blob: 70134af6ee6d6b487da6ec447f0431d6965dbed5 [file] [log] [blame]
Chunosovd621bca2017-11-03 17:33:15 +07001/*
Michele Di Giorgiod9eaf612020-07-08 11:12:57 +01002 * Copyright (c) 2017-2020 Arm Limited.
Chunosovd621bca2017-11-03 17:33:15 +07003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef ARM_COMPUTE_HELPERS_ASYMM_H
25#define ARM_COMPUTE_HELPERS_ASYMM_H
26
27#include "helpers.h"
28
Sang-Hoon Parkbfd75d62019-10-30 14:56:17 +000029/** Convert the given vector with round to nearest even rounding mode
30 *
31 * @param[in] x The target to be converted
32 * @param[in] type The target type
33 *
34 * @return The converted vector
35 */
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +010036#define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x)))
37#define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type)
38
39/** Quantize a floating-point scalar value to 8-bit asymmetric
40 *
41 * @param[in] input Input value to quantize
42 * @param[in] offset Quantization offset
43 * @param[in] scale Quantization scale
44 *
45 * @return quantized value
46 */
47inline uchar quantize_qasymm8(float input, float offset, float scale)
48{
49 float out_f32 = input / scale + offset;
50 uchar res_u8 = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar);
51 return res_u8;
52}
53
54/** Dequantize a scalar value from 8-bit asymmetric to floating-point
55 *
56 * @param[in] input Input value to quantize
57 * @param[in] offset Quantization offset
58 * @param[in] scale Quantization scale
59 *
60 * @return quantized value
61 */
62inline float dequantize_qasymm8(uchar input, float offset, float scale)
63{
64 return ((float)input - offset) * scale;
65}
66
Manuel Bottini8481d832019-12-10 15:28:40 +000067/** Dequantize a scalar value from signed 8-bit asymmetric to floating-point
68 *
69 * @param[in] input Input value to quantize
70 * @param[in] offset Quantization offset
71 * @param[in] scale Quantization scale
72 *
73 * @return quantized value
74 */
75inline float dequantize_qasymm8_signed(char input, float offset, float scale)
76{
77 return ((float)input - offset) * scale;
78}
79
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +010080/** Quantize a vector of values from floating-point
81 *
82 * @param[in] type Output data type.
83 * @param[in] size Size of vector.
84 *
85 * @return quantized values
86 */
87#define QUANTIZE_IMPL(type, size) \
88 inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \
89 { \
90 VEC_DATA_TYPE(float, size) \
91 out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset); \
92 VEC_DATA_TYPE(type, size) \
93 res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size)); \
94 return res; \
95 }
96
97/** Dequantize a vector of values to floating-point
98 *
99 * @param[in] type Input data type.
100 * @param[in] size Size of vector.
101 *
102 * @return dequantized values in floating point
103 */
104#define DEQUANTIZE_IMPL(type, size) \
105 inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \
106 { \
Manuel Bottini8481d832019-12-10 15:28:40 +0000107 return (CONVERT(input, VEC_DATA_TYPE(float, size)) - offset) * scale; \
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100108 }
109
Chunosovd621bca2017-11-03 17:33:15 +0700110/** Correctly-rounded-to-nearest division by a power-of-two.
111 *
112 * @param[in] size Size of vector.
113 *
114 * @return Correctly-rounded-to-nearest division by a power-of-two.
115 */
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100116#define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size) \
117 inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, VEC_DATA_TYPE(int, size) exponent) \
118 { \
119 const VEC_DATA_TYPE(int, size) \
120 zero = (VEC_DATA_TYPE(int, size))0; \
121 const VEC_DATA_TYPE(int, size) \
122 one = (VEC_DATA_TYPE(int, size))1; \
123 VEC_DATA_TYPE(int, size) \
124 mask = (one << exponent) - one; \
125 VEC_DATA_TYPE(int, size) \
126 threshold = (mask >> 1) + select(zero, one, x < 0); \
127 return (x >> exponent) + select(zero, one, (x & mask) > threshold); \
Chunosovd621bca2017-11-03 17:33:15 +0700128 }
129
Chunosovd621bca2017-11-03 17:33:15 +0700130/** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
131 * rounding to the nearest value, and saturating -1 * -1 to the maximum value.
