blob: 38e3f60382900812922f6aa7bba333d11b30fc02 [file] [log] [blame]
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16# Description:
17# Early optimisation of a TensorFlow Lite based network graph, using the rewrite_graph module
18# to do the traversal of the graph.
19import math
20import uuid
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020021
22import numpy as np
23
24from . import fp_math
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020025from . import rewrite_graph
26from . import scaling
27from .api import NpuRoundingMode
Fredrik Svedberga04f2f72022-07-06 13:42:24 +020028from .data_type import BaseType
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020029from .data_type import DataType
30from .debug_database import DebugDatabase
31from .errors import UnsupportedFeatureError
32from .ethos_u55_regs.ethos_u55_regs import resampling_mode
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +020033from .graph_optimiser_util import bypass_memory_only_ops
Patrik Gustavssonc74682c2021-08-17 14:26:38 +020034from .graph_optimiser_util import calc_explicit_padding
Patrik Gustavssondf995102021-08-23 15:33:59 +020035from .graph_optimiser_util import convert_depthwise_to_conv
Patrik Gustavssonf436ada2021-09-14 14:56:48 +020036from .graph_optimiser_util import convert_to_lut
Patrik Gustavssondf995102021-08-23 15:33:59 +020037from .graph_optimiser_util import fix_sg_input_output
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +020038from .graph_optimiser_util import memory_only_ops
Patrik Gustavssonf1580f02021-09-01 12:43:02 +020039from .graph_optimiser_util import move_splitsliceread_to_consumer
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020040from .graph_optimiser_util import needed_total_padding
41from .graph_optimiser_util import set_ifm_ofm_op_shapes
42from .graph_optimiser_util import set_tensor_equivalence
43from .numeric_util import clamp_sigmoid
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020044from .numeric_util import round_away_zero
Johan Alfvén17009392022-08-30 09:14:56 +020045from .numeric_util import round_up_to_int
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020046from .operation import create_activation_function
Fredrik Svedberg1a7527c2021-09-13 15:52:16 +020047from .operation import ExplicitScaling
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020048from .operation import NpuBlockType
49from .operation import Op
50from .operation import Operation
51from .operation import Padding
52from .operation_util import create_avgpool_nop
53from .operation_util import get_pad_values_from_input
Ayaan Masood25f48dd2022-06-29 18:16:04 +010054from .scaling import quantise_scale
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +020055from .shape4d import Shape4D
56from .softmax import SoftMax
57from .tensor import check_quantized_tens_scaling_equal
58from .tensor import create_const_tensor
59from .tensor import create_equivalence_id
60from .tensor import QuantizationParameters
61from .tensor import Tensor
62from .tensor import TensorPurpose
63from .tflite_mapping import optype_to_builtintype
64
65passthrough_nodes = (Op.Identity,)
66
67
68def create_avg_pool_for_concat(concat_op, name, ifm, ifm_shape: Shape4D, write_offset: Shape4D):
69 """Creates an average pool for the given concat op/input feature map"""
70 ofm = concat_op.ofm
71 avgpool_op = create_avgpool_nop(name)
72 avgpool_op.inputs = [ifm]
73 avgpool_op.outputs = [ofm]
74
75 avgpool_op.write_offset = write_offset
76 avgpool_op.write_shape = ifm_shape
77 ofm.ops.append(avgpool_op)
78 DebugDatabase.add_optimised(concat_op, avgpool_op)
79 avgpool_op.ifm_shapes.append(ifm_shape)
80 avgpool_op.ofm_shapes.append(concat_op.ofm_shapes[0])
81 avgpool_op.memory_function = Op.ConcatSliceWrite
82 return avgpool_op
83
84
85def remove_passthrough_tensor(tens, arch, nng):
86 if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
87 assert len(tens.ops[0].inputs) == 1
88 tens = tens.ops[0].inputs[0]
89 return tens
90
91
92def rewrite_concat_ops(op, arch):
93 if not op.run_on_npu or not op.type.is_concat_op():
94 return
95
96 axis_4D = 0
97 ofm = op.ofm
98 ofm.ops = []
99 offset = 0
100
101 unfuse_activation_function(op)
102
103 if op.type == Op.Pack:
104 # Pack is also referred to as Stack
105 axis = int(op.attrs["axis"])
106 if axis < 0: # Convert to positive axis
107 axis = len(op.inputs[0].shape) + 1 + axis
108
109 desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]
110
111 axis_4D = axis + (4 - len(desired_shape))
112
113 for idx, inp in enumerate(op.inputs):
114 op.ifm_shapes[idx] = Shape4D(desired_shape)
115 op.type = Op.PackReshaped
116
117 inputs, axis = op.get_concat_inputs_axis()
118 for idx, inp in enumerate(inputs):
119 if op.type != Op.PackReshaped:
120 op.ifm_shapes[idx] = Shape4D(inp.shape)
121 if axis >= 0:
122 axis_4D = axis + (4 - len(inp.shape))
123 else:
124 axis_4D = axis
125 write_offset = [0, 0, 0, 0]
126 write_offset[axis_4D] = offset
127 concat_end = offset + op.ifm_shapes[idx][axis_4D]
128 create_avg_pool_for_concat(
129 op, op.name + str(idx) + "_avgpool", inp, op.ifm_shapes[idx], Shape4D.from_list(write_offset)
130 )
131 offset = concat_end
132 assert ofm.shape[axis] == offset
133
134 return op
135
136
137def rewrite_split_ops(tens, arch, nng):
138
139 if len(tens.ops) == 1 and tens.ops[0].type.is_split_op() and tens.ops[0].type != Op.Unpack:
140 split_op = tens.ops[0]
141
142 # Not supported so leave it and run on CPU
143 if not split_op.run_on_npu:
144 return tens
145
146 inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()
147
148 tens.ops = []
149 new_op = Operation(Op.SplitSliceRead, split_op.name)
150 new_op.inputs = [inp]
151 ofm_shape_idx = 0
Tim Hall51a8dce2021-12-20 16:49:27 +0000152 if None in (offset_end, offset_start):
153 read_shape = None
154 else:
155 # the read shape is relative to each start offset
156 read_shape = [oe - os for oe, os in zip(offset_end, offset_start)]
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200157
158 # For Split the offset cannot be extracted from the tensor so it has to
159 # be calculated from the index of the output tensor
160 if axis is not None:
161 # Get the start and end of the split
162 offset_start = [0] * 4
163 axis_4D_list = split_op.attrs.get("split_axis_4D", None) # Present for UnpackReshaped and some StridedSlice
164 for idx, out in enumerate(outputs):
165 if axis_4D_list is not None:
166 axis_4D = axis_4D_list[idx]
167 else:
168 split_op.ofm_shapes[idx] = Shape4D(out.shape)
169 if axis >= 0:
170 axis_4D = axis + (4 - len(out.shape))
171 else:
172 axis_4D = axis
173
174 if out == tens:
175 ofm_shape_idx = idx
176 read_shape = split_op.ofm_shapes[idx]
177 break
178
179 offset_start[axis_4D] += split_op.ofm_shapes[idx][axis_4D]
180
181 new_op.read_offsets[0] = Shape4D.from_list(offset_start, 0)
182 new_op.read_shapes[0] = read_shape
183 new_op.run_on_npu = True
184 new_op.set_output_tensor(tens)
185 new_op.ifm_shapes.append(Shape4D(inp.shape))
186 new_op.ofm_shapes.append(split_op.ofm_shapes[ofm_shape_idx])
187 DebugDatabase.add_optimised(split_op, new_op)
188
189 return tens
190
191
192def remove_SplitSliceRead(op, arch):
193
194 if op.type == Op.SplitSliceRead:
195 # Check if it is possible to put the SplitSliceRead on the tensor consumer, or if an avgpool need to be inserted
196 if (
197 len(op.ofm.consumer_list) == 1
198 and op.ofm.consumer_list[0] is not None
199 and op.ofm.consumer_list[0].run_on_npu
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +0200200 and op.ofm.consumer_list[0].type not in memory_only_ops
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200201 and op.ofm_shapes[0] == Shape4D.from_list(op.ofm.shape)
202 ):
203 # SplitSliceRead can be performed by tensor consumer
204 cons_op = op.ofm.consumer_list[0]
Patrik Gustavssonf1580f02021-09-01 12:43:02 +0200205 move_splitsliceread_to_consumer(op, cons_op)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200206 else:
207 avgpool_op = create_avgpool_nop(op.name + "_avgpool")
208 avgpool_op.add_input_tensor(op.ifm)
209 avgpool_op.outputs = [op.ofm]
210 op.ofm.ops.remove(op)
211 op.ofm.ops.append(avgpool_op)
212 avgpool_op.ifm_shapes.append(op.ifm_shapes[0])
213 avgpool_op.ofm_shapes.append(op.ofm_shapes[0])
214 avgpool_op.read_offsets[0] = op.read_offsets[0]
215 avgpool_op.read_shapes[0] = op.read_shapes[0]
216
217 op.ifm.consumer_list.remove(op)
218 DebugDatabase.add_optimised(op, avgpool_op)
219
220
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200221def calc_padding_and_skirt(padding_type, kernel, input_shape, explicit_padding):
222 k_w, k_h = kernel.dilated_wh()
223 s_x, s_y = kernel.stride
224 ypad = needed_total_padding(int(input_shape.height), int(s_y), int(k_h))
225 xpad = needed_total_padding(int(input_shape.width), int(s_x), int(k_w))
226 if padding_type == Padding.SAME:
227 left_pad = (xpad + 0) // 2
228 right_pad = (xpad + 1) // 2
229 top_pad = (ypad + 0) // 2
230 bottom_pad = (ypad + 1) // 2
231 elif padding_type == Padding.VALID:
232 left_pad = 0
233 right_pad = 0
234 top_pad = 0
235 bottom_pad = 0
236 elif padding_type == Padding.EXPLICIT:
237 # Padding is specified in a PAD operator which has been bypassed.
