blob: d9a7b35cab758959289d787c1c81ec0c293f5faf [file] [log] [blame]
Richard Burton00553462021-11-10 16:27:14 +00001/*
2 * Copyright (c) 2021 Arm Limited. All rights reserved.
3 * SPDX-License-Identifier: Apache-2.0
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17#include "RNNoiseProcess.hpp"
18#include <algorithm>
19#include <cmath>
20#include <cstring>
21
22namespace arm {
23namespace app {
24namespace rnn {
25
26#define VERIFY(x) \
27do { \
28 if (!(x)) { \
29 printf_err("Assert failed:" #x "\n"); \
30 exit(1); \
31 } \
32} while(0)
33
34RNNoiseProcess::RNNoiseProcess() :
35 m_halfWindow(FRAME_SIZE, 0),
36 m_dctTable(NB_BANDS * NB_BANDS),
37 m_analysisMem(FRAME_SIZE, 0),
38 m_cepstralMem(CEPS_MEM, vec1D32F(NB_BANDS, 0)),
39 m_memId{0},
40 m_synthesisMem(FRAME_SIZE, 0),
41 m_pitchBuf(PITCH_BUF_SIZE, 0),
42 m_lastGain{0.0},
43 m_lastPeriod{0},
44 m_memHpX{},
45 m_lastGVec(NB_BANDS, 0)
46{
47 constexpr uint32_t numFFt = 2 * FRAME_SIZE;
48 static_assert(numFFt != 0, "Num FFT can't be 0");
49
50 math::MathUtils::FftInitF32(numFFt, this->m_fftInstReal, FftType::real);
51 math::MathUtils::FftInitF32(numFFt, this->m_fftInstCmplx, FftType::complex);
52 this->InitTables();
53}
54
55void RNNoiseProcess::PreprocessFrame(const float* audioData,
56 const size_t audioLen,
57 FrameFeatures& features)
58{
59 /* Note audioWindow is modified in place */
60 const arrHp aHp {-1.99599, 0.99600 };
61 const arrHp bHp {-2.00000, 1.00000 };
62
63 vec1D32F audioWindow{audioData, audioData + audioLen};
64
65 this->BiQuad(bHp, aHp, this->m_memHpX, audioWindow);
66 this->ComputeFrameFeatures(audioWindow, features);
67}
68
69void RNNoiseProcess::PostProcessFrame(vec1D32F& modelOutput, FrameFeatures& features, vec1D32F& outFrame)
70{
71 std::vector<float> g = modelOutput; /* Gain values. */
72 std::vector<float> gf(FREQ_SIZE, 0);
73
74 if (!features.m_silence) {
75 PitchFilter(features, g);
76 for (size_t i = 0; i < NB_BANDS; i++) {
77 float alpha = .6f;
78 g[i] = std::max(g[i], alpha * m_lastGVec[i]);
79 m_lastGVec[i] = g[i];
80 }
81 InterpBandGain(gf, g);
82 for (size_t i = 0; i < FREQ_SIZE; i++) {
83 features.m_fftX[2 * i] *= gf[i]; /* Real. */
84 features.m_fftX[2 * i + 1] *= gf[i]; /*imaginary. */
85
86 }
87
88 }
89
90 FrameSynthesis(outFrame, features.m_fftX);
91}
92
93void RNNoiseProcess::InitTables()
94{
95 constexpr float pi = M_PI;
96 constexpr float halfPi = M_PI / 2;
97 constexpr float halfPiOverFrameSz = halfPi/FRAME_SIZE;
98
99 for (uint32_t i = 0; i < FRAME_SIZE; i++) {
100 const float sinVal = math::MathUtils::SineF32(halfPiOverFrameSz * (i + 0.5f));
101 m_halfWindow[i] = math::MathUtils::SineF32(halfPi * sinVal * sinVal);
102 }
103
104 for (uint32_t i = 0; i < NB_BANDS; i++) {
105 for (uint32_t j = 0; j < NB_BANDS; j++) {
106 m_dctTable[i * NB_BANDS + j] = math::MathUtils::CosineF32((i + 0.5f) * j * pi / NB_BANDS);
107 }
108 m_dctTable[i * NB_BANDS] *= math::MathUtils::SqrtF32(0.5f);
109 }
110}
111
112void RNNoiseProcess::BiQuad(
113 const arrHp& bHp,
114 const arrHp& aHp,
115 arrHp& memHpX,
116 vec1D32F& audioWindow)
117{
118 for (float& audioElement : audioWindow) {