132 *
133 * @param[in] size Size of vector.
134 *
135 * @return Product of two fixed-point numbers.
136 */
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000137#define ASYMM_MULT_IMPL(size) \
Chunosovd621bca2017-11-03 17:33:15 +0700138 inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
139 { \
140 VEC_DATA_TYPE(int, size) \
141 overflow = a == b && a == INT_MIN; \
142 VEC_DATA_TYPE(long, size) \
143 a_64 = convert_long##size(a); \
144 VEC_DATA_TYPE(long, size) \
145 b_64 = convert_long##size(b); \
146 VEC_DATA_TYPE(long, size) \
147 ab_64 = a_64 * b_64; \
Sheri Zhangb18252d2020-04-07 11:04:57 +0100148 /* Revert COMPMID-907 */ \
149 VEC_DATA_TYPE(long, size) \
150 mask1 = 1 << 30; \
151 VEC_DATA_TYPE(long, size) \
152 mask2 = 1 - (1 << 30); \
153 VEC_DATA_TYPE(long, size) \
154 is_positive_or_zero = ab_64 >= 0; \
155 VEC_DATA_TYPE(long, size) \
156 nudge = select(mask2, mask1, is_positive_or_zero); \
157 VEC_DATA_TYPE(long, size) \
158 mask = 1ll << 31; \
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000159 VEC_DATA_TYPE(int, size) \
Sheri Zhangb18252d2020-04-07 11:04:57 +0100160 ab_x2_high32 = convert_int##size((ab_64 + nudge) / mask); \
Chunosovd621bca2017-11-03 17:33:15 +0700161 return select(ab_x2_high32, INT_MAX, overflow); \
162 }
163
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000164/** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
165 *
166 * @param[in] size Size of vector.
167 *
168 * @return Result in fixed-point format Q0.
169 */
170#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size) \
171 inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
172 { \
173 const VEC_DATA_TYPE(int, size) constant_term = 1895147668; \
174 const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883; \
175 const int k_fractional_bits = 31; \
176 VEC_DATA_TYPE(int, size) \
177 x = a + (1 << (k_fractional_bits - 3)); \
178 VEC_DATA_TYPE(int, size) \
179 x2 = ASYMM_MULT(x, x, size); \
180 VEC_DATA_TYPE(int, size) \
181 x3 = ASYMM_MULT(x2, x, size); \
182 VEC_DATA_TYPE(int, size) \
183 x4 = ASYMM_MULT(x2, x2, size); \
184 VEC_DATA_TYPE(int, size) \
185 x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size); \
186 VEC_DATA_TYPE(int, size) \
187 x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2; \
188 VEC_DATA_TYPE(int, size) \
189 x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size); \
190 return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size); \
191 }
Chunosovd621bca2017-11-03 17:33:15 +0700192
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000193/** Each bit of the result is set to the corresponding bit of either then_val or
194 * else_val depending on whether the corresponding bit of if_mask is set.
195 * Equivalent to the VBSL instruction in ARM NEON.
196 *
197 * @param[in] size Size of vector.
198 *
199 * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
200 */
201#define ASYMM_SELECT_USING_MASK_IMPL(size) \
202 inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
203 { \
204 return (if_mask & then_val) ^ (~if_mask & else_val); \
205 }
206
207/** For each element of input vector, the corresponding bits of the result item are set
208 * if the input item is zero.
209 *
210 * @param[in] size Size of vector.
211 *
212 * @returns Output vector with bits set when corresponding bit in @p a is zero.
213 */
214#define ASYMM_MASK_IF_ZERO_IMPL(size) \
215 inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
216 { \
217 const VEC_DATA_TYPE(int, size) all_zeros = 0; \
218 const VEC_DATA_TYPE(int, size) all_ones = ~0; \
219 return select(all_zeros, all_ones, a == 0); \
220 }
221
222/** For each element of input vector, the corresponding bits of the result item are set
223 * if the input item is non-zero.