238 top, left, bottom, right = explicit_padding
239 top_pad, bottom_pad = calc_explicit_padding(int(input_shape.height), int(s_y), int(k_h), int(top), int(bottom))
240 left_pad, right_pad = calc_explicit_padding(int(input_shape.width), int(s_x), int(k_w), int(left), int(right))
241 else:
Tim Hall0ab2edc2022-02-23 17:58:02 +0000242 raise UnsupportedFeatureError(f"Unsupported padding = {padding_type} for padding calculation")
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200243 padding = (top_pad, left_pad, bottom_pad, right_pad)
244 skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
245 return padding, skirt
246
247
248def calc_upscaled_padding_and_skirt(padding_type, kernel_size, stride, input_shape, upscaling_factor):
249 kernel_height, kernel_width = kernel_size[0], kernel_size[1]
250 if padding_type == Padding.SAME:
251 ypad = needed_total_padding(int(input_shape.height) * upscaling_factor, int(stride[1]), int(kernel_height))
252 xpad = needed_total_padding(int(input_shape.width) * upscaling_factor, int(stride[2]), int(kernel_width))
253 right_pad = max(((xpad + 1) // upscaling_factor) - 1, 0)
254 bottom_pad = max(((ypad + 1) // upscaling_factor) - 1, 0)
255 left_pad = max(kernel_width - 1 - right_pad, 0)
256 top_pad = max(kernel_height - 1 - bottom_pad, 0)
257 elif padding_type == Padding.VALID:
258 right_pad = max(kernel_width - 2, 0)
259 bottom_pad = max(kernel_height - 2, 0)
260 left_pad = kernel_width - 1
261 top_pad = kernel_height - 1
262 else:
Tim Hall0ab2edc2022-02-23 17:58:02 +0000263 raise UnsupportedFeatureError(f"Unsupported padding = {padding_type} for up-scaled padding calculation")
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200264 padding = (top_pad, left_pad, bottom_pad, right_pad)
265 skirt = padding
266 return padding, skirt
267
268
269def fixup_conv2d_backprop(op, arch, nng):
270 if op.type == Op.Conv2DBackpropInput:
271 # flip the inputs
272 op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
273 op.type = Op.Conv2DBackpropInputSwitchedBias
Tim Hall3c5cfe92022-03-16 16:31:57 +0000274 op.ifm_resampling_mode = resampling_mode.TRANSPOSE
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200275
276 # Update strides
277 op.attrs.update({"stride_w": 1, "stride_h": 1, "strides": (1, 1, 1, 1)})
278
279 return op
280
281
282# Convert the op to an elementwise add
Tim Hall885033b2022-07-21 11:46:03 +0100283def convert_resize_1x1_to_add(op):
284 op.type = Op.Add # original_type will stay as Op.ResizeBilinear or Op.ResizeNearestNeighbor
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200285 op.name = op.name + "_add"
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200286 # Create an input tensor filled with zeros
287 shape = op.ofm_shapes[0].as_list()
288 tens = Tensor(shape, op.inputs[0].dtype, op.inputs[1].name + "_add")
James Peet7519d502021-07-19 16:47:58 +0100289 tens.values = np.zeros(shape, tens.dtype.as_numpy_type())
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200290 tens.quantization = QuantizationParameters(0.0, 255.0)
291 tens.quantization.scale_f32 = 1.0
292 tens.quantization.zero_point = 0
293 tens.consumer_list = [op]
294 tens_op = op.inputs[1].ops[0]
295 tens_op.set_output_tensor(tens)
296 # Set the add inputs
297 op.inputs[1] = op.inputs[0]
298 op.inputs[0] = tens
299 op.set_ifm_ofm_shapes()
300
301 return op
302
303
Tim Hall885033b2022-07-21 11:46:03 +0100304# Convert ResizeNearestNeightbor with align corners to a depthwise convolution. The IFM will already have been upscaled
305# apart from the final x2 scaling which will be done as part of this operation. The kernel contains a single coefficient
306# to select the appropriate nearest neighbor value
307def convert_resizenn_ac_to_depthwise_conv(op, upscale_factor):
308 ifm = op.ifm
309 ofm = op.ofm
310 output_depth = ofm.shape[-1]
311 dw_op_attrs = {
312 "padding": Padding.VALID,
313 "stride_h": 1,
314 "stride_w": 1,
315 "strides": (1, 1, 1, 1),
316 "depth_multiplier": 1,
317 "channel_multiplier": 1,
318 "dilation_h_factor": 1,
319 "dilation_w_factor": 1,
320 "dilation": (1, 1, 1, 1),
321 }
322
323 # change resizebilinear to depthwise
324 op.type = Op.DepthwiseConv2DBias
325 op.attrs.update(dw_op_attrs)
326 op.set_input_tensor(ifm, 0) # ifm tensor index
327 op.activation = None
328
329 # add input resample to resize by x2
330 op.ifm_resampling_mode = resampling_mode.NEAREST
331
332 # don't care about the rounding mode as it is nearest neighbor
333
334 # setup weight tensor
335 weight_quant = QuantizationParameters()
336 weight_quant.scale_f32 = 1.0 # no scaling as only a single non-zero coeff to select the desired value
337 weight_quant.zero_point = 0
338 weight_quant.quant_dim = 0
339 ofm_dtype = ofm.dtype
340 if ofm_dtype == DataType.uint8:
341 weight_value_dtype = np.uint8
342 weight_quant.quant_min = 0
343 weight_quant.quant_max = (1 << ofm_dtype.bits) - 1
344 else:
345 if ofm_dtype == DataType.int8:
346 weight_value_dtype = np.int8
347 else:
348 assert ofm_dtype == DataType.int16
349 weight_value_dtype = np.int16
350
351 weight_quant.quant_min = -(1 << (ofm_dtype.bits - 1))
352 weight_quant.quant_max = (1 << (ofm_dtype.bits - 1)) - 1
353
354 weight_shape = [upscale_factor, upscale_factor, output_depth, output_depth] # HWIO
355
356 # the single non-zero coefficient used to select the desired value needs to be placed in the 'centre value', which
357 # is calculated by finding the 'centre position' ('*' in the diagram below) and then choosing the 'value' that is
358 # below-and-right (i.e. next) to it (D).
359 # 0---1---2
360 # | A | B |
361 # 1---*---+
362 # | C | D |
363 # 2---+---+
364 weight_values = [0] * (upscale_factor * upscale_factor)
365 centre_coeff = (upscale_factor // 2) * upscale_factor + (upscale_factor // 2)
366 weight_values[centre_coeff] = 1
367
368 # add weight tensor, this will discard the size tensor of the resize op
369 op.set_input_tensor(
370 create_const_tensor(
371 "weights",
372 weight_shape,
373 ofm.dtype,
374 np.array(weight_values).reshape(weight_shape),
375 value_dtype=weight_value_dtype,
376 quantization=weight_quant,
377 ),
378 1, # inputs tensor weight index
379 )
380
381 # setup bias tensor by assign None and then call the fix-up function to create a suitable tensor.
382 # need to append the bias tensor as resize ops only have 2 inputs
383 assert len(op.inputs) == 2
384 op.inputs.append(None)
385 fixup_bias_tensors(op, None, None)
386
387 # finally update the shape incase we've change the tensor shapes or connections
388 op.set_ifm_ofm_shapes()
389
390 return op
391
392
393# Convert ResizeBilinear/NearestNeighbor to a number of 1x1 average pools with nearest neighbor x2 upscaling and one
394# final average pool with a kernel size that depends upon the resize ops upscaling factor (x2, x4 or x8). The maximum
395# upscale factor is limited to x8 because of the limit 8x8 kernel size limit for average pool with padding.