119 const auto xi = audioElement;
120 const auto yi = audioElement + memHpX[0];
121 memHpX[0] = memHpX[1] + (bHp[0] * xi - aHp[0] * yi);
122 memHpX[1] = (bHp[1] * xi - aHp[1] * yi);
123 audioElement = yi;
124 }
125}
126
127void RNNoiseProcess::ComputeFrameFeatures(vec1D32F& audioWindow,
128 FrameFeatures& features)
129{
130 this->FrameAnalysis(audioWindow,
131 features.m_fftX,
132 features.m_Ex,
133 this->m_analysisMem);
134
135 float E = 0.0;
136
137 vec1D32F Ly(NB_BANDS, 0);
138 vec1D32F p(WINDOW_SIZE, 0);
139 vec1D32F pitchBuf(PITCH_BUF_SIZE >> 1, 0);
140
141 VERIFY(PITCH_BUF_SIZE >= this->m_pitchBuf.size());
142 std::copy_n(this->m_pitchBuf.begin() + FRAME_SIZE,
143 PITCH_BUF_SIZE - FRAME_SIZE,
144 this->m_pitchBuf.begin());
145
146 VERIFY(FRAME_SIZE <= audioWindow.size() && PITCH_BUF_SIZE > FRAME_SIZE);
147 std::copy_n(audioWindow.begin(),
148 FRAME_SIZE,
149 this->m_pitchBuf.begin() + PITCH_BUF_SIZE - FRAME_SIZE);
150
151 this->PitchDownsample(pitchBuf, PITCH_BUF_SIZE);
152
153 VERIFY(pitchBuf.size() > PITCH_MAX_PERIOD/2);
154 vec1D32F xLp(pitchBuf.size() - PITCH_MAX_PERIOD/2, 0);
155 std::copy_n(pitchBuf.begin() + PITCH_MAX_PERIOD/2, xLp.size(), xLp.begin());
156
157 int pitchIdx = this->PitchSearch(xLp, pitchBuf,
158 PITCH_FRAME_SIZE, (PITCH_MAX_PERIOD - (3*PITCH_MIN_PERIOD)));
159
160 pitchIdx = this->RemoveDoubling(
161 pitchBuf,
162 PITCH_MAX_PERIOD,
163 PITCH_MIN_PERIOD,
164 PITCH_FRAME_SIZE,
165 PITCH_MAX_PERIOD - pitchIdx);
166
167 size_t stIdx = PITCH_BUF_SIZE - WINDOW_SIZE - pitchIdx;
168 VERIFY((static_cast<int>(PITCH_BUF_SIZE) - static_cast<int>(WINDOW_SIZE) - pitchIdx) >= 0);
169 std::copy_n(this->m_pitchBuf.begin() + stIdx, WINDOW_SIZE, p.begin());
170
171 this->ApplyWindow(p);
172 this->ForwardTransform(p, features.m_fftP);
173 this->ComputeBandEnergy(features.m_fftP, features.m_Ep);
174 this->ComputeBandCorr(features.m_fftX, features.m_fftP, features.m_Exp);
175
176 for (uint32_t i = 0 ; i < NB_BANDS; ++i) {
177 features.m_Exp[i] /= math::MathUtils::SqrtF32(
178 0.001f + features.m_Ex[i] * features.m_Ep[i]);
179 }
180
181 vec1D32F dctVec(NB_BANDS, 0);
182 this->DCT(features.m_Exp, dctVec);
183
184 features.m_featuresVec = vec1D32F (NB_FEATURES, 0);
185 for (uint32_t i = 0; i < NB_DELTA_CEPS; ++i) {
186 features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS + i] = dctVec[i];
187 }
188
189 features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS] -= 1.3;
190 features.m_featuresVec[NB_BANDS + 2*NB_DELTA_CEPS + 1] -= 0.9;
191 features.m_featuresVec[NB_BANDS + 3*NB_DELTA_CEPS] = 0.01 * (static_cast<int>(pitchIdx) - 300);
192
193 float logMax = -2.f;
194 float follow = -2.f;
195 for (uint32_t i = 0; i < NB_BANDS; ++i) {
196 Ly[i] = log10f(1e-2f + features.m_Ex[i]);
197 Ly[i] = std::max<float>(logMax - 7, std::max<float>(follow - 1.5, Ly[i]));
198 logMax = std::max<float>(logMax, Ly[i]);
199 follow = std::max<float>(follow - 1.5, Ly[i]);
200 E += features.m_Ex[i];
201 }
202
203 /* If there's no audio avoid messing up the state. */
204 features.m_silence = true;
205 if (E < 0.04) {
206 return;
207 } else {