224 *
225 * @param[in] size Size of vector.
226 *
227 * @returns Output vector with bits set when corresponding bit in @p a is non zero.
228 */
229#define ASYMM_MASK_IF_NON_ZERO_IMPL(size) \
230 inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
231 { \
232 const VEC_DATA_TYPE(int, size) all_zeros = 0; \
233 const VEC_DATA_TYPE(int, size) all_ones = ~0; \
234 return select(all_zeros, all_ones, a != 0); \
235 }
236
237#define EXP_BARREL_SHIFTER_IMPL(size) \
238 inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
239 { \
240 if(k_integer_bits > exponent) \
241 { \
242 const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0; \
243 return ASYMM_SELECT_USING_MASK( \
244 ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size), \
245 ASYMM_MULT(result, fp_multiplier, size), result, size); \
246 } \
247 \
248 return result; \
249 }
250
251/** Calculates \f$ exp(x) \f$ for x < 0.
252 *
253 * @param[in] size Size of vector.
254 *
255 * @return Result in fixed-point format Q0.
256 */
257#define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size) \
258 inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits) \
259 { \
260 const int k_fractional_bits = 31 - k_integer_bits; \
261 VEC_DATA_TYPE(int, size) \
262 k_one_quarter = 1 << (k_fractional_bits - 2); \
263 VEC_DATA_TYPE(int, size) \
264 mask = k_one_quarter - 1; \
265 VEC_DATA_TYPE(int, size) \
266 a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter; \
267 VEC_DATA_TYPE(int, size) \
268 a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits; \
269 VEC_DATA_TYPE(int, size) \
270 result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
271 VEC_DATA_TYPE(int, size) \
272 remainder = a_mod_quarter_minus_one_quarter - a; \
273 \
274 result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size); \
275 result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size); \
276 result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size); \
277 result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size); \
278 result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size); \
279 result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size); \
280 result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size); \
281 \
282 if(k_integer_bits > 5) \
283 { \
284 const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5)); \
285 result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size); \
286 } \
287 \
288 const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
289 return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size); \
290 }
291
292/** Calculates the product of a integer value by a power of two, with either a positive exponent
293 * (equivalent to an arithmetic left shift, saturating) or a negative exponent
294 * (equivalent to an arithmetic right shift, rounding to nearest).
295 *
296 * @param[in] size Size of vector.
297 *
298 * @return Arithmetic left or right shift.
299 */
300#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size) \
301 inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
302 { \
303 if(exponent < 0) \
304 { \
305 return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size); \
306 } \
307 \
308 const VEC_DATA_TYPE(int, size) min = INT_MIN; \
309 const VEC_DATA_TYPE(int, size) max = INT_MAX; \
310 int threshold = ((1 << (31 - exponent)) - 1); \
311 VEC_DATA_TYPE(int, size) \
312 positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size); \
313 VEC_DATA_TYPE(int, size) \
314 negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size); \
315 VEC_DATA_TYPE(int, size) \
316 result = x << exponent; \
317 result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size); \
318 result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size); \
319 return result; \
320 }
321
322/** Calculates (a+b)/2, rounded to the nearest integer.
323 * Equivalent to VRHADD in the ARM NEON instruction set.
324 *
325 * @param[in] size Size of vector.
326 *
327 * @return (a+b)/2, rounded to the nearest integer.
328 */
329#define ASYMM_ROUNDING_HALF_SUM_IMPL(size) \
330 inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
331 { \
332 VEC_DATA_TYPE(long, size) \
333 a64 = convert_long##size(a); \
334 VEC_DATA_TYPE(long, size) \
335 b64 = convert_long##size(b); \
336 VEC_DATA_TYPE(long, size) \
337 sum = a64 + b64; \
338 const VEC_DATA_TYPE(long, size) one = 1; \
339 const VEC_DATA_TYPE(long, size) minus_one = -1; \
340 VEC_DATA_TYPE(long, size) \
341 sign = select(minus_one, one, sum >= 0); \
342 return convert_int##size((sum + sign) / 2); \
343 }
344
345/** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
346 *
347 * @param[in] size Size of vector.