396def convert_resize_to_upscale_and_average_pool(op):
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200397 pre_op = op
398 outputs = op.outputs
Rickard Boline546def2022-01-25 15:45:00 +0000399 dtype = op.ifm.dtype
Tim Hall885033b2022-07-21 11:46:03 +0100400
Rickard Boline546def2022-01-25 15:45:00 +0000401 op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 1, 1, 1)})
Tim Hall47c76362022-07-18 21:26:47 +0100402 op.attrs["padding"] = Padding.SAME # doesn't really matter as the kernel is 1x1
Tim Hall3c5cfe92022-03-16 16:31:57 +0000403 op.ifm_resampling_mode = resampling_mode.NEAREST
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200404
405 upscaled_shape = np.array(op.ifm_shapes[0].get_hw_as_list())
Tim Hall47c76362022-07-18 21:26:47 +0100406
407 # Get upscale factor that was calculated in the supported operators check
408 upscale_factor = op.attrs["upscale_factor"]
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200409
Rickard Boline546def2022-01-25 15:45:00 +0000410 # Calculate how many times 2x2 upscaling needs to be performed
Tim Hallf9267da2022-04-20 20:19:48 +0100411 # Force the result of round to be an integer. This is because the behaviour of rounding numpy.float64 values changed
412 # between different versions of numpy. This consistency ensures that the kernel dimensions are kept integral
Rickard Boline546def2022-01-25 15:45:00 +0000413 n = int(np.log2(upscale_factor))
414
Tim Hall885033b2022-07-21 11:46:03 +0100415 # Perform x2 upscaling n-1 times
Rickard Boline546def2022-01-25 15:45:00 +0000416 scaled_op = pre_op
417 for count in range(n - 1):
418 if count > 0:
419 scaled_op = op.clone(f"_{count}")
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200420 scaled_op.inputs[0] = pre_op.outputs[0]
421
Tim Hall885033b2022-07-21 11:46:03 +0100422 # Nearest neighbor x2 upscaling
Tim Hall47c76362022-07-18 21:26:47 +0100423 upscaled_shape = upscaled_shape * 2
Rickard Boline546def2022-01-25 15:45:00 +0000424 shape = op.ofm_shapes[0].as_list()
425 shape[1:3] = upscaled_shape
426 out_tens = Tensor(shape, dtype, f"{op.outputs[0].name}_{count}")
427 out_tens.quantization = op.outputs[0].quantization.clone()
428 scaled_op.set_output_tensor(out_tens)
429 pre_op = scaled_op
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200430
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200431 scaled_op.set_ifm_ofm_shapes()
432
Tim Hall885033b2022-07-21 11:46:03 +0100433 # Last x2 upscaling
Rickard Boline546def2022-01-25 15:45:00 +0000434 if n > 1:
435 scaled_op = op.clone(f"_{n-1}")
436 scaled_op.inputs[0] = pre_op.outputs[0]
Tim Hall885033b2022-07-21 11:46:03 +0100437
438 if scaled_op.original_type == Op.ResizeBilinear:
439 if scaled_op.attrs["align_corners"]:
440 # no padding
441 scaled_op.attrs["padding"] = Padding.VALID
442 else:
443 # padding to the right and bottom (limits average pool to 8x8 kernel)
444 scaled_op.attrs["padding"] = Padding.EXPLICIT
445 scaled_op.attrs["explicit_padding"] = [0, 0, upscale_factor - 1, upscale_factor - 1]
446
447 # kernal size dependent on the upscaling factor
448 scaled_op.attrs.update({"ksize": (1, upscale_factor, upscale_factor, 1)})
449 else: # Op.ResizeNearestNeighbor
450 if scaled_op.attrs["align_corners"]:
451 # use depthwise conv to select the correct value
452 scaled_op = convert_resizenn_ac_to_depthwise_conv(scaled_op, upscale_factor)
453 else:
454 # keep 1x1 kernel and average pool
455 pass
456
Rickard Boline546def2022-01-25 15:45:00 +0000457 scaled_op.outputs = outputs
458 scaled_op.outputs[0].ops = [scaled_op]
459 scaled_op.set_ifm_ofm_shapes()
460
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200461 return op
462
463
Tim Hall885033b2022-07-21 11:46:03 +0100464def fixup_resize(op, arch, nng):
465 if op.type.is_resize_op() and op.run_on_npu:
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200466 if op.ifm_shapes[0] == op.ofm_shapes[0]:
Tim Hall885033b2022-07-21 11:46:03 +0100467 # Bypass the resize op which is essentially a NOP
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200468 op.inputs = op.inputs[:1]
469 op.type = Op.Identity
470 elif op.ifm_shapes[0].height == 1 and op.ifm_shapes[0].width == 1:
Tim Hall885033b2022-07-21 11:46:03 +0100471 convert_resize_1x1_to_add(op)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200472 else:
Tim Hall885033b2022-07-21 11:46:03 +0100473 convert_resize_to_upscale_and_average_pool(op)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200474
475 return op
476
477
478def convert_nop_split_to_identity(op, arch, nng):
479 if op.type == Op.Split and op.attrs.get("num_splits") == 1:
480 # the list comprehension should return a list with a single tensor
481 # if it shouldn't, remove_passthrough_tensor will fail appropriately
482 op.inputs = [i for i in op.inputs if i.shape == op.outputs[0].shape]
483 op.type = Op.Identity
484 return op
485
486
Ayaan Masooda2ec5aa2022-04-21 14:28:03 +0100487def rewrite_fully_connected_input(op: Operation, arch, nng):
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200488
Ayaan Masooda2ec5aa2022-04-21 14:28:03 +0100489 if op.type == Op.FullyConnected:
490 new_shape = op.ifm.get_shape_as_2d(op.weights.shape[-2])
491 assert new_shape is not None, "Tensor can not be reshaped to 2D"
492 op.ifm_shapes[0] = new_shape
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200493 return op
494
495
496def convert_batched_fc_shape(op, arch, nng):
497 if op.type == Op.FullyConnected:
498 # Check if the first dimension indicates batching
499 if op.ifm_shapes[0].batch > 1:
500 batching_split = {4: (2, 2), 8: (2, 4), 16: (4, 4)}
501 n = op.ifm_shapes[0].batch
502 h, w = batching_split.get(n, (1, n))
503 op.ifm_shapes[0] = Shape4D([1, h, w, op.ifm_shapes[0].depth])
504
505 # Reshape Weights to be 4D. IO becomes HWIO
506 weight_tensor = op.inputs[1]
James Peet7519d502021-07-19 16:47:58 +0100507 weight_tensor.values = np.expand_dims(np.expand_dims(weight_tensor.values, axis=0), axis=0)
508 weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200509
510 n = op.ofm_shapes[0].batch
511 h, w = batching_split.get(n, (1, n))
512 op.ofm_shapes[0] = Shape4D([1, h, w, op.ofm_shapes[0].depth])
513 return op
514
515
516def unfuse_activation_function(op):
517 if op.type == Op.ConcatTFLite and op.run_on_npu and op.activation is not None:
518 act_op = Operation(op.activation.op_type, op.name + op.activation.op_type.name)
519 op.activation = None
520 out_tens = op.outputs[0]
521 intermediate_tens = out_tens.clone("_act_intermediate")
522 act_op.set_output_tensor(out_tens)