208 features.m_silence = false;
209 }
210
211 this->DCT(Ly, features.m_featuresVec);
212 features.m_featuresVec[0] -= 12.0;
213 features.m_featuresVec[1] -= 4.0;
214
215 VERIFY(CEPS_MEM > 2);
216 uint32_t stIdx1 = this->m_memId < 1 ? CEPS_MEM + this->m_memId - 1 : this->m_memId - 1;
217 uint32_t stIdx2 = this->m_memId < 2 ? CEPS_MEM + this->m_memId - 2 : this->m_memId - 2;
218
219 auto ceps1 = this->m_cepstralMem[stIdx1];
220 auto ceps2 = this->m_cepstralMem[stIdx2];
221
222 /* Ceps 0 */
223 for (uint32_t i = 0; i < NB_BANDS; ++i) {
224 this->m_cepstralMem[this->m_memId][i] = features.m_featuresVec[i];
225 }
226
227 for (uint32_t i = 0; i < NB_DELTA_CEPS; ++i) {
228 features.m_featuresVec[i] = this->m_cepstralMem[this->m_memId][i] + ceps1[i] + ceps2[i];
229 features.m_featuresVec[NB_BANDS + i] = this->m_cepstralMem[this->m_memId][i] - ceps2[i];
230 features.m_featuresVec[NB_BANDS + NB_DELTA_CEPS + i] =
231 this->m_cepstralMem[this->m_memId][i] - 2 * ceps1[i] + ceps2[i];
232 }
233
234 /* Spectral variability features. */
235 this->m_memId += 1;
236 if (this->m_memId == CEPS_MEM) {
237 this->m_memId = 0;
238 }
239
240 float specVariability = 0.f;
241
242 VERIFY(this->m_cepstralMem.size() >= CEPS_MEM);
243 for (size_t i = 0; i < CEPS_MEM; ++i) {
244 float minDist = 1e15;
245 for (size_t j = 0; j < CEPS_MEM; ++j) {
246 float dist = 0.f;
247 for (size_t k = 0; k < NB_BANDS; ++k) {
248 VERIFY(this->m_cepstralMem[i].size() >= NB_BANDS);
249 auto tmp = this->m_cepstralMem[i][k] - this->m_cepstralMem[j][k];
250 dist += tmp * tmp;
251 }
252
253 if (j != i) {
254 minDist = std::min<float>(minDist, dist);
255 }
256 }
257 specVariability += minDist;
258 }
259
260 VERIFY(features.m_featuresVec.size() >= NB_BANDS + 3 * NB_DELTA_CEPS + 1);
261 features.m_featuresVec[NB_BANDS + 3 * NB_DELTA_CEPS + 1] = specVariability / CEPS_MEM - 2.1;
262}
263
264void RNNoiseProcess::FrameAnalysis(
265 const vec1D32F& audioWindow,
266 vec1D32F& fft,
267 vec1D32F& energy,
268 vec1D32F& analysisMem)
269{
270 vec1D32F x(WINDOW_SIZE, 0);
271
272 /* Move old audio down and populate end with latest audio window. */
273 VERIFY(x.size() >= FRAME_SIZE && analysisMem.size() >= FRAME_SIZE);
274 VERIFY(audioWindow.size() >= FRAME_SIZE);
275
276 std::copy_n(analysisMem.begin(), FRAME_SIZE, x.begin());
277 std::copy_n(audioWindow.begin(), x.size() - FRAME_SIZE, x.begin() + FRAME_SIZE);
278 std::copy_n(audioWindow.begin(), FRAME_SIZE, analysisMem.begin());
279
280 this->ApplyWindow(x);
281
282 /* Calculate FFT. */
283 ForwardTransform(x, fft);
284
285 /* Compute band energy. */
286 ComputeBandEnergy(fft, energy);
287}
288
289void RNNoiseProcess::ApplyWindow(vec1D32F& x)
290{
291 if (WINDOW_SIZE != x.size()) {
292 printf_err("Invalid size for vector to be windowed\n");
293 return;
294 }
295
296 VERIFY(this->m_halfWindow.size() >= FRAME_SIZE);
297
298 /* Multiply input by sinusoidal function. */
299 for (size_t i = 0; i < FRAME_SIZE; i++) {
300 x[i] *= this->m_halfWindow[i];
301 x[WINDOW_SIZE - 1 - i] *= this->m_halfWindow[i];
302 }
303}
304
305void RNNoiseProcess::ForwardTransform(
306 vec1D32F& x,
