blob: d590054fa32a9c795b1caa5c16468a79d7acc57f [file] [log] [blame]
Jonas Ohlsson45e653d2021-07-26 16:13:12 +02001# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16# Description:
17# The TFLiteSupportedOperators class which is a collection of all TFLite supported operators and parameter checks.
18from collections import defaultdict
19
20import numpy as np
21
22from .data_type import DataType
23from .operation import Op
24from .operation import Padding
25from .supported_operators_util import docstring_format_args
26from .supported_operators_util import list_formatter
27from .tensor import check_quantized_tens_scaling_equal
28from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
29from .tflite_mapping import optype_to_builtintype
30
31
32def _optype_formatter(op_list):
33 # Convert internal op types to external names
34 output = map(optype_to_builtintype, op_list)
35 # Remove UNKNOWNs
36 output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
37 return list_formatter(output)
38
39
40class TFLiteSupportedOperators:
41 # Categorised lists of supported operators
42 npu_pre_ops = set((Op.SplitSliceRead,))
43 convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
44 depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
45 transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
46 convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
47 max_pooling_ops = Op.op_set(Op.is_maxpool_op)
48 avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
49 pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
50 resizing_ops = set((Op.ResizeBilinear,))
51 fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
52 mac_main_ops = (
53 # RNN/LSTM/GRU
54 set((Op.BlockLSTM,))
55 # conv/depthwiseconv/transposeconv
56 | convolution_like_ops
57 # pooling
58 | pooling_ops
59 # resizing/upscaling
60 | resizing_ops
61 # FC layers
62 | fc_vector_products
63 # Mean (converts to depthwise conv)
64 | set((Op.Mean,))
65 )
66 unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
67 binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
68 binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
69 binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
70 binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
71 elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
72 pad_ops = set((Op.Pad,))
73 supported_int32_tensor_ops = (
74 set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
75 )
76
77 relu_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Clip,))
78 activation_ops = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.Softmax, Op.HardSwish))
79 npu_post_ops = (
80 # activation functions
81 activation_ops
82 # concatenation write direction
83 | set((Op.ConcatSliceWrite,))
84 # Quantization
85 | set((Op.Quantize,))
86 )
87 split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
88 concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +020089 memory_only_ops = set((Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims,)) | concat_ops | split_ops
Jonas Ohlsson45e653d2021-07-26 16:13:12 +020090 per_axis_quant_ops = convolution_like_ops # per-axis/channel quantization only currently supported for conv ops
91 supported_fused_activations = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.LUT,))
92 supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
93 # Supported data types
94 supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
95 supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
96 supported_bias_dtypes = set((DataType.int32, DataType.int64))
97 supported_pad_dtypes = set((DataType.int32, DataType.int64))
98 # Defined ranges for allowed values:
99 tens_dim_range = (1, 65535)
100 stride_range = (1, 3)
101 dilation_range = (1, 2)
102 dilated_height_range = (1, 64)
103 dilated_product_range = (1, 64 * 64)
104 weights_limit = 127 * 65536
105 filter_range = (1, 8)
106 filter_height_range = (1, 256)
107 filter_product_range = (1, 256 * 256)
108 mean_kernel_product = 64 * 64
109 mean_kernel_product_int8 = 16 * 16
110 mean_kernel_product_avgpool = 256 * 256
111
112 def __init__(self):
113 # Setup the generic constraints. Note: the order matters
114 self.generic_constraints = []
115 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dtype)
116 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_int32_ops)
117 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dimension)
118 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_quant_per_axis)
119 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf)