523 act_op.add_input_tensor(intermediate_tens)
524 op.set_output_tensor(intermediate_tens)
525 act_op.set_ifm_ofm_shapes()
526
527
528def rewrite_stridedslice_output(op, arch, nng):
529 if not op.run_on_npu or op.type != Op.StridedSlice:
530 return op
531
532 new_axis_mask = op.attrs["new_axis_mask"]
533 shrink_axis_mask = op.attrs["shrink_axis_mask"]
534
535 if shrink_axis_mask == 0 and new_axis_mask == 0:
536 return op
537
538 axis_4D = [0] * len(op.outputs)
539 for idx, out_tens in enumerate(op.outputs):
540 output_shape = list(out_tens.shape)
541
542 if shrink_axis_mask != 0:
543 n = 0
544 axis = 0
545 while shrink_axis_mask:
546 prev_mask = shrink_axis_mask
547 n += 1
548 shrink_axis_mask &= shrink_axis_mask - 1
549 axis = int(math.log2(prev_mask - shrink_axis_mask))
550 output_shape = output_shape[:axis] + [1] + output_shape[axis:]
551
552 assert len(out_tens.shape) == (len(op.inputs[0].shape) - n)
553 op.attrs["shrink_axis_mask"] = 0
554 if axis >= 0:
555 axis_4D[idx] = axis + (4 - len(output_shape))
556 else:
557 axis_4D[idx] = axis
558 op.ofm_shapes[idx] = Shape4D(output_shape)
559
560 elif new_axis_mask != 0:
561 n = 0
562 axis = 0
563 while new_axis_mask:
564 prev_mask = new_axis_mask
565 n += 1
566 new_axis_mask &= new_axis_mask - 1
567 axis = int(math.log2(prev_mask - new_axis_mask))
568 output_shape = output_shape[:axis] + output_shape[(axis + 1) :]
569 new_axis_mask >>= 1
570
571 assert len(out_tens.shape) == (len(op.inputs[0].shape) + n)
572 op.attrs["new_axis_mask"] = 0
573 if axis >= 0:
574 axis_4D[idx] = axis + (4 - len(output_shape))
575 else:
576 axis_4D[idx] = axis
577 op.ofm_shapes[idx] = Shape4D(output_shape)
578
579 op.attrs["split_axis_4D"] = axis_4D
580 return op
581
582
583def rewrite_unpack_output(op, arch, nng):
584 tens = op.outputs[0]
585 if op.run_on_npu and op.type == Op.Unpack:
586 # Unpack is also referred to as Unstack
587 axis = int(op.attrs["axis"])
588 if axis < 0: # Convert to positive axis
589 axis = len(op.inputs[0].shape) + 1 + axis
590 op.type = Op.UnpackReshaped
591 desired_output_shape = tens.shape[:axis] + [1] + tens.shape[axis:]
592
593 axis_4D = axis + (4 - len(desired_output_shape))
594 op.attrs["split_axis_4D"] = [axis_4D] * len(op.outputs)
595
596 for idx, out_tens in enumerate(op.outputs):
597 op.ofm_shapes[idx] = Shape4D(desired_output_shape)
598 return op
599
600
601def add_padding_fields(op, arch, nng):
602 if op.run_on_npu:
603 if "padding" in op.attrs:
604 input_shape = op.ifm_shapes[0]
605 output_shape = op.ofm_shapes[0]
606 if op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op():
607 kernel_size = op.inputs[1].shape[:2]
608 elif op.type.is_pool_op() or op.type.npu_block_type == NpuBlockType.ReduceSum:
609 kernel_size = op.attrs["ksize"][1:3]
610 else:
611 raise UnsupportedFeatureError(f"Unknown operation that uses padding: {optype_to_builtintype(op.type)}")
612
613 if op.type == Op.Conv2DBackpropInputSwitchedBias:
614 upscaling_factor = output_shape.height // input_shape.height
615 padding, skirt = calc_upscaled_padding_and_skirt(
616 op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape, upscaling_factor
617 )
618 else:
619 padding, skirt = calc_padding_and_skirt(
Jonas Ohlssond8575072022-03-30 10:30:25 +0200620 op.attrs["padding"],
621 op.kernel,
622 input_shape,
623 op.attrs.get("explicit_padding"),
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200624 )
625
626 op.attrs["explicit_padding"] = padding
627 op.attrs["skirt"] = skirt
628
629 return op
630
631
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200632def reorder_depthwise_weights(op, arch, nng):
633 if op.type.is_depthwise_conv2d_op():
634 weight_tensor = op.inputs[1]
James Peet7519d502021-07-19 16:47:58 +0100635 weight_tensor.values = np.transpose(weight_tensor.values, (0, 1, 3, 2))
636 weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200637 weight_tensor.weight_transpose_depthwise = True
638
639 return op
640
641
642def optimise_strided_conv(op, arch, nng):
Louis Verhaard43d27582022-03-17 14:06:00 +0100643 if op.type != Op.Conv2DBias or op.op_index != 0:
644 return op
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200645 stride_x, stride_y = op.get_kernel_stride()
Louis Verhaard43d27582022-03-17 14:06:00 +0100646 weight_tensor = op.weights
647 ifm_shape = op.ifm_shapes[0]
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200648
649 if (
Louis Verhaard43d27582022-03-17 14:06:00 +0100650 stride_x == 2
651 and ifm_shape.depth <= 4
652 and ifm_shape.width % 2 == 0
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200653 and weight_tensor is not None
654 and weight_tensor.shape[1] >= 2
655 ):
Louis Verhaard43d27582022-03-17 14:06:00 +0100656 k_w, _ = op.get_kernel_size()
657 curr_padding_x = needed_total_padding(ifm_shape.width, 2, k_w)
658 optimised_padding_x = needed_total_padding(ifm_shape.width // 2, 1, (k_w + 1) // 2)
659 if curr_padding_x != optimised_padding_x:
660 # Horizontal padding would become different after optimisation; this would not work
661 return op
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200662 # IFM
663 op.ifm_shapes[0] = Shape4D([ifm_shape.batch, ifm_shape.height, ifm_shape.width // 2, ifm_shape.depth * 2])
664
665 # Weights
666 weight_shape = weight_tensor.shape
667 if weight_shape[1] % 2 != 0:
668 weight_shape[1] = weight_shape[1] + 1
669 padded_array = np.zeros(weight_shape)
670 for i in range(weight_shape[0]):
671 padded_array[i] = np.vstack(
672 [
James Peet7519d502021-07-19 16:47:58 +0100673 weight_tensor.values[i],
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200674 np.full((1, weight_shape[2], weight_shape[3]), weight_tensor.quantization.zero_point),
675 ]
676 )
James Peet7519d502021-07-19 16:47:58 +0100677 weight_tensor.values = padded_array
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200678 weight_shape[1] //= 2
679 weight_shape[2] *= 2
James Peet7519d502021-07-19 16:47:58 +0100680 weight_tensor.values = np.reshape(weight_tensor.values, weight_shape)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200681 weight_tensor.set_all_shapes(weight_shape)
682 # If multiple copies of the weights are used, we could avoid
683 # them having the same address by changing the value_id
684 weight_tensor.value_id = uuid.uuid4()
685
686 # Strides
687 stride_x = 1
688 op.attrs.update({"stride_w": stride_x, "stride_h": stride_y, "strides": (1, stride_y, stride_x, 1)})
689
690 return op
691
692
693def convert_conv_to_fc(op, arch, nng):
694 # Conv 1x1 can be equivalent to Fully Connected.