307 vec1D32F& fft)
308{
309 /* The input vector can be modified by the fft function. */
310 fft.reserve(x.size() + 2);
311 fft.resize(x.size() + 2, 0);
312 math::MathUtils::FftF32(x, fft, this->m_fftInstReal);
313
314 /* Normalise. */
315 for (auto& f : fft) {
316 f /= this->m_fftInstReal.m_fftLen;
317 }
318
319 /* Place the last freq element correctly */
320 fft[fft.size()-2] = fft[1];
321 fft[1] = 0;
322
323 /* NOTE: We don't truncate out FFT vector as it already contains only the
324 * first half of the FFT's. The conjugates are not present. */
325}
326
327void RNNoiseProcess::ComputeBandEnergy(const vec1D32F& fftX, vec1D32F& bandE)
328{
329 bandE = vec1D32F(NB_BANDS, 0);
330
331 VERIFY(this->m_eband5ms.size() >= NB_BANDS);
332 for (uint32_t i = 0; i < NB_BANDS - 1; i++) {
333 const auto bandSize = (this->m_eband5ms[i + 1] - this->m_eband5ms[i])
334 << FRAME_SIZE_SHIFT;
335
336 for (uint32_t j = 0; j < bandSize; j++) {
337 const auto frac = static_cast<float>(j) / bandSize;
338 const auto idx = (this->m_eband5ms[i] << FRAME_SIZE_SHIFT) + j;
339
340 auto tmp = fftX[2 * idx] * fftX[2 * idx]; /* Real part */
341 tmp += fftX[2 * idx + 1] * fftX[2 * idx + 1]; /* Imaginary part */
342
343 bandE[i] += (1 - frac) * tmp;
344 bandE[i + 1] += frac * tmp;
345 }
346 }
347 bandE[0] *= 2;
348 bandE[NB_BANDS - 1] *= 2;
349}
350
351void RNNoiseProcess::ComputeBandCorr(const vec1D32F& X, const vec1D32F& P, vec1D32F& bandC)
352{
353 bandC = vec1D32F(NB_BANDS, 0);
354 VERIFY(this->m_eband5ms.size() >= NB_BANDS);
355
356 for (uint32_t i = 0; i < NB_BANDS - 1; i++) {
357 const auto bandSize = (this->m_eband5ms[i + 1] - this->m_eband5ms[i]) << FRAME_SIZE_SHIFT;
358
359 for (uint32_t j = 0; j < bandSize; j++) {
360 const auto frac = static_cast<float>(j) / bandSize;
361 const auto idx = (this->m_eband5ms[i] << FRAME_SIZE_SHIFT) + j;
362
363 auto tmp = X[2 * idx] * P[2 * idx]; /* Real part */
364 tmp += X[2 * idx + 1] * P[2 * idx + 1]; /* Imaginary part */
365
366 bandC[i] += (1 - frac) * tmp;
367 bandC[i + 1] += frac * tmp;
368 }
369 }
370 bandC[0] *= 2;
371 bandC[NB_BANDS - 1] *= 2;
372}
373
374void RNNoiseProcess::DCT(vec1D32F& input, vec1D32F& output)
375{
376 VERIFY(this->m_dctTable.size() >= NB_BANDS * NB_BANDS);
377 for (uint32_t i = 0; i < NB_BANDS; ++i) {
378 float sum = 0;
379
380 for (uint32_t j = 0, k = 0; j < NB_BANDS; ++j, k += NB_BANDS) {
381 sum += input[j] * this->m_dctTable[k + i];
382 }
383 output[i] = sum * math::MathUtils::SqrtF32(2.0/22);
384 }
385}
386
387void RNNoiseProcess::PitchDownsample(vec1D32F& pitchBuf, size_t pitchBufSz) {
388 for (size_t i = 1; i < (pitchBufSz >> 1); ++i) {
389 pitchBuf[i] = 0.5 * (
390 0.5 * (this->m_pitchBuf[2 * i - 1] + this->m_pitchBuf[2 * i + 1])
391 + this->m_pitchBuf[2 * i]);
392 }
393
394 pitchBuf[0] = 0.5*(0.5*(this->m_pitchBuf[1]) + this->m_pitchBuf[0]);
395
396 vec1D32F ac(5, 0);
397 size_t numLags = 4;
398
399 this->AutoCorr(pitchBuf, ac, numLags, pitchBufSz >> 1);
400
401 /* Noise floor -40db */
402 ac[0] *= 1.0001;
403
404 /* Lag windowing. */
405 for (size_t i = 1; i < numLags + 1; ++i) {