348 *
349 * @return Result in fixed-point format Q0.
350 */
351#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size) \
352 inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
353 { \
354 const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
355 const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2); \
356 VEC_DATA_TYPE(int, size) \
357 half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size); \
358 const VEC_DATA_TYPE(int, size) Q2_48_over_17 = 1515870810; \
359 const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540; \
360 VEC_DATA_TYPE(int, size) \
361 x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size); \
362 for(int i = 0; i < 3; i++) \
363 { \
364 VEC_DATA_TYPE(int, size) \
365 half_denominator_times_x = ASYMM_MULT(half_denominator, x, size); \
366 VEC_DATA_TYPE(int, size) \
367 one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x; \
368 VEC_DATA_TYPE(int, size) \
369 tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size); \
370 x = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size); \
371 } \
372 return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size); \
373 }
374
375/** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
376 *
377 * @param[in] size Size of vector.
378 *
379 * @return Rescaled value.
380 */
381#define ASYMM_RESCALE_IMPL(size) \
382 inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
383 { \
384 int exponent = src_integer_bits - dst_integer_bits; \
385 return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size); \
386 }
387
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100388#define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale)
389#define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size)
390#define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale)
391#define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size)
392
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000393#define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
Chunosovd621bca2017-11-03 17:33:15 +0700394#define ASYMM_MULT(a, b, size) asymm_mult##size(a, b)
Michele Di Giorgio14cbfb22019-10-23 10:53:10 +0100395#define ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(x, quantized_multiplier, left_shift, size) \
396 ASYMM_MULT(x *((VEC_DATA_TYPE(int, size))(1) << (-left_shift)), quantized_multiplier, size)
Chunosovd621bca2017-11-03 17:33:15 +0700397#define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
398 ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000399#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
400#define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
401#define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
402#define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
403#define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
404#define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
405#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
406#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
407#define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
408#define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
Chunosovd621bca2017-11-03 17:33:15 +0700409
Sheri Zhangb18252d2020-04-07 11:04:57 +0100410#define MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(size) \
411 inline VEC_DATA_TYPE(int, size) multiply_by_quantized_multiplier##size(VEC_DATA_TYPE(int, size) input, int qmul, int shift) \
412 { \
413 const int left_shift = shift > 0 ? shift : 0; \
414 const int right_shift = shift > 0 ? 0 : -shift; \
415 return ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(input * (1 << left_shift), qmul, size), right_shift, size); \
416 }
417#define MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, size) multiply_by_quantized_multiplier##size(input, qmul, shift)
418
Manuel Bottini8481d832019-12-10 15:28:40 +0000419QUANTIZE_IMPL(uchar, 1)
420QUANTIZE_IMPL(char, 1)
Michalis Spyrou0b18d972020-01-30 18:11:13 +0000421QUANTIZE_IMPL(uint, 1)
422QUANTIZE_IMPL(int, 1)
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100423QUANTIZE_IMPL(uchar, 4)
424QUANTIZE_IMPL(ushort, 4)
Michele Di Giorgio6b612f52019-09-05 12:30:22 +0100425QUANTIZE_IMPL(short, 4)