695 # By representing certain convs as fully connected layers, Vela can better determine wether or not to use
696 # caching/double buffering for the weights.
697 # (Weights dont need to be reloaded for convs when IFM H and W are 1)
698 if op.type == Op.Conv2DBias:
699 h = op.ifm_shapes[0].height
700 w = op.ifm_shapes[0].width
701 kh, kw, _, _ = op.inputs[1].shape
702 if h == 1 and w == 1 and kh == 1 and kw == 1:
703 # Overwrite this op as a Fully Connected Op
704 op.name += "_fc"
705 op.type = Op.FullyConnected
706 op.attrs = {
707 "weights_format": 0,
708 }
709 # Reshape Weights to be 2D. HWIO becomes just IO (as H and W are 1, they can just be dropped)
710 weight_tensor = op.inputs[1]
James Peet7519d502021-07-19 16:47:58 +0100711 weight_tensor.values = weight_tensor.values.squeeze(axis=(0, 1))
712 weight_tensor.set_all_shapes(list(weight_tensor.values.shape))
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200713
714 DebugDatabase.add_optimised(op, op)
715 return op
716
717
718def fixup_relus_with_differing_ifm_ofm_scaling(op, arch, nng):
719 if op.run_on_npu and op.type.is_relu_op():
720 ifm = op.inputs[0]
721 ofm = op.outputs[0]
722 # Relu with differing IFM and OFM scaling cannot be fused with another primary op
723 # and requires its own to be inserted
724 if not check_quantized_tens_scaling_equal(ifm, ofm):
725 # Override this op with its own primary op (avgpool)
726 relu_fused_op = create_avgpool_nop(op.name + "_avgpool")
727 # And fuse the original activation function to it
728 relu_fused_op.activation = create_activation_function(op.type)
Fredrik Svedberg1a7527c2021-09-13 15:52:16 +0200729 # Add explicit rescaling
730 rescale = ifm.quantization.scale_f32 / ofm.quantization.scale_f32
731 multiplier, shift = scaling.quantise_scale(rescale)
732 relu_fused_op.rescale = ExplicitScaling(False, [shift], [multiplier])
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200733 # Tidy up and assign the ifm and ofm to the new op
734 ifm.consumer_list.remove(op)
735
736 relu_fused_op.add_input_tensor(ifm)
737 relu_fused_op.set_output_tensor(ofm)
738 relu_fused_op.set_ifm_ofm_shapes()
739 op = relu_fused_op
740 return op
741
742
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200743def convert_softmax(op, arch, nng):
744 if op.type == Op.Softmax and op.run_on_npu:
745 softmax = SoftMax(op)
746 op = softmax.get_graph()
747 return op
748
749
Fredrik Svedberg8ddd4892022-08-19 16:06:04 +0200750def convert_prelu(op, arch, nng):
751 if op.type == Op.Prelu:
752 ifm, alpha, ofm = op.get_ifm_ifm2_ofm()
753 if None in (ifm, alpha, ofm):
754 return op
755
756 no_scale_quant = ifm.quantization.clone()
757 no_scale_quant.scale_f32 = None
758 no_scale_quant.zero_point = 0
759 zero = create_const_tensor("zero_const", [1, 1, 1, 1], ifm.dtype, [0], quantization=no_scale_quant)
760
761 # Select values < 0
762 min_op = Operation(Op.Minimum, op.name + "_min")
763 min_op.add_input_tensor(ifm)
764 min_op.add_input_tensor(zero)
765 fm_negative = ifm.clone(op.name + "_negative", set_unique=True)
766 min_op.set_output_tensor(fm_negative)
767 min_op.set_ifm_ofm_shapes()
768 DebugDatabase.add_optimised(op, min_op)
769
770 # and multiply with alpha tensor
771 mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
772 mul_alpha.add_input_tensor(fm_negative)
773 mul_alpha.add_input_tensor(alpha)
774 fm_alpha = ofm.clone(op.name + "_negative_alpha", set_unique=True)
775 mul_alpha.set_output_tensor(fm_alpha)
776 mul_alpha.set_ifm_ofm_shapes()
777 DebugDatabase.add_optimised(op, mul_alpha)
778
779 # Select (and scale) values > 0
780 relu_op = Operation(Op.Relu, op.name + "_relu")
781 relu_op.add_input_tensor(ifm)
782 fm_scaled = ofm.clone(op.name + "_positive_scaled", set_unique=True)
783 relu_op.set_output_tensor(fm_scaled)
784 relu_op.set_ifm_ofm_shapes()
785 DebugDatabase.add_optimised(op, relu_op)
786
787 # Add scaled and alpha multiplied values (without scaling)
788 add_op = Operation(Op.RescaleAdd, op.name + "_add")
789 add_op.rescale = (1, 0) # No scale or shift
790 add_op.add_input_tensor(fm_alpha)
791 add_op.add_input_tensor(fm_scaled)
792 add_op.set_output_tensor(ofm)
793 add_op.set_ifm_ofm_shapes()
794
795 DebugDatabase.add_optimised(op, add_op)
796 ifm.consumer_list.remove(op)
797 op = add_op
798
799 return op
800
801
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200802def convert_mul_max_to_abs_or_lrelu(op, arch, nng):
803 r"""Whenever there is a subgraph with this topology:
804
Jonas Ohlssond8575072022-03-30 10:30:25 +0200805 Input X For X = -1 or X > 0
806 | \ / This subgraph can be replaced with either
807 | Mul an Abs (if X = -1) or a LeakyReLU (if X > 0)
808 | /
809 Max
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200810 """
811
812 if op.type == Op.Maximum:
813 # finds the Mul input(s) to the Max
814 muls = [i for i in op.inputs if i.ops[0].type == Op.Mul]
815 if len(muls) == 1:
816 mul = muls[0].ops[0]
817 elif len(muls) == 2:
818 # In the case both inputs are Muls, find the one with the same input as the Max
819 mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
820 else:
821 # No Mul inputs
822 return op
823
824 # make sure the Mul doesn't have any other consumers
825 mul_ofm = mul.outputs[0]
826 if len(mul_ofm.consumers()) != 1:
827 return op
828 # make sure the Mul doesn't have a fused activation function
829 if mul.activation:
830 return op
831 ifm, ofm = op.get_ifm_ofm()
832 if ifm is None or ofm is None:
833 return op
834
835 if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
836 return op
837 if not check_quantized_tens_scaling_equal(ifm, ofm) or not check_quantized_tens_scaling_equal(ifm, mul_ofm):
838 # rewrite to LeakyRelu currently only makes sense if the quantization is identical
839 return op
840
841 # finds the branched input that goes to both the Max and the Mul
842 shared = set(op.inputs) & set(mul.inputs)
843 if len(shared) == 1:
844 shared_in = shared.pop()
845 # find the constant scalar input to the Mul
846 const_tens = (set(mul.inputs) - {shared_in}).pop()
847 # check that it is a scalar
848 if const_tens.shape != []:
849 return op
850 const = const_tens.ops[0]
851 # check that it is a constant
852 if const.type != Op.Const:
853 return op
854 # Remove the Mul from the shared input's consumers
855 shared_in.consumer_list.remove(mul)
856 else:
857 return op
858
859 val = const.outputs[0].values
860 if val >= 0:
861 new_op = Op.LeakyRelu
862 op.attrs["alpha"] = val
863 # to produce bit exact results, the alpha is not enough;
864 # save additional scaling info in attr "alpha_scale", to be used as input
865 # to the LUT construction
James Peet7519d502021-07-19 16:47:58 +0100866 alpha_scalar = const_tens.values - const_tens.quantization.zero_point
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200867 mul_ifm_scale = np.double(ifm.quantization.scale_f32)
868 mul_ifm2_scale = np.double(const_tens.quantization.scale_f32)
869 mul_ofm_scale = np.double(mul_ofm.quantization.scale_f32)
870 alpha_scale, alpha_shift = scaling.elementwise_mul_scale(mul_ifm_scale, mul_ifm2_scale, mul_ofm_scale)
871 op.attrs["alpha_scaling"] = (alpha_scalar, alpha_scale, alpha_shift)
872 elif val == -1:
873 new_op = Op.Abs
874 else:
875 return op
876
877 op.type = new_op
878 op.name = op.name.replace("Maximum", new_op.name)
879 op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op.name)
880 op.inputs = [shared_in]
881 op.set_ifm_ofm_shapes()
882
883 # Record optimisation in debug database
884 DebugDatabase.add_optimised(op, op)
885
886 return op
887
888
889def convert_hardswish_to_lut(op, arch, nng):
890 if op.type == Op.HardSwish:
891 ifm, ofm = op.get_ifm_ofm()
892 # Generate the LUT
893 ifm_scale = np.double(ifm.quantization.scale_f32)
894 ofm_scale = np.double(ofm.quantization.scale_f32)
895 zp_in = ifm.quantization.zero_point
896 zp_out = ofm.quantization.zero_point
897 ifm_scale_hires = (1 / 128) * ifm_scale
898 relu_multiplier = np.double(3 / 32768)
899 out_scale, out_shift = scaling.quantise_scale(ifm_scale_hires / ofm_scale)
900 relu_scale, relu_shift = scaling.quantise_scale(ifm_scale_hires / relu_multiplier)
901 # Use 16bit scale
902 out_scale_16 = fp_math.downscale_multiplier_int32_to_int16(out_scale)
903 relu_scale_16 = fp_math.downscale_multiplier_int32_to_int16(relu_scale)
904
905 values = []
906 ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
907 quantized_min = min(ix)
908 quantized_max = max(ix)
909 for x in ix:
910 input_value = x - zp_in
911 input_value_hires = input_value * 128
912 # Compute the input value on essentially the output scale, not shifted yet
913 input_value_preshift = fp_math.saturating_rounding_mul16(input_value_hires, out_scale_16)
914 # Compute the "relu-ish multiplier". This matches the code in TensorFlow Lite Micro kernel
915 relu_value = np.int16(input_value_hires)
916 if relu_shift < 31:
917 relu_value = fp_math.shift_left16(relu_value, 30 - relu_shift)
918
919 relu_value = fp_math.saturating_rounding_mul16(relu_value, relu_scale_16)
920
921 if relu_shift < 31:
922 relu_value = fp_math.shift_left16(relu_value, 1)
923
924 if relu_shift > 31:
925 relu_value = fp_math.rounding_divide_by_pot(relu_value, relu_shift - 31)
926
927 # Rescaled the value into a 16bit fixedpoint relu_value in [-1, 1]
928 # Now convert that to a 16bit fixedpoint value in [0, 1]
929 relu_value = (relu_value + (1 << 15)) >> 1
930 lut_result = fp_math.saturating_mul16(relu_value, input_value_preshift)
931 shift = 31 - out_shift
932 shift = -shift if shift < 0 else 0
933 # Finally apply the output shift
934 lut_result = fp_math.rounding_divide_by_pot(lut_result, shift) + zp_out
935 lut_result = min(quantized_max, max(quantized_min, lut_result))
936 values.append(lut_result)
937 return convert_to_lut(op, values, "hardswish")
938 return op
939
940
941def convert_lrelu_to_mul_max(op, arch):
942 # Converts LeakyRelu to Max(alpha * IFM, identity * IFM)
943 # (the opposite of convert_mul_max_to_abs_or_lrelu)
944 ifm, ofm = op.get_ifm_ofm()
945 if ifm is None or ofm is None:
946 return op
947
948 # Add multiplication with alpha
949 mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
950 mul_alpha.add_input_tensor(ifm)
951 # Create const tensor containing alpha as scalar
Fredrik Svedbergcce872b2021-09-02 15:20:52 +0200952 alpha = np.float32(op.attrs["alpha"])
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200953 quantization = ifm.quantization.clone()
954 quantization.min = 0
955 quantization.max = alpha * (quantization.quant_max - quantization.quant_min)
956 quantization.zero_point = 0
Fredrik Svedbergcce872b2021-09-02 15:20:52 +0200957 if np.isinf(1 / alpha):
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200958 # Handling of alpha near zero
Fredrik Svedbergcce872b2021-09-02 15:20:52 +0200959 quantization.scale_f32 = np.float32(1)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200960 scalar = 0
961 else:
962 quantization.scale_f32 = alpha
963 scalar = alpha
964 alpha_tens = create_const_tensor(
965 op.name + "_alpha_scalar", [], ifm.dtype, [scalar], np.float32, quantization=quantization
966 )
James Peet7519d502021-07-19 16:47:58 +0100967 alpha_tens.values = np.array([1])
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200968 mul_alpha.add_input_tensor(alpha_tens)
969 fm_alpha = ofm.clone(op.name + "_alpha", set_unique=True)
970 mul_alpha.set_output_tensor(fm_alpha)
971 mul_alpha.set_ifm_ofm_shapes()
972 DebugDatabase.add_optimised(op, mul_alpha)
973
974 if check_quantized_tens_scaling_equal(ifm, ofm):
975 # No identity multiplication is needed
976 fm_id = ifm
977 else:
978 # Add multiplication with identity
979 mul_identity = Operation(Op.Mul, op.name + "_mul_identity")
980 mul_identity.add_input_tensor(ifm)
981 # Create const tensor containing identity as scalar
982 quantization = ifm.quantization.clone()
983 quantization.min = 0
984 quantization.max = quantization.quant_max - quantization.quant_min
Fredrik Svedbergcce872b2021-09-02 15:20:52 +0200985 quantization.scale_f32 = np.float32(1)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +0200986 quantization.zero_point = 0
987 identity_tens = create_const_tensor(
988 op.name + "_id_scalar", [], ifm.dtype, [1], np.uint8, quantization=quantization
989 )
990 mul_identity.add_input_tensor(identity_tens)
991 # Make sure that fm_id is allocated to a different address than fm_alpha
992 fm_id = ofm.clone(op.name + "_id", set_unique=True)
993 mul_identity.set_output_tensor(fm_id)
994 mul_identity.set_ifm_ofm_shapes()
995 DebugDatabase.add_optimised(op, mul_identity)
996
997 # Convert LeakyRelu to Max, add the results of the multiplication(s) as inputs
998 op.type = Op.Maximum
999 op.name = op.name.replace("LeakyRelu", "Maximum")
1000 op.inputs = []
1001 ifm.consumer_list.remove(op)
1002 op.add_input_tensor(fm_alpha)
1003 op.add_input_tensor(fm_id)
1004 op.set_ifm_ofm_shapes()
1005
1006 DebugDatabase.add_optimised(op, op)
1007 return op
1008
1009
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001010def convert_to_lut8(op, fn, fn_name):
1011 # Converts op to a no-op + int8/uint8 LUT which is generated with the given function.