406 ac[i] -= ac[i] * (0.008 * i) * (0.008 * i);
407 }
408
409 vec1D32F lpc(numLags, 0);
410 this->LPC(ac, numLags, lpc);
411
412 float tmp = 1.0;
413 for (size_t i = 0; i < numLags; ++i) {
414 tmp = 0.9f * tmp;
415 lpc[i] = lpc[i] * tmp;
416 }
417
418 vec1D32F lpc2(numLags + 1, 0);
419 float c1 = 0.8;
420
421 /* Add a zero. */
422 lpc2[0] = lpc[0] + 0.8;
423 lpc2[1] = lpc[1] + (c1 * lpc[0]);
424 lpc2[2] = lpc[2] + (c1 * lpc[1]);
425 lpc2[3] = lpc[3] + (c1 * lpc[2]);
426 lpc2[4] = (c1 * lpc[3]);
427
428 this->Fir5(lpc2, pitchBufSz >> 1, pitchBuf);
429}
430
431int RNNoiseProcess::PitchSearch(vec1D32F& xLp, vec1D32F& y, uint32_t len, uint32_t maxPitch) {
432 uint32_t lag = len + maxPitch;
433 vec1D32F xLp4(len >> 2, 0);
434 vec1D32F yLp4(lag >> 2, 0);
435 vec1D32F xCorr(maxPitch >> 1, 0);
436
437 /* Downsample by 2 again. */
438 for (size_t j = 0; j < (len >> 2); ++j) {
439 xLp4[j] = xLp[2*j];
440 }
441 for (size_t j = 0; j < (lag >> 2); ++j) {
442 yLp4[j] = y[2*j];
443 }
444
445 this->PitchXCorr(xLp4, yLp4, xCorr, len >> 2, maxPitch >> 2);
446
447 /* Coarse search with 4x decimation. */
448 arrHp bestPitch = this->FindBestPitch(xCorr, yLp4, len >> 2, maxPitch >> 2);
449
450 /* Finer search with 2x decimation. */
451 const int maxIdx = (maxPitch >> 1);
452 for (int i = 0; i < maxIdx; ++i) {
453 xCorr[i] = 0;
454 if (std::abs(i - 2*bestPitch[0]) > 2 and std::abs(i - 2*bestPitch[1]) > 2) {
455 continue;
456 }
457 float sum = 0;
458 for (size_t j = 0; j < len >> 1; ++j) {
459 sum += xLp[j] * y[i+j];
460 }
461
462 xCorr[i] = std::max(-1.0f, sum);
463 }
464
465 bestPitch = this->FindBestPitch(xCorr, y, len >> 1, maxPitch >> 1);
466
467 int offset;
468 /* Refine by pseudo-interpolation. */
469 if ( 0 < bestPitch[0] && bestPitch[0] < ((maxPitch >> 1) - 1)) {
470 float a = xCorr[bestPitch[0] - 1];
471 float b = xCorr[bestPitch[0]];
472 float c = xCorr[bestPitch[0] + 1];
473
474 if ( (c-a) > 0.7*(b-a) ) {
475 offset = 1;
476 } else if ( (a-c) > 0.7*(b-c) ) {
477 offset = -1;
478 } else {
479 offset = 0;
480 }
481 } else {
482 offset = 0;
483 }
484
485 return 2*bestPitch[0] - offset;
486}
487
488arrHp RNNoiseProcess::FindBestPitch(vec1D32F& xCorr, vec1D32F& y, uint32_t len, uint32_t maxPitch)
489{
490 float Syy = 1;
491 arrHp bestNum {-1, -1};
492 arrHp bestDen {0, 0};
493 arrHp bestPitch {0, 1};
494
495 for (size_t j = 0; j < len; ++j) {
496 Syy += (y[j] * y[j]);
497 }
498
499 for (size_t i = 0; i < maxPitch; ++i ) {
500 if (xCorr[i] > 0) {
501 float xCorr16 = xCorr[i] * 1e-12f; /* Avoid problems when squaring. */
502
503 float num = xCorr16 * xCorr16;
504 if (num*bestDen[1] > bestNum[1]*Syy) {
505 if (num*bestDen[0] > bestNum[0]*Syy) {
506 bestNum[1] = bestNum[0];
507 bestDen[1] = bestDen[0];
508 bestPitch[1] = bestPitch[0];
509 bestNum[0] = num;
510 bestDen[0] = Syy;
511 bestPitch[0] = i;
512 } else {
513 bestNum[1] = num;
514 bestDen[1] = Syy;
515 bestPitch[1] = i;
516 }
517 }
518 }
519
520 Syy += (y[i+len]*y[i+len]) - (y[i]*y[i]);
521 Syy = std::max(1.0f, Syy);
522 }
523
524 return bestPitch;
525}
526
527int RNNoiseProcess::RemoveDoubling(
528 vec1D32F& pitchBuf,
