)
new_start_coord[concat_axis] -= concat_offset
new_end_coord[concat_axis] -= concat_offset
if split_offset != None:
for idx in range(len(split_offset)):
new_start_coord[idx] += split_offset[idx]
new_end_coord[idx] += split_offset[idx]
if split_offset == None and npu_block_type in set((NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct)):
# these types of operations do a "dot product" over the entire IFM
new_start_coord[-1] = 0
new_end_coord[-1] = ifm_shape[-1]
if min(len(new_end_coord), len(ifm_shape)) >= 2:
new_end_coord[-2] = min(new_end_coord[-2], ifm_shape[-2])
if min(len(new_end_coord), len(ifm_shape)) >= 3:
new_end_coord[-3] = min(new_end_coord[-3], ifm_shape[-3])
pad_top = 0
pad_bottom = 0
if strides is not None and skirt is not None:
if len(new_start_coord) >= 2:
stride = strides[2]
new_start_coord[-2] = max(new_start_coord[-2] * stride - skirt[1], 0)
new_end_coord[-2] = min(new_end_coord[-2] * stride + skirt[3], ifm_shape[-2])
if len(new_start_coord) >= 3:
stride = strides[1]
total_stride = stride * (new_end_coord[-3] - new_start_coord[-3] - 1)
new_start_coord[-3] = new_start_coord[-3] * stride - skirt[0]
pad_top = max(0, 0 - new_start_coord[-3])
new_start_coord[-3] = max(new_start_coord[-3], 0)
while len(ifm_shape) < 3:
ifm_shape = [1] + ifm_shape
if (new_end_coord[-3] * stride + skirt[2]) > ifm_shape[-3]:
# pad_bottom is calculated based the diff between the end position of the weight kernel,
# after last stride and the ifm height.
k_start = new_start_coord[-3] - pad_top
pad_bottom = max(0, k_start + total_stride + k_height - ifm_shape[-3])
new_end_coord[-3] = min(new_end_coord[-3] * stride + skirt[2], ifm_shape[-3])
return Box(new_start_coord, new_end_coord), pad_top, pad_bottom
def make_weight_box(weight_shape, npu_block_type, oc_range_start=None, oc_range_end=None, weights_transposed=False):
start = [0] * len(weight_shape)
end = list(weight_shape)
if oc_range_start is not None and oc_range_end is not None:
if npu_block_type == NpuBlockType.ConvolutionDepthWise:
# input range is output range divided by channel multiplier
if weights_transposed:
start[-1] = oc_range_start // weight_shape[-2]
end[-1] = oc_range_end // weight_shape[-2]
else:
start[-2] = oc_range_start // weight_shape[-1]
end[-2] = oc_range_end // weight_shape[-1]
else:
start[-1] = oc_range_start
end[-1] = oc_range_end
for i in range(len(end)):
assert 0 <= start[i] < weight_shape[i]
assert 0 < end[i] <= weight_shape[i]
return Box(start, end)
def get_size_shape(self):
return [int(self.end_coord[i] - self.start_coord[i]) for i in range(len(self.end_coord))]
def get_size(self):
return int(np.prod(self.get_size_shape()))
def __str__(self):
return "<Box %s - %s>" % (self.start_coord, self.end_coord)
__repr__ = __str__
class CommandType(IntEnum):
NpuStripe = 0
DMA = 1
Size = 2
class Command:
def get_ofm_y_range_for_pass(self, ps_requested):
return None
def is_npu_pass_command(self):
return False
def get_memory_accesses(self):
return None
def get_operation_count(self):
# returns numpy array of (DPU blocks, dma_ops). Should line up with the CommandType enum
return np.array((0, 0))
class NpuStripe(Command):
def __init__(
self,
ps,
block_config,
is_first,
is_last,
is_first_h_stripe,
is_last_h_stripe,
ifm_tensor,
ifm_box,
ofm_tensor,
ofm_box,
weight_tensor=None,
weight_box=None,
scale_tensor=None,
concat_axis=0,
concat_offset=0,
ifm2_tensor=None,
ifm2_box=None,
pad_top=0,
pad_bottom=0,
):
self.cmdtype = CommandType.NpuStripe
self.ps = ps
self.block_config = block_config
self.is_first = is_first
self.is_last = is_last
self.is_first_h_stripe = is_first_h_stripe
self.is_last_h_stripe = is_last_h_stripe
self.ifm_tensor = ifm_tensor
self.ifm_box = ifm_box
self.ifm2_tensor = ifm2_tensor
self.ifm2_box = ifm2_box
self.ofm_tensor = ofm_tensor
self.ofm_box = ofm_box
self.weight_tensor = weight_tensor
self.scale_tensor = scale_tensor
self.weight_box = weight_box
self.concat_axis = concat_axis
self.concat_offset = concat_offset
self.pad_top = pad_top
self.pad_bottom = pad_bottom
for i in range(len(self.ofm_box.end_coord)):
assert self.ofm_box.end_coord[i] <= self.ofm_tensor.shape[i]
def get_memory_accesses(self):
res = MemoryAccessSet()
if self.ifm_tensor is not None and self.ifm_tensor.shape != []:
res.add(
self.ifm_tensor.get_address_ranges_for_coordinates(self.ifm_box.start_coord, self.ifm_box.end_coord),