1012 # fn is a function(real) -> real
1013 ifm, ofm = op.get_ifm_ofm()
1014 if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
1015 return op
1016 # Generate the LUT
1017 ifm_scale = np.double(ifm.quantization.scale_f32)
1018 ofm_scale = np.double(ofm.quantization.scale_f32)
1019 zp_in = ifm.quantization.zero_point
1020 zp_out = ofm.quantization.zero_point
1021 values = []
1022 ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
1023 quantized_min = min(ix)
1024 quantized_max = max(ix)
1025 for x in ix:
1026 x_real = ifm_scale * (x - zp_in)
1027 y_real = fn(x_real)
1028 lut_result = round_away_zero(zp_out + y_real / ofm_scale)
1029 lut_result = min(quantized_max, max(quantized_min, lut_result))
1030 values.append(lut_result)
1031 return convert_to_lut(op, values, fn_name)
1032
1033
1034def convert_lrelu_to_lut(op, arch):
1035 ifm, ofm = op.get_ifm_ofm()
1036 # Generate the LUT
1037 alpha = op.attrs["alpha"]
1038 ifm_scale = np.double(ifm.quantization.scale_f32)
1039 ofm_scale = np.double(ofm.quantization.scale_f32)
1040 zp_in = ifm.quantization.zero_point
1041 zp_out = ofm.quantization.zero_point
1042 identity_scale, identity_shift = scaling.elementwise_mul_scale(ifm_scale, 1, ofm_scale)
1043 alpha_scalar = 1
1044 alpha_scale, alpha_shift = scaling.elementwise_mul_scale(ifm_scale, alpha, ofm_scale)
1045 if "alpha_scaling" in op.attrs:
1046 # The LeakyRelu was the result from convert_mul_max_to_abs_or_lrelu
1047 alpha_scalar, alpha_scale, alpha_shift = op.attrs["alpha_scaling"]
1048 values = []
1049 ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
1050 quantized_min = min(ix)
1051 quantized_max = max(ix)
1052 for x in ix:
1053 if x < zp_in:
1054 lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(
1055 alpha_scalar * (x - zp_in), alpha_scale, alpha_shift
1056 )
1057 else:
1058 lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(x - zp_in, identity_scale, identity_shift)
1059 lut_result = min(quantized_max, max(quantized_min, lut_result))
1060 values.append(lut_result)
1061 return convert_to_lut(op, values, "lrelu")
1062
1063
1064def convert_lrelu(op, arch, nng):
1065 # Converts LeakyRelu to a LUT based solution if possible, otherwise a mul + max
1066 if op.type != Op.LeakyRelu:
1067 return op
1068 ifm, ofm = op.get_ifm_ofm()
1069 if ifm is None or ofm is None:
1070 return op
1071 if ifm.dtype in (DataType.uint8, DataType.int8) and ifm.dtype == ofm.dtype:
1072 # use LUT for int8/uint8
1073 return convert_lrelu_to_lut(op, arch)
1074 if check_quantized_tens_scaling_equal(ifm, ofm) and ifm.dtype == ofm.dtype == DataType.int16:
1075 # use LeakyRelu unmodified for int16 with equal input/output scaling
1076 return op
1077 return convert_lrelu_to_mul_max(op, arch)
1078
1079
1080def convert_tanh_sigmoid_to_lut(op, arch, nng):
1081 # Converts int8/uint8 Sigmoid and Tanh to a LUT based solution
1082 if op.type == Op.Sigmoid:
1083 return convert_to_lut8(op, clamp_sigmoid, "sigmoid")
1084 elif op.type == Op.Tanh:
1085 return convert_to_lut8(op, math.tanh, "tanh")
1086 return op
1087
1088
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +02001089def remove_memory_only_ops(op, arch):
1090 if op.run_on_npu and op.type in memory_only_ops:
1091 bypass_memory_only_ops(op)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001092
1093
1094def fuse_activation_function_with_prev(op, arch, nng):
1095 # if op is a no-op: attempts to move the activation function to the preceding op
1096 if not op.attrs.get("is_nop", False) or op.activation is None:
1097 return op
1098 ifm, ofm = op.get_ifm_ofm()
1099 if ifm is None or ofm is None:
1100 return op
1101 # finds the input(s) to the operation
1102 prev_op = ifm.ops[0]
1103 # Note: the below checks on prev_op require that a first optimize pass on the full graph has been performed
1104 fuse = (
1105 prev_op.run_on_npu
1106 and prev_op.type.npu_block_type != NpuBlockType.Default
1107 and len(ifm.ops) == 1
1108 and len(prev_op.outputs[0].consumers()) == 1
1109 and prev_op.activation is None
1110 )
1111 if op.activation_lut is not None and arch.shram_reserved_unused_banks == 0:
1112 # TODO: if SHRAM LUT space is shared with SHRAM ACC (32, 64 MAC),
1113 # LUT currently only works correctly for elementwise ops
1114 fuse = False
1115 if not fuse:
1116 return op
1117 # Move the fused activation function + corresponding info to prev_op
1118 prev_op.activation = op.activation
1119 prev_op.forced_output_quantization = op.forced_output_quantization
1120 if op.activation_lut is not None:
1121 prev_op.set_activation_lut(op.activation_lut)
1122 # Bypass op
1123 prev_op.set_output_tensor(ofm)
1124 DebugDatabase.add_optimised(op, prev_op)
1125 return op
1126
1127
1128def _leading_pad_ok(leading_pad, stride, kernel_size):
1129 # If kernel size // 2 > stride, then (left, top) padding must be a multiple of stride,
1130 # otherwise replacing PAD by hardware padding would iterate the wrong IFM rows/columns
1131 max_size = kernel_size // 2
1132 return leading_pad == max_size or max_size <= stride or leading_pad % stride == 0
1133
1134
1135def replace_pad_by_hw_pad(op: Operation, arch, nng):
1136 """
1137 Tries to completely remove a PAD operator by using hardware padding.
1138 E.g. a PAD operation that pads 1, followed by a CONV with VALID padding and kernel size 3
1139 is rewritten such that the PAD is removed, and the CONV uses SAME padding.
1140 Converts tens1 -> PAD -> tens2 -> CONV to tens1 -> CONV
1141 if both operations can be run on the NPU.
1142 This is the most efficient way to implement PAD, but cannot be done for all pad sizes.
1143 """
1144 if (
1145 (op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op() or op.type.is_avgpool_op())
Tim Hall0ab2edc2022-02-23 17:58:02 +00001146 and op.type not in (Op.Conv2DBackpropInput, Op.Conv2DBackpropInputSwitchedBias)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001147 and op.run_on_npu
1148 and op.attrs["padding"] == Padding.VALID
1149 ):
1150 pad_op = op.ifm.ops[0]
1151 if pad_op.type != Op.Pad or not pad_op.run_on_npu:
1152 return op
1153 if pad_op.ifm.dtype != pad_op.ofm.dtype or not check_quantized_tens_scaling_equal(pad_op.ofm, pad_op.ifm):
1154 return op
1155 top, left, bottom, right = get_pad_values_from_input(pad_op.inputs[1].values)
1156 k = op.kernel
1157 k_w, k_h = k.dilated_wh()
1158
1159 # Check if the PAD operator can be replaced by hardware padding
1160 if left > k_w // 2 or right > k_w // 2 or top > k_h // 2 or bottom > k_h // 2:
1161 # Too much padding, it would require hardware padding to actually insert zeros
1162 return op
1163 if not _leading_pad_ok(top, k.stride.y, k_h) or not _leading_pad_ok(left, k.stride.x, k_w):
1164 return op
1165
1166 if op.type.is_avgpool_op():
1167 # For average pool, hardware padding can only be used if padding is 0 or kernel size / 2
1168 for pad, k_size in (
1169 (left, k_w),
1170 (right, k_w),
1171 (top, k_h),
1172 (bottom, k_h),
1173 ):
1174 if pad not in (0, k_size // 2):
1175 return op
1176 # Average pool is converted to depthwise, because NPU average pool + same padding
1177 # has a special implementation that is different from PAD followed by average pool with
1178 # valid padding.
1179 k_w, k_h = op.kernel.width, op.kernel.height
1180 ifm = op.ifm
1181 # Remember other inputs
1182 other_inputs = op.inputs[1:]
1183 # Create a weight tensor, all weights are set to 1/(kernel width * kernel height)
1184 quantization = QuantizationParameters(0.0, 255.0)
1185 quantization.scale_f32 = 1.0 / (k_w * k_h)
1186 quantization.zero_point = 0
1187 shape = [k_h, k_w, 1, op.ofm.shape[-1]]
1188 weights = np.full(shape, 1)
1189
1190 weight_tens = create_const_tensor(
1191 op.name + "_weights",
1192 shape,
1193 op.ifm.dtype,
1194 weights,
1195 np.uint8,
1196 purpose=TensorPurpose.Weights,
1197 quantization=quantization,
1198 )
James Peet7519d502021-07-19 16:47:58 +01001199 weight_tens.values = weights
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001200 op.type = Op.DepthwiseConv2DBias
1201 op.inputs = []
1202 op.add_input_tensor(ifm)
1203 op.add_input_tensor(weight_tens)
1204 # Add bias tensor, all biases set to 0
1205 op.inputs.append(None)
1206 fixup_bias_tensors(op, arch, nng)
1207 # Add other inputs
1208 op.inputs.extend(other_inputs)
1209 op.rounding_mode = NpuRoundingMode.NATURAL
1210
1211 # Bypass the PAD operator
1212 op.set_input_tensor(pad_op.ifm, 0)
1213 # Adjust the padding attributes of the convolution operator
1214 op.attrs["padding"] = Padding.EXPLICIT
1215 op.attrs["explicit_padding"] = (top, left, bottom, right)
1216 op.set_ifm_ofm_shapes()
1217 return op
1218
1219
1220def convert_pad(op: Operation, arch, nng):
1221 """
1222 Rewrites PAD operator to an average pool that copies the IFM to the OFM
1223 + up to 4 average pool operators that fill the OFM with zeros at the borders.
1224 This is done as fall-back for the PAD operators that remain after replace_pad_by_hw_pad
1225 """
1226 if op.type != Op.Pad or not op.run_on_npu:
1227 return op
1228 top, left, bottom, right = get_pad_values_from_input(op.inputs[1].values)
1229
1230 ifm = op.ifm
1231 assert ifm is not None
James Ward3e134342021-10-28 10:01:40 +01001232 ifm_shape = op.ifm_shapes[0]
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001233 ofm = op.ofm
1234 assert ofm is not None
1235 ofm.ops = []
1236 ofm_shape = op.ofm_shapes[0]
1237
1238 # Average pool op that copies IFM to the right place inside the OFM
1239 shp0 = Shape4D(0, 0, 0, 0)
1240 shp_top = shp0.with_height(top)
1241 avgpool_op = create_avg_pool_for_concat(op, op.name + "_main", ifm, ifm_shape, shp_top.with_width(left))
1242 avgpool_op.activation = op.activation
1243 quant = ofm.quantization
1244 pad_value = quant.zero_point
1245 # Add operations that fill the borders of the OFM
1246 if top > 0:
1247 shape = Shape4D(1, top, ofm_shape.width, ofm_shape.depth)
1248 zero_tens = create_const_tensor(
1249 op.name + "_top", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
1250 )
1251 # If top/bottom or left/right are equal, the const tensors can be allocated to the same address
1252 zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
1253 create_avg_pool_for_concat(op, op.name + "_top", zero_tens, shape, shp0)
1254 if bottom > 0:
1255 shape = Shape4D(1, bottom, ofm_shape.width, ofm_shape.depth)
1256 zero_tens = create_const_tensor(
1257 op.name + "_bottom",
1258 shape.as_list(),
1259 ofm.dtype,
1260 shape.elements() * [pad_value],
1261 np.uint8,
1262 quantization=quant,
1263 )
1264 zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
1265 create_avg_pool_for_concat(
1266 op, op.name + "_bottom", zero_tens, shape, shp0.with_height(ofm_shape.height - bottom)
1267 )
1268 if left > 0:
1269 shape = Shape4D(1, ifm_shape.height, left, ofm_shape.depth)
1270 zero_tens = create_const_tensor(
1271 op.name + "_left", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
1272 )
1273 zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
1274 create_avg_pool_for_concat(op, op.name + "_left", zero_tens, shape, shp_top)
1275 if right > 0:
1276 shape = Shape4D(1, ifm_shape.height, right, ofm_shape.depth)
1277 zero_tens = create_const_tensor(
1278 op.name + "_right", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
1279 )
1280 zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
1281 create_avg_pool_for_concat(
1282 op, op.name + "_right", zero_tens, shape, shp_top.with_width(ofm_shape.width - right)
1283 )
1284
1285 op.type = Op.ConcatTFLite
1286 return avgpool_op
1287
1288
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001289def fixup_bias_tensors(op, arch, nng):
1290 if op.type.needs_bias() and op.bias is None:
1291 # Op has no bias, add bias tensor filled with zeros
1292 nr_biases = op.inputs[1].shape[-1]
1293 bias_values = [0] * nr_biases
1294 bias_tensor = create_const_tensor(op.name + "_bias", [nr_biases], DataType.int32, bias_values)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001295 op.set_input_tensor(bias_tensor, op.type.info.indices.biases[0])
1296
1297 return op
1298
1299
Fredrik Svedbergcc8569f2021-11-01 14:25:29 +01001300def fixup_asymmetric_weights(op, arch, nng):
1301 if op.run_on_npu and (op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op()):
1302 if op.ifm.dtype == DataType.int8:
1303 if not np.all(op.weights.quantization.zero_point == 0):
1304 print(f"Warning: {op.type} '{op.name}' has asymmetric weights, zero points have been adjusted.")