529 uint32_t maxPeriod,
530 uint32_t minPeriod,
531 uint32_t frameSize,
532 size_t pitchIdx0_)
533{
534 constexpr std::array<size_t, 16> secondCheck {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2};
535 uint32_t minPeriod0 = minPeriod;
536 float lastPeriod = static_cast<float>(this->m_lastPeriod)/2;
537 float lastGain = static_cast<float>(this->m_lastGain);
538
539 maxPeriod /= 2;
540 minPeriod /= 2;
541 pitchIdx0_ /= 2;
542 frameSize /= 2;
543 uint32_t xStart = maxPeriod;
544
545 if (pitchIdx0_ >= maxPeriod) {
546 pitchIdx0_ = maxPeriod - 1;
547 }
548
549 size_t pitchIdx = pitchIdx0_;
550 size_t pitchIdx0 = pitchIdx0_;
551
552 float xx = 0;
553 for ( size_t i = xStart; i < xStart+frameSize; ++i) {
554 xx += (pitchBuf[i] * pitchBuf[i]);
555 }
556
557 float xy = 0;
558 for ( size_t i = xStart; i < xStart+frameSize; ++i) {
559 xy += (pitchBuf[i] * pitchBuf[i-pitchIdx0]);
560 }
561
562 vec1D32F yyLookup (maxPeriod+1, 0);
563 yyLookup[0] = xx;
564 float yy = xx;
565
566 for ( size_t i = 1; i < maxPeriod+1; ++i) {
567 yy = yy + (pitchBuf[xStart-i] * pitchBuf[xStart-i]) -
568 (pitchBuf[xStart+frameSize-i] * pitchBuf[xStart+frameSize-i]);
569 yyLookup[i] = std::max(0.0f, yy);
570 }
571
572 yy = yyLookup[pitchIdx0];
573 float bestXy = xy;
574 float bestYy = yy;
575
576 float g = this->ComputePitchGain(xy, xx, yy);
577 float g0 = g;
578
579 /* Look for any pitch at pitchIndex/k. */
580 for ( size_t k = 2; k < 16; ++k) {
581 size_t pitchIdx1 = (2*pitchIdx0+k) / (2*k);
582 if (pitchIdx1 < minPeriod) {
583 break;
584 }
585
586 size_t pitchIdx1b;
587 /* Look for another strong correlation at T1b. */
588 if (k == 2) {
589 if ((pitchIdx1 + pitchIdx0) > maxPeriod) {
590 pitchIdx1b = pitchIdx0;
591 } else {
592 pitchIdx1b = pitchIdx0 + pitchIdx1;
593 }
594 } else {
595 pitchIdx1b = (2*(secondCheck[k])*pitchIdx0 + k) / (2*k);
596 }
597
598 xy = 0;
599 for ( size_t i = xStart; i < xStart+frameSize; ++i) {
600 xy += (pitchBuf[i] * pitchBuf[i-pitchIdx1]);
601 }
602
603 float xy2 = 0;
604 for ( size_t i = xStart; i < xStart+frameSize; ++i) {
605 xy2 += (pitchBuf[i] * pitchBuf[i-pitchIdx1b]);
606 }
607 xy = 0.5f * (xy + xy2);
608 yy = 0.5f * (yyLookup[pitchIdx1] + yyLookup[pitchIdx1b]);
609
610 float g1 = this->ComputePitchGain(xy, xx, yy);
611
612 float cont;
613 if (std::abs(pitchIdx1-lastPeriod) <= 1) {
614 cont = lastGain;
615 } else if (std::abs(pitchIdx1-lastPeriod) <= 2 and 5*k*k < pitchIdx0) {
616 cont = 0.5f*lastGain;
617 } else {
618 cont = 0.0f;
619 }
620
621 float thresh = std::max(0.3, 0.7*g0-cont);
622
623 /* Bias against very high pitch (very short period) to avoid false-positives
624 * due to short-term correlation */
625 if (pitchIdx1 < 3*minPeriod) {
626 thresh = std::max(0.4, 0.85*g0-cont);
627 } else if (pitchIdx1 < 2*minPeriod) {
628 thresh = std::max(0.5, 0.9*g0-cont);
629 }
630 if (g1 > thresh) {
631 bestXy = xy;
632 bestYy = yy;
633 pitchIdx = pitchIdx1;
634 g = g1;
635 }
636 }
637
638 bestXy = std::max(0.0f, bestXy);
639 float pg;
640 if (bestYy <= bestXy) {
641 pg = 1.0;
642 } else {
643 pg = bestXy/(bestYy+1);
644 }
645
646 std::array<float, 3> xCorr {0};