120 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf_type)
121
122 # Setup specific constraints. Note: the order matters
123 self.specific_constraints = defaultdict(list)
124
125 # Conv-like checks:
126 for op_type in TFLiteSupportedOperators.convolution_like_ops:
127 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
128 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilation_range)
129 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_height_range)
130 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_product_range)
131 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
132 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
133 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_limit)
134 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
135 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
136 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
137 # Depthwise Conv specific checks:
138 for op_type in TFLiteSupportedOperators.depthwise_convolution_ops:
139 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depth_multiplier)
140 # Transpose Conv specific checks:
141 for op_type in TFLiteSupportedOperators.transpose_convolution_ops:
142 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_stride)
143 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_same)
144 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_valid)
145
146 # Pooling checks:
147 for op_type in TFLiteSupportedOperators.pooling_ops:
148 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
149 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
150 # AVG pooling specific checks:
151 for op_type in TFLiteSupportedOperators.avg_pooling_ops:
152 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_range)
153 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range_valid_pad)
154 self.specific_constraints[op_type].append(
155 TFLiteSupportedOperators.constraint_filter_product_range_valid_pad
156 )
157 # MAX pooling specific checks:
158 for op_type in TFLiteSupportedOperators.max_pooling_ops:
159 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range)
160 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_product_range)
161
162 # Resizing specific checks:
163 for op_type in TFLiteSupportedOperators.resizing_ops:
164 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize)
165
166 # Vector Product specific checks:
167 for op_type in TFLiteSupportedOperators.fc_vector_products:
168 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
169 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
170 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
171 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
172
173 # Element-wise checks:
174 for op_type in TFLiteSupportedOperators.elem_wise_main_ops:
175 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_elemwise_batch_size)
176 # Binary Min/Max specific checks:
177 for op_type in TFLiteSupportedOperators.binary_elem_wise_min_max_ops:
178 self.specific_constraints[op_type].append(
179 TFLiteSupportedOperators.constraint_matching_quantization_parameters
180 )
181 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
182 # Binary Add/Mul/Sub specific checks:
183 for op_type in TFLiteSupportedOperators.binary_elem_wise_add_mul_sub:
184 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
185 # Binary Shift specific checks:
186 for op_type in TFLiteSupportedOperators.binary_elem_wise_shift_ops:
187 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_inputs_int32)
188 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
189
190 # SHL specific checks:
191 self.specific_constraints[Op.SHL].append(TFLiteSupportedOperators.constraint_output_int32)
192
193 # CLZ specific checks:
194 self.specific_constraints[Op.CLZ].append(TFLiteSupportedOperators.constraint_output_int32)
195
196 # StridedSlice specific checks:
197 self.specific_constraints[Op.StridedSlice].append(
198 TFLiteSupportedOperators.constraint_stridedslice_stride_values
199 )
200
201 # Pad specific checks:
202 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_shape)
203 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_padding_dimensions)
204 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_type)
205
206 # Mean specific checks:
Dwight Lidmanf54c18d2021-09-29 17:23:03 +0200207 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_batch_size)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200208 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_avgpool)