1305 op.weights.quantization.zero_point *= 0
1306
1307 return op
1308
1309
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001310def convert_mean_to_depthwise_conv_or_avgpool(op, arch, nng):
1311 if op.type == Op.Mean and op.run_on_npu:
1312 keep_dims = op.attrs.get("keep_dims", False)
1313 inp, axis = op.inputs
1314 shape = inp.shape
Diqing Zhong1ddb2ed2022-03-09 12:23:47 +01001315 ofm_shape = op.ofm.shape
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001316 dims = len(shape)
Diqing Zhong1ddb2ed2022-03-09 12:23:47 +01001317 dims_ofm = len(ofm_shape)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001318
1319 # Height and width axes have different index depending on dimensions
1320 if axis.shape == [] or axis.shape[0] == 1: # single axis
1321 axis = int(axis.values) if len(axis.shape) == 0 else int(axis.values[0])
1322 if dims in (2, 3):
1323 if axis == 0:
1324 h, w = shape[axis], 1
1325 else:
1326 h, w = 1, shape[axis]
1327 else:
1328 if axis == 1:
1329 h, w = shape[axis], 1
1330 else:
1331 h, w = 1, shape[axis]
1332 else: # multiple axes
1333 axis = sorted(axis.values)
1334 h, w = [shape[i] for i in axis]
1335
1336 # Set necessary depthwise attributes
1337 op.attrs.update(
1338 {
1339 "padding": Padding.VALID,
1340 "stride_h": 1,
1341 "stride_w": 1,
1342 "strides": (1, 1, 1, 1),
1343 "depth_multiplier": 1,
1344 "channel_multiplier": 1,
1345 "dilation_h_factor": 1,
1346 "dilation_w_factor": 1,
1347 "dilation": (1, 1, 1, 1),
1348 }
1349 )
1350 # Change op type
1351 op.type = Op.DepthwiseConv2DBias
1352 # Set IFM/OFM shapes after changing op type
1353 op.set_ifm_ofm_shapes()
1354
1355 weight_scale, bias = 1, None
1356 ofmq, ifmq = op.ofm.quantization, inp.quantization
1357 # Set rounding mode, scaling and zero point based on which reference implementation to match
1358 if len(shape) == 4 and axis == [1, 2] and keep_dims:
1359 if inp.dtype == DataType.uint8:
1360 # This attribute means a different scaling calculation is used in order to match reference
1361 op.low_precision_scaling = True
1362 weight_scale = h * w
1363 # Set zero points to 0 as they will be adjusted for with bias term
1364 foq = ofmq.clone()
1365 foq.zero_point = 0
1366 fiq = ifmq.clone()
1367 fiq.zero_point = 0
1368 op.forced_input_quantization = fiq
Johan Alfvén17009392022-08-30 09:14:56 +02001369 bias_term = ofmq.zero_point - round_up_to_int(ifmq.zero_point * ifmq.scale_f32 / ofmq.scale_f32)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001370 # If the bias term is outside uint8 range, we need an Add op to apply it.
1371 if bias_term < 0 or bias_term > 255:
1372 intermediate = op.ofm.clone(suffix="_intermediate", set_unique=True)
1373 # Bias term has higher bitness (i32) than input/output (u8).
1374 # 16 bits is enough since the bias is added/subtracted from a u8 value,
1375 # the bias can only effectively assume values in the range [-255, 255].
1376 intermediate.dtype = DataType.int16
1377 intermediate.quantization.zero_point = 0
1378 add_op = Operation(Op.Add, op.name + "_bias")
1379 add_op.forced_output_quantization = foq
1380 add_op.add_input_tensor(intermediate)
1381 quant = QuantizationParameters()
1382 quant.zero_point = 0
1383 bias_term_tens = create_const_tensor(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001384 op.name + "_bias",
1385 [1, 1, 1, 1],
1386 DataType.int16,
1387 [bias_term],
1388 np.int16,
1389 quantization=quant,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001390 )
1391 add_op.add_input_tensor(bias_term_tens)
1392 add_op.set_output_tensor(op.ofm)
1393 add_op.set_ifm_ofm_shapes()
1394 add_op.activation = op.activation
1395 op.activation = None
1396 op.set_output_tensor(intermediate)
1397 op.set_ifm_ofm_shapes()
1398 # If not, we can just do it with the OFM zero point.
1399 else:
1400 foq.zero_point = bias_term
1401 op.forced_output_quantization = foq
1402 else:
1403 assert inp.dtype == DataType.int8
1404 # Use a depthwise to calculate the sum,
1405 # followed by a multiplication with 1/N to get the MEAN
1406 weight_scale = 1
1407 intermediate = op.ofm.clone(suffix="_intermediate", set_unique=True)
1408 intermediate.dtype = DataType.int16
1409 mul_op = Operation(Op.Mul, op.name + "_mul")
1410 mul_op.add_input_tensor(intermediate)
1411 # Create scalar containing 1/N
1412 quant = QuantizationParameters()
1413 quant.zero_point = 0
1414 # The reference rounds negative numbers downwards, e.g. -1.5 is rounded to -2,
1415 # while rounding mode NATURAL would round this to -1.
1416 # This can only occur if N is even, and can be emulated by
1417 # multiplying with a number that is slightly smaller than 1/N.
1418 # It must be so small that other roundings are not affected;
1419 # the calculated value is based on worst case,
1420 # which is sum 256 * N (the maximum sum that can occur with int8)
1421 n = int(h * w)
1422 eps = 1 / (256 * (n + 1)) if n % 2 == 0 else 0
1423 quant.scale_f32 = 1 / (n - eps)
1424 scalar = create_const_tensor(
1425 op.name + "_scalar", [1, 1, 1, 1], DataType.uint8, [1], np.uint8, quantization=quant
1426 )
1427 mul_op.add_input_tensor(scalar)
1428 mul_op.set_output_tensor(op.ofm)
1429 mul_op.set_ifm_ofm_shapes()
1430 mul_op.rounding_mode = NpuRoundingMode.NATURAL
1431 mul_op.activation = op.activation
1432 op.activation = None
1433 op.set_output_tensor(intermediate)
1434 op.set_ifm_ofm_shapes()
1435 elif ifmq.zero_point == ofmq.zero_point and ifmq.scale_f32 == ofmq.scale_f32:
1436 # Here we can just use a simple AvgPool with truncating rounding,
1437 # as we're emulating simple integer division.