647 for ( size_t k = 0; k < 3; ++k ) {
648 for ( size_t i = xStart; i < xStart+frameSize; ++i) {
649 xCorr[k] += (pitchBuf[i] * pitchBuf[i-(pitchIdx+k-1)]);
650 }
651 }
652
653 size_t offset;
654 if ((xCorr[2]-xCorr[0]) > 0.7*(xCorr[1]-xCorr[0])) {
655 offset = 1;
656 } else if ((xCorr[0]-xCorr[2]) > 0.7*(xCorr[1]-xCorr[2])) {
657 offset = -1;
658 } else {
659 offset = 0;
660 }
661
662 if (pg > g) {
663 pg = g;
664 }
665
666 pitchIdx0_ = 2*pitchIdx + offset;
667
668 if (pitchIdx0_ < minPeriod0) {
669 pitchIdx0_ = minPeriod0;
670 }
671
672 this->m_lastPeriod = pitchIdx0_;
673 this->m_lastGain = pg;
674
675 return this->m_lastPeriod;
676}
677
678float RNNoiseProcess::ComputePitchGain(float xy, float xx, float yy)
679{
680 return xy / math::MathUtils::SqrtF32(1+xx*yy);
681}
682
683void RNNoiseProcess::AutoCorr(
684 const vec1D32F& x,
685 vec1D32F& ac,
686 size_t lag,
687 size_t n)
688{
689 if (n < lag) {
690 printf_err("Invalid parameters for AutoCorr\n");
691 return;
692 }
693
694 auto fastN = n - lag;
695
696 /* Auto-correlation - can be done by PlatformMath functions */
697 this->PitchXCorr(x, x, ac, fastN, lag + 1);
698
699 /* Modify auto-correlation by summing with auto-correlation for different lags. */
700 for (size_t k = 0; k < lag + 1; k++) {
701 float d = 0;
702 for (size_t i = k + fastN; i < n; i++) {
703 d += x[i] * x[i - k];
704 }
705 ac[k] += d;
706 }
707}
708
709
710void RNNoiseProcess::PitchXCorr(
711 const vec1D32F& x,
712 const vec1D32F& y,
713 vec1D32F& ac,
714 size_t len,
715 size_t maxPitch)
716{
717 for (size_t i = 0; i < maxPitch; i++) {
718 float sum = 0;
719 for (size_t j = 0; j < len; j++) {
720 sum += x[j] * y[i + j];
721 }
722 ac[i] = sum;
723 }
724}
725
726/* Linear predictor coefficients */
727void RNNoiseProcess::LPC(
728 const vec1D32F& ac,
729 int32_t p,
730 vec1D32F& lpc)
731{
732 auto error = ac[0];
733
734 if (error != 0) {
735 for (int i = 0; i < p; i++) {
736
737 /* Sum up this iteration's reflection coefficient */
738 float rr = 0;
739 for (int j = 0; j < i; j++) {
740 rr += lpc[j] * ac[i - j];
741 }
742
743 rr += ac[i + 1];
744 auto r = -rr / error;
745
746 /* Update LP coefficients and total error */
747 lpc[i] = r;
748 for (int j = 0; j < ((i + 1) >> 1); j++) {
749 auto tmp1 = lpc[j];
750 auto tmp2 = lpc[i - 1 - j];
751 lpc[j] = tmp1 + (r * tmp2);
752 lpc[i - 1 - j] = tmp2 + (r * tmp1);
753 }
754
755 error = error - (r * r * error);
756
757 /* Bail out once we get 30dB gain */
758 if (error < (0.001 * ac[0])) {
759 break;
760 }
761 }
762 }
763}
764
765void RNNoiseProcess::Fir5(
766 const vec1D32F &num,
767 uint32_t N,
768 vec1D32F &x)
769{
770 auto num0 = num[0];
771 auto num1 = num[1];
772 auto num2 = num[2];
773 auto num3 = num[3];
774 auto num4 = num[4];
775 auto mem0 = 0;
776 auto mem1 = 0;
777 auto mem2 = 0;
778 auto mem3 = 0;
779 auto mem4 = 0;
780 for (uint32_t i = 0; i < N; i++)
781 {
782 auto sum_ = x[i] + (num0 * mem0) + (num1 * mem1) +
783 (num2 * mem2) + (num3 * mem3) + (num4 * mem4);
784 mem4 = mem3;
785 mem3 = mem2;
786 mem2 = mem1;
787 mem1 = mem0;
788 mem0 = x[i];
789 x[i] = sum_;
790 }