209 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product)
210 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_int8)
211
212 def is_operator_supported(self, op):
213 ext_type = optype_to_builtintype(op.type)
214 if op.type not in TFLiteSupportedOperators.supported_operators:
215 if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
216 print(f"Info: {ext_type} '{op.name}' is a CPU only op")
217 return False
218
219 for constraint in self.generic_constraints + self.specific_constraints[op.type]:
220 valid, extra = constraint(op)
221 if not valid:
222 print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
223 print(f" - {constraint.__doc__}")
224 if extra:
225 print(f" {extra}")
226 return False
227
228 return True
229
230 @classmethod
231 @docstring_format_args([list_formatter(supported_op_dtypes)])
232 def constraint_tens_dtype(cls, op):
233 "Tensors must be of type: {}"
234 valid = True
235 extra = []
236 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
237 if not tensors:
238 tensors = [tens for tens in op.inputs if tens]
239 for tens in tensors:
240 if tens.dtype not in cls.supported_op_dtypes:
241 valid = False
242 extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
243 return valid, ", ".join(extra)
244
245 @classmethod
246 @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
247 def constraint_tens_int32_ops(cls, op):
248 "Tensors which are int32 are only valid when op type is: {}"
249 valid = True
250 extra = []
251 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
252 if not tensors:
253 tensors = [tens for tens in op.inputs if tens]
254 for tens in tensors:
255 if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
256 valid = False
257 extra.append(tens.name)
258 extra = ", ".join(extra)
259 return valid, f"Op has int32 tensor(s): {extra}"
260
261 @classmethod
262 @docstring_format_args(tens_dim_range)
263 def constraint_tens_dimension(cls, op):
264 "Tensor dimensions must be in the range [{}, {}]"
265 tens_min, tens_max = cls.tens_dim_range
266 valid = True
267 extra = []
268 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
269 if not tensors:
270 tensors = [tens for tens in op.inputs if tens]
271 for tens in tensors:
272 if not all(tens_min <= dim <= tens_max for dim in tens.shape):
273 valid = False
274 extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
275 return valid, ", ".join(extra)
276
277 @classmethod
278 @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
279 def constraint_tens_quant_per_axis(cls, op):
280 "Per-axis quantization is only supported for the following op types: {}"
281 valid = True
282 extra = []
283 if op.type not in cls.per_axis_quant_ops:
284 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
285 for tens in tensors:
286 if tens.quantization.is_per_axis():
287 valid = False
288 extra.append(tens.name)
289 return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)
290
291 @classmethod
292 @docstring_format_args([_optype_formatter(supported_fused_activations)])
293 def constraint_faf(cls, op):
294 "The fused activation function (if present) must be one of type: {}"
295 if op.activation is None:
296 res = True, "Op has no fused activation function"
297 else:
298 faf = op.activation.op_type
299 valid = faf in cls.supported_fused_activations
300 res = valid, f"Op has its fused activation function as: {faf}"
301 return res
302
303 @classmethod
304 @docstring_format_args([list_formatter(supported_faf_dtypes)])
305 def constraint_faf_type(cls, op):
306 "If a fused activation function is present, the Output tensor must be one of type: {}"
307 if op.activation is None:
308 res = True, "Op has no fused activation function"
309 else:
310 valid = op.ofm.dtype in cls.supported_faf_dtypes
311 ext_type = optype_to_builtintype(op.activation.op_type)
312 res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
313 return res
314
315 @classmethod
316 @docstring_format_args(stride_range)
317 def constraint_stride_range(cls, op):
318 "Stride values for both width and height must be in the range [{}, {}]"
319 w, h = op.get_kernel_stride()
320 stride_min, stride_max = cls.stride_range
321 valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
322 return valid, f"Op has stride WxH as: {w}x{h}"
323
324 @classmethod
325 @docstring_format_args(dilation_range)
326 def constraint_dilation_range(cls, op):
327 "Dilation factor values for both width and height must be in the range [{}, {}]"
328 w, h = op.get_kernel_dilation()