1438 op.rounding_mode = NpuRoundingMode.TRUNCATE
1439 op.type = Op.AvgPool
1440 op.attrs.update({"ksize": (1, h, w, 1), "filter_height": h, "filter_width": w})
1441 else:
1442 op.rounding_mode = NpuRoundingMode.NATURAL
1443 weight_scale = 1 / (h * w)
1444 # Input zero point is adjusted after mean calculation, so we emulate that with a bias
1445 bias = -ifmq.zero_point * h * w
1446 fiq = ifmq.clone()
1447 fiq.zero_point = 0
1448 op.forced_input_quantization = fiq
1449
1450 # Change dimensions to 4
Diqing Zhong1ddb2ed2022-03-09 12:23:47 +01001451 def extend_dims(dim, in_shape):
1452 if dim < 4:
1453 in_shape = [1] + in_shape
1454 if dim == 2:
1455 in_shape += [1]
1456 return in_shape
1457
1458 if dims < 4 or dims_ofm < 4:
1459 # Fix the ofm dimension when keep_dims is false
1460 # e.g. IFM=1xHxWxC axis=2 OFM=1xHxC, the ofm_shape should be 1xHx1xC, not 1x1xHxC
1461 if isinstance(axis, int) and dims_ofm + 1 == dims:
1462 ofm_shape.insert(axis, 1)
1463 elif isinstance(axis, list) and (dims_ofm + len(axis) == dims):
1464 for i in axis:
1465 ofm_shape.insert(i, 1)
1466 shape = extend_dims(dims, shape)
1467 dims_ofm = len(ofm_shape)
1468 ofm_shape = extend_dims(dims_ofm, ofm_shape)
1469 op.set_ifm_ofm_shapes()
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001470
Rickard Bolin7d7cb672021-12-07 09:09:14 +00001471 # If height is greater than max kernel height, reshape from HxW to 1x(HxW)
1472 if (h > 64 and op.type == Op.DepthwiseConv2DBias) or (h > 256 and op.type == Op.AvgPool):
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001473 shape = [shape[0], 1, h * w, shape[3]]
1474 op.ifm_shapes[0] = Shape4D(shape)
1475 if h > 256 and op.type == Op.AvgPool:
1476 op.attrs.update({"ksize": (1, 1, h * w, 1), "filter_height": 1, "filter_width": h * w})
1477
1478 # If the AvgPool version is used, we don't need to do anything else
1479 if op.type == Op.AvgPool:
1480 return op
1481
1482 # Make unit weight tensor quantization
1483 weight_quant = ifmq.clone()
1484 weight_quant.min = 0
1485 weight_quant.max = 255
1486 weight_quant.scale_f32 = weight_scale
1487 weight_quant.zero_point = 0
1488
1489 # Set weight shape to [H,W,C,B]
Diqing Zhong1ddb2ed2022-03-09 12:23:47 +01001490 weight_shape = [h, w, shape[3], shape[0]]
1491
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001492 # Add unit weight tensor
1493 op.set_input_tensor(
1494 create_const_tensor(
1495 "weights",
1496 weight_shape,
1497 inp.dtype,
1498 np.ones(weight_shape),
1499 value_dtype=np.uint8,
1500 quantization=weight_quant,
1501 ),
1502 1,
1503 )
James Peet7519d502021-07-19 16:47:58 +01001504 op.weights.values = np.reshape(op.inputs[1].values, weight_shape)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001505
1506 # Add None bias tensor
1507 op.inputs.append(None)
1508 # Add bias tensor
1509 if bias:
1510 bias_shape = [shape[-1]]
1511 op.set_input_tensor(
1512 create_const_tensor(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001513 "bias",
1514 bias_shape,
1515 inp.dtype,
1516 np.ones(bias_shape) * bias,
1517 value_dtype=np.int32,
1518 quantization=None,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001519 ),
1520 2,
1521 )
1522
1523 return op
1524
1525
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001526def optimise_quantize(op: Operation, arch, nng):
1527
1528 if op.type == Op.Quantize and op.run_on_npu:
1529
1530 ifm, ofm = op.get_ifm_ofm()
1531 input_values = ifm.values
1532
1533 # Guard clause - input not const or no values to quantize
1534 if ifm.ops[0].type != Op.Const or input_values is None:
1535 return op
1536
1537 # Singular val in numpy array, convert to indexable array
1538 if input_values.ndim == 0:
1539 input_values = np.array([input_values])
1540
Fredrik Svedberg11563172022-07-06 14:54:12 +02001541 # requantized int8 to int8 or int16 to int16
1542 if ifm.dtype == ofm.dtype == DataType.int8 or ifm.dtype == ofm.dtype == DataType.int16:
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001543
1544 # scale needs to use double precision to match TFLite reference kernel
1545 effective_scale = np.float64(ifm.quantization.scale_f32) / np.float64(ofm.quantization.scale_f32)
1546 effective_multiplier, effective_shift = quantise_scale(effective_scale)
1547
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001548 requantized_vals = []
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001549 for val in input_values.flatten():
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001550 input_val = val - ifm.quantization.zero_point
1551
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001552 ofm_val = fp_math.multiply_by_quantized_multiplier(input_val, effective_multiplier, effective_shift)
1553 ofm_val += ofm.quantization.zero_point
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001554
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001555 clamped_ofm_value = max(min(ofm_val, ofm.quantization.quant_max), ofm.quantization.quant_min)
1556 requantized_vals.append(clamped_ofm_value)
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001557
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001558 ofm.values = np.array(requantized_vals, ofm.dtype.as_numpy_type())
1559 ofm.values.shape = input_values.shape
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001560
1561 # Case: Float input - quantize to int
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001562 elif ifm.dtype.type == BaseType.Float:
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001563
1564 quantized_vals = []
1565 for val in input_values:
1566
1567 # Derive quantized value
1568 quant_val = (val / ofm.quantization.scale_f32) + ofm.quantization.zero_point
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001569 clamped_quantized_val = np.clip(quant_val, ofm.quantization.quant_min, ofm.quantization.quant_max)
1570 quantized_vals.append(clamped_quantized_val)
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001571
1572 # Pass the statically calculated quant val to output tensor
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001573 ofm.values = np.array(quantized_vals, ofm.dtype.as_numpy_type())
1574
1575 # Unsupported data type
1576 else:
1577 return op
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001578
1579 # Make quantize op const and disconnect from parent node
1580
1581 # Remove reference of the current quant op from the parent tensor's consumer list
1582 ifm.consumer_list = [consumer for consumer in ifm.consumer_list if consumer.op_index != op.op_index]
1583
1584 # Clear any references to parent node
1585 op.inputs = []
1586
1587 # Convert this quantize op to const
1588 op.type = Op.Const
1589
1590 return op
1591
1592
Ayaan Masood4965fae2022-06-29 11:30:57 +01001593def convert_shape_op_to_constant_tensor(op: Operation, arch, nng):
1594 """Static optimisation for SHAPE operator output value known at compile time"""
1595
1596 # Disconnect SHAPE operator from its parent and transform SHAPE OP into constant
1597
1598 if op.type == Op.Shape and op.run_on_npu:
1599
1600 ifm, ofm = op.get_ifm_ofm()
1601
1602 if len(ifm.shape) != ofm.shape[0]:
1603 return op
1604
1605 # Remove reference of the current shape op from the parent tensor's consumer list
1606 ifm.consumer_list = [consumer for consumer in ifm.consumer_list if consumer.op_index != op.op_index]
1607
1608 # Clear any references to parent node
1609 op.inputs = []
1610
1611 # Convert this SHAPE op to const
1612 op.type = Op.Const
1613
1614 # Add size calculation to shape output tensors
1615 ofm.values = np.array(ifm.shape)
1616
1617 return op
1618
1619
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001620def supported_operator_check(op, arch, nng):
Jonas Ohlsson45e653d2021-07-26 16:13:12 +02001621 op.run_on_npu = arch.tflite_supported_operators.is_operator_supported(op)
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001622 return op
1623
1624
1625def tflite_optimise_graph(nng, arch):
Fredrik Svedberg11563172022-07-06 14:54:12 +02001626 # Compile time static optimisations
Ayaan Masood25f48dd2022-06-29 18:16:04 +01001627 optimisation_list = [optimise_quantize, convert_shape_op_to_constant_tensor]
1628
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001629 for idx, sg in enumerate(nng.subgraphs):
1630 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001631 nng,
1632 sg,
1633 arch,
1634 [],
Ayaan Masood4965fae2022-06-29 11:30:57 +01001635 optimisation_list,
1636 rewrite_unsupported=False,
1637 )
1638
Fredrik Svedberga04f2f72022-07-06 13:42:24 +02001639 # Pre-processing step
1640 pre_process_list = [
1641 supported_operator_check,
1642 set_ifm_ofm_op_shapes,
1643 ]
1644
Ayaan Masood4965fae2022-06-29 11:30:57 +01001645 for idx, sg in enumerate(nng.subgraphs):
1646 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
1647 nng,
1648 sg,
1649 arch,
1650 [],
Jonas Ohlssond8575072022-03-30 10:30:25 +02001651 pre_process_list,
1652 rewrite_unsupported=False,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001653 )
1654
1655 # Handle Concat Ops
1656 for idx, sg in enumerate(nng.subgraphs):
1657 rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [rewrite_concat_ops])
1658 sg.refresh_after_modification()
1659
1660 # Handle Split Ops
1661 for idx, sg in enumerate(nng.subgraphs):
1662 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
1663 nng,
1664 sg,
1665 arch,
1666 [],
1667 [rewrite_unpack_output, rewrite_stridedslice_output, convert_nop_split_to_identity],
1668 rewrite_unsupported=False,
1669 )
1670
1671 for idx, sg in enumerate(nng.subgraphs):
1672 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001673 nng,
1674 sg,
1675 arch,
1676 [rewrite_split_ops],
1677 [],
1678 rewrite_unsupported=False,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001679 )
1680
1681 # Handle sg input output
1682 for idx, sg in enumerate(nng.subgraphs):
1683 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001684 nng,
1685 sg,
1686 arch,
1687 [],
1688 [fix_sg_input_output],
1689 rewrite_unsupported=False,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001690 )
1691
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +02001692 # Removal of memory only operators
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001693 for sg in nng.subgraphs:
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +02001694 rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_memory_only_ops])
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001695 sg.refresh_after_modification()
1696
1697 # Rewrite of operators
1698 op_rewrite_list = [
1699 set_tensor_equivalence,
1700 convert_mean_to_depthwise_conv_or_avgpool,
1701 convert_depthwise_to_conv,
1702 convert_conv_to_fc,
1703 convert_softmax,
Fredrik Svedberg8ddd4892022-08-19 16:06:04 +02001704 convert_prelu,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001705 optimise_strided_conv,
1706 convert_hardswish_to_lut,
1707 rewrite_fully_connected_input,
1708 convert_batched_fc_shape,
1709 fixup_conv2d_backprop,
1710 fixup_relus_with_differing_ifm_ofm_scaling,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001711 reorder_depthwise_weights,
Tim Hall885033b2022-07-21 11:46:03 +01001712 fixup_resize,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001713 fixup_bias_tensors,
Fredrik Svedbergcc8569f2021-11-01 14:25:29 +01001714 fixup_asymmetric_weights,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001715 convert_mul_max_to_abs_or_lrelu,
1716 convert_lrelu,
1717 convert_tanh_sigmoid_to_lut,
1718 replace_pad_by_hw_pad,
1719 ]
1720
1721 for idx, sg in enumerate(nng.subgraphs):
1722 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
Jonas Ohlssond8575072022-03-30 10:30:25 +02001723 nng,
1724 sg,
1725 arch,
1726 [],
1727 op_rewrite_list,
1728 rewrite_unsupported=False,
Patrik Gustavsson8f1f9aa2021-06-28 07:41:58 +02001729 )
1730
1731 for idx, sg in enumerate(nng.subgraphs):
1732 # remove passthrough tensors and attempt further optimizations
1733 nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
1734 nng,
1735 sg,
1736 arch,
1737 [remove_passthrough_tensor],
1738 [fuse_activation_function_with_prev, convert_pad, add_padding_fields],
1739 )
1740
1741 # Removal of SplitSliceRead, need to be done after optimisation has been performed,
1742 # since ifm/ofm_shapes are of importance to this function
1743 for sg in nng.subgraphs:
1744 rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_SplitSliceRead])
1745 sg.refresh_after_modification()
1746
1747 return nng