Michalis Spyrou0b18d972020-01-30 18:11:13 +0000426QUANTIZE_IMPL(uchar, 16)
427QUANTIZE_IMPL(char, 16)
428QUANTIZE_IMPL(ushort, 16)
429QUANTIZE_IMPL(short, 16)
430QUANTIZE_IMPL(uint, 16)
431QUANTIZE_IMPL(int, 16)
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100432
Manuel Bottini8481d832019-12-10 15:28:40 +0000433DEQUANTIZE_IMPL(uchar, 1)
434DEQUANTIZE_IMPL(char, 1)
Michalis Spyrou0b18d972020-01-30 18:11:13 +0000435DEQUANTIZE_IMPL(uint, 1)
436DEQUANTIZE_IMPL(int, 1)
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100437DEQUANTIZE_IMPL(uchar, 4)
438DEQUANTIZE_IMPL(ushort, 4)
Michele Di Giorgio6b612f52019-09-05 12:30:22 +0100439DEQUANTIZE_IMPL(short, 4)
Michalis Spyrou0b18d972020-01-30 18:11:13 +0000440DEQUANTIZE_IMPL(uchar, 16)
441DEQUANTIZE_IMPL(char, 16)
442DEQUANTIZE_IMPL(ushort, 16)
443DEQUANTIZE_IMPL(short, 16)
444DEQUANTIZE_IMPL(uint, 16)
445DEQUANTIZE_IMPL(int, 16)
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100446
Michele Di Giorgioa046e162019-10-08 09:36:26 +0100447ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000448ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
449ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
450ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
451ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
452
Michele Di Giorgioa046e162019-10-08 09:36:26 +0100453ASYMM_MULT_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000454ASYMM_MULT_IMPL(2)
455ASYMM_MULT_IMPL(4)
456ASYMM_MULT_IMPL(8)
457ASYMM_MULT_IMPL(16)
458
459ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
460ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
461ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
462ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
463
Sheri Zhangb18252d2020-04-07 11:04:57 +0100464ASYMM_SELECT_USING_MASK_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000465ASYMM_SELECT_USING_MASK_IMPL(2)
466ASYMM_SELECT_USING_MASK_IMPL(4)
467ASYMM_SELECT_USING_MASK_IMPL(8)
468ASYMM_SELECT_USING_MASK_IMPL(16)
469
Sheri Zhangb18252d2020-04-07 11:04:57 +0100470ASYMM_MASK_IF_ZERO_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000471ASYMM_MASK_IF_ZERO_IMPL(2)
472ASYMM_MASK_IF_ZERO_IMPL(4)
473ASYMM_MASK_IF_ZERO_IMPL(8)
474ASYMM_MASK_IF_ZERO_IMPL(16)
475
Sheri Zhangb18252d2020-04-07 11:04:57 +0100476ASYMM_MASK_IF_NON_ZERO_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000477ASYMM_MASK_IF_NON_ZERO_IMPL(2)
478ASYMM_MASK_IF_NON_ZERO_IMPL(4)
479ASYMM_MASK_IF_NON_ZERO_IMPL(8)
480ASYMM_MASK_IF_NON_ZERO_IMPL(16)
481
482EXP_BARREL_SHIFTER_IMPL(2)
483EXP_BARREL_SHIFTER_IMPL(4)
484EXP_BARREL_SHIFTER_IMPL(8)
485EXP_BARREL_SHIFTER_IMPL(16)
486
487ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
488ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
489ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
490ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
491
Sheri Zhangb18252d2020-04-07 11:04:57 +0100492ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000493ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
494ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
495ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
496ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
497
498ASYMM_ROUNDING_HALF_SUM_IMPL(2)
499ASYMM_ROUNDING_HALF_SUM_IMPL(4)
500ASYMM_ROUNDING_HALF_SUM_IMPL(8)
501ASYMM_ROUNDING_HALF_SUM_IMPL(16)
502
503ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
504ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
505ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
506ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
507
Sheri Zhangb18252d2020-04-07 11:04:57 +0100508ASYMM_RESCALE_IMPL(1)
Giorgio Arenab99f00d2018-02-14 10:40:16 +0000509ASYMM_RESCALE_IMPL(2)
510ASYMM_RESCALE_IMPL(4)
511ASYMM_RESCALE_IMPL(8)
512ASYMM_RESCALE_IMPL(16)
513
Sheri Zhangb18252d2020-04-07 11:04:57 +0100514MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(1)
515MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(2)
516MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(4)
517MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(8)
518MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(16)
519
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100520#endif // ARM_COMPUTE_HELPERS_ASYMM_H