329 dilation_min, dilation_max = cls.dilation_range
330 valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
331 return valid, f"Op has dilation factor WxH as: {w}x{h}"
332
333 @classmethod
334 @docstring_format_args(dilated_height_range)
335 def constraint_dilated_height_range(cls, op):
336 "Dilated kernel height must be in the range [{}, {}]"
337 h = op.kernel.area_height()
338 dilated_height_min, dilated_height_max = cls.dilated_height_range
339 valid = dilated_height_min <= h <= dilated_height_max
340 return valid, f"Op has dilated kernel height as: {h}"
341
342 @classmethod
343 @docstring_format_args(dilated_product_range)
344 def constraint_dilated_product_range(cls, op):
345 "Product of dilated kernel width and height must be in the range [{}, {}]"
346 product = op.kernel.area_width() * op.kernel.area_height()
347 dilated_product_min, dilated_product_max = cls.dilated_product_range
348 valid = dilated_product_min <= product <= dilated_product_max
349 return valid, f"Op has product of dilated kernel width and height as: {product}"
350
351 @staticmethod
352 def constraint_weights_type(op):
353 "Weight tensor must be 8-bit"
354 weights = op.weights
355 valid = weights.element_size() == 1
356 return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"
357
358 @staticmethod
359 def constraint_weights_const(op):
360 "Weight tensor must be constant"
361 weights = op.weights
362 valid = weights.values is not None
363 return valid, f"Tensor '{weights.name}' has non-constant values"
364
365 @classmethod
366 @docstring_format_args([weights_limit])
367 def constraint_weights_limit(cls, op):
368 "The sum of the weights cannot exceed {}"
369 weights = op.weights
370 values = weights.values.astype(np.int64) - weights.quantization.zero_point
371 limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
372 valid = limit <= cls.weights_limit
373 return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"
374
375 @classmethod
376 @docstring_format_args([list_formatter(supported_bias_dtypes)])
377 def constraint_bias_type(cls, op):
378 "Optional Bias tensor must be of type: {}"
379 bias = op.bias
380 if bias:
381 valid = bias.dtype in cls.supported_bias_dtypes
382 return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
383 return True, "Op has no bias tensor"
384
385 @staticmethod
386 def constraint_bias_40bit(op):
387 "Optional Bias tensor values must fit within 40-bits"
388 bias = op.bias
389 if bias and bias.dtype == DataType.int64 and bias.values is not None:
Tim Hall8ae29292021-07-28 16:52:03 +0100390 valid = all(len(bin(value)[2:]) <= 40 for value in bias.values)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200391 return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
392 return True, "Op has no bias tensor, or it fits in 40-bit"
393
394 @staticmethod
395 def constraint_batch_size(op):
396 "IFM Tensor batch size must be 1"
397 ifm = op.ifm
398 valid = ifm.shape[0] == 1
399 return valid, f"Tensor '{ifm.name}' has batch size: {ifm.shape[0]}"
400
401 @staticmethod
402 def constraint_depth_multiplier(op):
403 "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
404 depth_multiplier = op.attrs.get("depth_multiplier", 1)
405 if depth_multiplier > 1:
406 ifm_channels = op.ifm.shape[3]
407 ofm_channels = op.ofm.shape[3]
408 valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
409 extra = (
410 f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
411 f" and depth_multiplier={depth_multiplier}"
412 )
413 return valid, extra
414 return True, "Op has depth_multiplier=1"
415
416 @staticmethod
417 def constraint_tconv_stride(op):
418 "Stride values for both width and height must be 2"
419 w = op.kernel.stride.x
420 h = op.kernel.stride.y
421 valid = (w == 2) and (h == 2)
422 return valid, f"Op has stride WxH as: {w}x{h}"
423
424 @staticmethod
425 def constraint_tconv_same(op):
426 "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
427 if op.attrs["padding"] == Padding.SAME:
428 w = op.kernel.stride.x
429 h = op.kernel.stride.y
430 ifm_shape = op.ifm.shape
431 ofm_shape = op.ofm.shape
432 valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
433 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
434 return True, "Op has padding=VALID"
435
436 @staticmethod
437 def constraint_tconv_valid(op):
438 """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
439 minus difference between kernel size and stride"""
440 if op.attrs["padding"] == Padding.VALID:
441 s_w = op.kernel.stride.x
442 s_h = op.kernel.stride.y
443 k_w = op.kernel.width