791}
792
793void RNNoiseProcess::PitchFilter(FrameFeatures &features, vec1D32F &g) {
794 std::vector<float> r(NB_BANDS, 0);
795 std::vector<float> rf(FREQ_SIZE, 0);
796 std::vector<float> newE(NB_BANDS);
797
798 for (size_t i = 0; i < NB_BANDS; i++) {
799 if (features.m_Exp[i] > g[i]) {
800 r[i] = 1;
801 } else {
802
803
804 r[i] = std::pow(features.m_Exp[i], 2) * (1 - std::pow(g[i], 2)) /
805 (.001 + std::pow(g[i], 2) * (1 - std::pow(features.m_Exp[i], 2)));
806 }
807
808
809 r[i] = math::MathUtils::SqrtF32(std::min(1.0f, std::max(0.0f, r[i])));
810 r[i] *= math::MathUtils::SqrtF32(features.m_Ex[i] / (1e-8f + features.m_Ep[i]));
811 }
812
813 InterpBandGain(rf, r);
814 for (size_t i = 0; i < FREQ_SIZE - 1; i++) {
815 features.m_fftX[2 * i] += rf[i] * features.m_fftP[2 * i]; /* Real. */
816 features.m_fftX[2 * i + 1] += rf[i] * features.m_fftP[2 * i + 1]; /* Imaginary. */
817
818 }
819 ComputeBandEnergy(features.m_fftX, newE);
820 std::vector<float> norm(NB_BANDS);
821 std::vector<float> normf(FRAME_SIZE, 0);
822 for (size_t i = 0; i < NB_BANDS; i++) {
823 norm[i] = math::MathUtils::SqrtF32(features.m_Ex[i] / (1e-8f + newE[i]));
824 }
825
826 InterpBandGain(normf, norm);
827 for (size_t i = 0; i < FREQ_SIZE - 1; i++) {
828 features.m_fftX[2 * i] *= normf[i]; /* Real. */
829 features.m_fftX[2 * i + 1] *= normf[i]; /* Imaginary. */
830
831 }
832}
833
834void RNNoiseProcess::FrameSynthesis(vec1D32F& outFrame, vec1D32F& fftY) {
835 std::vector<float> x(WINDOW_SIZE, 0);
836 InverseTransform(x, fftY);
837 ApplyWindow(x);
838 for (size_t i = 0; i < FRAME_SIZE; i++) {
839 outFrame[i] = x[i] + m_synthesisMem[i];
840 }
841 memcpy((m_synthesisMem.data()), &x[FRAME_SIZE], FRAME_SIZE*sizeof(float));
842}
843
844void RNNoiseProcess::InterpBandGain(vec1D32F& g, vec1D32F& bandE) {
845 for (size_t i = 0; i < NB_BANDS - 1; i++) {
846 int bandSize = (m_eband5ms[i + 1] - m_eband5ms[i]) << FRAME_SIZE_SHIFT;
847 for (int j = 0; j < bandSize; j++) {
848 float frac = static_cast<float>(j) / bandSize;
849 g[(m_eband5ms[i] << FRAME_SIZE_SHIFT) + j] = (1 - frac) * bandE[i] + frac * bandE[i + 1];
850 }
851 }
852}
853
854void RNNoiseProcess::InverseTransform(vec1D32F& out, vec1D32F& fftXIn) {
855
856 std::vector<float> x(WINDOW_SIZE * 2); /* This is complex. */
857 vec1D32F newFFT; /* This is complex. */
858
859 size_t i;
860 for (i = 0; i < FREQ_SIZE * 2; i++) {
861 x[i] = fftXIn[i];
862 }
863 for (i = FREQ_SIZE; i < WINDOW_SIZE; i++) {
864 x[2 * i] = x[2 * (WINDOW_SIZE - i)]; /* Real. */
865 x[2 * i + 1] = -x[2 * (WINDOW_SIZE - i) + 1]; /* Imaginary. */
866 }
867
868 constexpr uint32_t numFFt = 2 * FRAME_SIZE;
869 static_assert(numFFt != 0);
870
871 vec1D32F fftOut = vec1D32F(x.size(), 0);
872 math::MathUtils::FftF32(x,fftOut, m_fftInstCmplx);
873
874 /* Normalize. */
875 for (auto &f: fftOut) {
876 f /= numFFt;
877 }
878
879 out[0] = WINDOW_SIZE * fftOut[0]; /* Real. */
880 for (i = 1; i < WINDOW_SIZE; i++) {
881 out[i] = WINDOW_SIZE * fftOut[(WINDOW_SIZE * 2) - (2 * i)]; /* Real. */
882 }
883}
884
885
886} /* namespace rnn */
887} /* namespace app */
888} /* namspace arm */