AccessDirection.Read,
)
if self.ifm2_tensor is not None and self.ifm2_tensor.shape != []:
res.add(
self.ifm2_tensor.get_address_ranges_for_coordinates(self.ifm2_box.start_coord, self.ifm2_box.end_coord),
AccessDirection.Read,
)
if self.ofm_tensor is not None:
res.add(
self.ofm_tensor.get_address_ranges_for_coordinates(self.ofm_box.start_coord, self.ofm_box.end_coord),
AccessDirection.Write,
)
if self.weight_tensor is not None:
res.add(
self.weight_tensor.get_address_ranges_for_coordinates(
self.weight_box.start_coord, self.weight_box.end_coord
),
AccessDirection.Read,
)
return res
def is_npu_pass_command(self):
return True
def __str__(self):
return "<NPUStripe: ps=%s, ifm_box=%s, ifm2_box=%s, ofm_box=%s, weight_box=%s, block_config=%s>" % (
self.ps.name,
self.ifm_box,
self.ifm2_box,
self.ofm_box,
self.weight_box,
self.block_config,
)
__repr__ = __str__
def get_ofm_y_range_for_pass(self, ps_requested):
if ps_requested != self.ps:
return None
if len(self.ofm_box.start_coord) >= 3:
return (self.ofm_box.start_coord[-3], self.ofm_box.end_coord[-3])
return None
def get_block_dimensions(self):
ofm_box = self.ofm_box
block_config = self.block_config
out_height = 1
out_width = 1
out_depth = ofm_box.end_coord[-1] - ofm_box.start_coord[-1]
if len(ofm_box.end_coord) >= 4:
out_width = ofm_box.end_coord[-2] - ofm_box.start_coord[-2]
out_height = ofm_box.end_coord[-3] - ofm_box.start_coord[-3]
assert out_height >= 0
assert out_width >= 0
assert out_depth >= 0
return (
round_up_divide(out_height, block_config[0]),
round_up_divide(out_width, block_config[1]),
round_up_divide(out_depth, block_config[3]),
)
def get_operation_count(self):
# returns numpy array of (DPU blocks, dma_ops)
return np.array((self.get_n_blocks(), 0))
def get_n_blocks(self):
h, w, d = self.get_block_dimensions()
res = h * w * d
assert res >= 0
return res
def get_single_block_command(self, block_idx):
block_cfg = (self.block_config[0], self.block_config[1], self.block_config[3])
dims = self.get_block_dimensions()
strides = dims[1] * dims[2], dims[2], 1
coord = []
idx_left = block_idx
for s in strides:
c = idx_left // s
idx_left -= c * s
coord.append(c)
assert idx_left == 0
# put in dummy height/widths in case we're dealing with FC layers
ofm_start = list(self.ofm_box.start_coord)
ofm_end = list(self.ofm_box.end_coord)
# cut out a nice block shape
for idx in (-1, -2, -3):
if len(ofm_start) >= -idx:
ofm_start[idx] += block_cfg[idx] * coord[idx]
ofm_end[idx] = min(ofm_end[idx], ofm_start[idx] + block_cfg[idx])
ps = self.ps
strides = None
skirt = None
if ps.primary_op is not None:
strides = ps.primary_op.attrs.get("strides", None)
skirt = ps.primary_op.attrs.get("skirt", None)
npu_block_type = ps.npu_block_type
ofm_box = Box(ofm_start, ofm_end)
ifm_box, _, _ = ofm_box.transform_with_strides_and_skirt(
strides, skirt, self.ifm_tensor.shape, npu_block_type, self.concat_axis, self.concat_offset
)
weight_box = None
if self.weight_tensor is not None:
weight_oc_start = ofm_start[-1]
weight_oc_end = ofm_end[-1]
if self.concat_axis - len(self.weight_tensor.shape) == -1:
weight_oc_start -= self.concat_offset
weight_oc_end -= self.concat_offset
weight_box = Box.make_weight_box(
self.weight_tensor.shape,
npu_block_type,
weight_oc_start,
weight_oc_end,
self.weight_tensor.weight_transpose_depthwise,
)
return NpuStripe(
self.ps,
self.block_config,
self.is_first,
self.is_last,
self.is_first_h_stripe,
self.is_last_h_stripe,
self.ifm_tensor,
ifm_box,
self.ofm_tensor,
ofm_box,
self.weight_tensor,
weight_box,
self.scale_tensor,
self.concat_axis,
self.concat_offset,
)
class DMA(Command):
def __init__(self, in_tensor, out_tensor, box):
self.cmdtype = CommandType.DMA
self.in_tensor = in_tensor
self.out_tensor = out_tensor
self.box = box
def __str__(self):
return "<DMA: in=%s, out=%s, box=%s>" % (self.in_tensor.name, self.out_tensor.name, self.box)
__repr__ = __str__
def get_memory_accesses(self):
res = MemoryAccessSet()
res.add(
self.in_tensor.get_address_ranges_for_coordinates(self.box.start_coord, self.box.end_coord),
AccessDirection.Read,
)
res.add(
self.out_tensor.get_address_ranges_for_coordinates(self.box.start_coord, self.box.end_coord),
AccessDirection.Write,
)
return res
def get_operation_count(self):
# returns numpy array of (DPU blocks, dma_ops)
return np.array((0, 1))