444 k_h = op.kernel.height
445 ifm_shape = op.ifm.shape
446 ofm_shape = op.ofm.shape
447 height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
448 width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
449 valid = height_check and width_check
450 extra = (
451 f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
452 f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
453 )
454 return valid, extra
455 return True, "Op has padding=SAME"
456
457 @classmethod
458 @docstring_format_args(filter_range)
459 def constraint_filter_range(cls, op):
460 "Kernel filter values for both width and height must be in the range [{}, {}]"
461 if op.attrs["padding"] == Padding.SAME:
462 w = op.kernel.width
463 h = op.kernel.height
464 filter_min, filter_max = cls.filter_range
465 valid = (filter_min <= w <= filter_max) and (filter_min <= h <= filter_max)
466 return valid, f"Op has kernel filter WxH as: {w}x{h}"
467 return True, "Op has padding=VALID"
468
469 @classmethod
470 @docstring_format_args(filter_height_range)
471 def constraint_filter_height_range(cls, op):
472 "Kernel filter height must be in the range [{}, {}]"
473 h = op.kernel.height
474 filter_height_min, filter_height_max = cls.filter_height_range
475 valid = filter_height_min <= h <= filter_height_max
476 return valid, f"Op has kernel filter height as: {h}"
477
478 @classmethod
479 @docstring_format_args(filter_product_range)
480 def constraint_filter_product_range(cls, op):
481 "Product of kernel filter width and height must be in the range [{}, {}]"
482 product = op.kernel.elements_wh()
483 filter_product_min, filter_product_max = cls.filter_product_range
484 valid = filter_product_min <= product <= filter_product_max
485 return valid, f"Op has product of kernel filter width and height as: {product}"
486
487 @staticmethod
488 @docstring_format_args(filter_height_range)
489 def constraint_filter_height_range_valid_pad(op):
490 "VALID padding: Kernel filter height must be in the range [{}, {}]"
491 if op.attrs["padding"] == Padding.VALID:
492 return TFLiteSupportedOperators.constraint_filter_height_range(op)
493 return True, "Op has padding=SAME"
494
495 @staticmethod
496 @docstring_format_args(filter_product_range)
497 def constraint_filter_product_range_valid_pad(op):
498 "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
499 if op.attrs["padding"] == Padding.VALID:
500 return TFLiteSupportedOperators.constraint_filter_product_range(op)
501 return True, "Op has padding=SAME"
502
503 @staticmethod
504 def constraint_resize(op):
505 """The width and height of the IFM and OFM must match one of the following criteria:
506 IFM W and H must both be 1
507 IFM must match OFM
508 OFM W and H must be 2x IFM -1, if align_corners is True
509 OFM W and H must be 2x IFM, if align_corners is False"""
510 # Easier to start with False condition as very few cases result in a supported resize
511 valid = False
512 ifm_shape = op.ifm.shape
513 ofm_shape = op.ofm.shape
514 align_corners = op.attrs.get("align_corners", False)
515 if len(ifm_shape) == 4:
516 # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
517 if ((ifm_shape[1] == 1) and (ifm_shape[2] == 1)) or (ifm_shape == ofm_shape):
518 valid = True
519 else:
520 upscaled_shape = np.array(ifm_shape[1:3])
521 out_shape = np.array(ofm_shape[1:3])
522 while (upscaled_shape < out_shape).all():
523 upscaled_shape *= 2
524 if align_corners:
525 upscaled_shape -= 1
526 # Valid if OFM is 2x IFM (-1 for align corners)
527 if np.array_equal(out_shape, upscaled_shape):
528 valid = True
529 break
530 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"
531
532 @staticmethod
533 def constraint_pad_shape(op):
534 "The padding tensor must have the shape [3,2] or [4,2]"
535 valid = op.inputs[1].shape in ([3, 2], [4, 2])
536 return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"
537
538 @classmethod
539 @docstring_format_args([list_formatter(supported_pad_dtypes)])
540 def constraint_pad_type(cls, op):
541 "Pad tensor must be of type: {}"
542 pad_tensor = op.inputs[1]
543 valid = pad_tensor.dtype in cls.supported_pad_dtypes
544 return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"
545
546 @staticmethod
547 def constraint_padding_dimensions(op):
548 "The pad tensor can only pad width and height"
549 pad_tensor = op.inputs[1].values
550
551 valid = sum(pad_tensor[-1, :]) == 0
552 if valid and len(pad_tensor) > 3:
553 valid = sum(pad_tensor[0, :]) == 0
554 return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"
555
556 @staticmethod
557 def constraint_stridedslice_stride_values(op):
558 "All Strides values must be 1"
559 strides = op.inputs[3]
560 valid = all(stride == 1 for stride in strides.values)
561 return valid, f"Op has strides values {strides.values}"
562
563 @staticmethod
564 def constraint_inputs_int32(op):
565 "Both Input data types must be int32"
566 ifm_dtype = op.ifm.dtype
567 ifm2_dtype = op.ifm2.dtype
568 valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
569 return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"
570
571 @staticmethod
572 def constraint_output_int32(op):
573 "OFM must be int32"
574 ofm_dtype = op.ofm.dtype
575 valid = ofm_dtype == DataType.int32
576 return valid, f"Op has ofm_dtype={ofm_dtype}"
577
578 @staticmethod
579 def constraint_matching_quantization_parameters(op):
580 "Both Input quantization parameters must match OFM quantization parameters"
581 valid = True
582 extra = []
583 if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
584 valid = False
585 extra.append(op.ifm.name)
586 if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
587 valid = False
588 extra.append(op.ifm2.name)
589 extra = ", ".join(extra)
590 return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"
591
592 @staticmethod
593 def constraint_elemwise_batch_size(op):
594 "Batch size must be 1 for Input tensors with more than 2 dimensions"
595 valid = True
596 extra = []
597 for tens in (op.ifm, op.ifm2):
598 # Unary ops have ifm2 as None
599 if tens is not None:
600 if (len(tens.shape) > 2) and (tens.shape[0] != 1):
601 valid = False
602 extra.append(tens.name)
603 extra = ", ".join(extra)
604 return valid, f"Op has invalid input tensors: {extra}"
605
606 @staticmethod
607 def constraint_broadcast_shapes(op):
608 "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
609 ifm_shape = op.ifm.shape
610 ifm2_shape = op.ifm2.shape if op.ifm2 else None
611 ofm_shape = op.ofm.shape
612 valid = True
613 if ifm_shape is not None and ifm2_shape is not None:
614 # align trailing dimensions
615 size = min(len(ifm_shape), len(ifm2_shape))
616 for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
617 mi = max(i, i2)
618 # Input dimensions should match or one should be of dimension 1
619 # Output dimension should match the largest input dimension, together
620 # with constraint_match_either_shapes ensures broadcast from only one input
621 if not (i == i2 or i == 1 or i2 == 1) or o != mi:
622 valid = False
623 break
624
625 return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"
626
627 @classmethod
628 @docstring_format_args([mean_kernel_product_avgpool])
629 def constraint_mean_height_width_product_avgpool(cls, op):
630 """Product of height and width can be at most {}"""
631 shape = op.inputs[0].shape
632 hi = 0 if len(shape) < 4 else 1
633 h, w = shape[hi : hi + 2]
634 max_prod = cls.mean_kernel_product_avgpool
635 return h * w <= max_prod, f"Product of height and width is {h * w}"
636
637 @classmethod
638 @docstring_format_args([mean_kernel_product])
639 def constraint_mean_height_width_product(cls, op):
640 """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
641 or keep_dims is True"""
642 ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
643 keep_dims = op.attrs.get("keep_dims")
644 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
645 if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
646 return True, ""
647 shape = op.inputs[0].shape
648 hi = 0 if len(shape) < 4 else 1
649 h, w = shape[hi : hi + 2]
650 max_prod = cls.mean_kernel_product
651 return h * w <= max_prod, f"Product of height and width is {h * w}"
652
653 @classmethod
654 @docstring_format_args([mean_kernel_product_int8])
655 def constraint_mean_height_width_product_int8(cls, op):
656 """Product of IFM height and width can be at most {} when the following are true:
657 IFM dimensions are 4,
658 Axis indices are 1 and 2,
659 keep_dims is set to True and
660 IFM datatype is int8"""
661 shape = op.ifm.shape
662 axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
663 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
664 # and constraint_mean_height_width_product
665 if (
666 len(shape) != 4
667 or op.ifm.dtype != DataType.int8
668 or not op.attrs.get("keep_dims")
669 or axis not in ([1, 2], [2, 1])
670 ):
671 return True, ""
672 hi = 0 if len(shape) < 4 else 1
673 h, w = shape[hi : hi + 2]
674 max_prod = cls.mean_kernel_product_int8
675 return h * w <= max_prod, f"Product of height and width is {h * w}"