blob: 3c017325b1c85080b5c007d50332542a33516bf4 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
Sheri Zhang1a378102020-04-30 12:59:39 +01002 * Copyright (c) 2017-2020 ARM Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Usama Arif0681e3b2019-04-25 14:28:07 +010024#include "gemm_helpers.h"
Vidhya Sudhan Loganathan17b0f8b2019-01-08 12:17:03 +000025#include "repeat.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010026
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +000027#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH)
28#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
29#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
30#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
31#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
32#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
33#define CONCAT_INC(K0) INC##K0
34#define INC(K0) CONCAT_INC(K0)
35
36#if(SRC_WIDTH % K0)
37#define BOUNDARY_CONDITION_X(x, a) \
38 ({ \
39 a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
40 })
41#else // (SRC_WIDTH % K0)
42#define BOUNDARY_CONDITION_X(x, a) \
43 ({})
44#endif // (SRC_WIDTH % K0)
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000045
46/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
47 * the output matrix unrolling the values.
48 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +010049 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
50 * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
51 * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
52 * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000053 * @note Only the following values for M0, K0 and V0 are supported:
54 * M0: 2,3,4,5,6,7,8
Gian Marco Iodicebacfec52019-01-11 11:30:55 +000055 * K0: 2,3,4,8,16
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000056 * V0: greater than 0
Gian Marco Iodiced1f54762019-07-19 09:54:47 +010057 * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000058 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
59 * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
60 * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
61 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
62 * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
63 *
64 * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
65 * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
66 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
67 * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
68 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
69 * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
70 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
71 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
72 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
73 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
74 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
75 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
76 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
77 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
78 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
79 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
80 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
81 */
82__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
83 TENSOR3D_DECLARATION(dst)
84#if defined(REINTERPRET_INPUT_AS_3D)
85 ,
86 uint cross_plane_pad
87#endif // REINTERPRET_INPUT_AS_3D
88 )
89{
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +000090 // Block size
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000091#define BLOCK_SIZE ((M0) * (K0))
92
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +000093 // Output offset X
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +000094#if defined(INTERLEAVE)
95#define OUTPUT_OFFSET_X (K0)
96#else // defined(INTERLEAVE)
97#define OUTPUT_OFFSET_X (BLOCK_SIZE)
98#endif // defined(INTERLEAVE)
99
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000100 // Output step X
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000101#if defined(INTERLEAVE)
102#define OUTPUT_STEP_X (K0) * (V0)
103#else // Do not interleave
104#define OUTPUT_STEP_X (K0)
105#endif // defined(INTERLEAVE)
106
107 // Compute source and destination addresses
108 uint x = get_global_id(0);
109 uint y = get_global_id(1);
110 uint z = get_global_id(2);
111
112 // ------------------ Compute input/output addresses ---------------------------
113
114 // Compute the input address
115 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
116
117 // Compute the output address
118 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
119 (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
120
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000121 // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
122 REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000123
124#if defined(REINTERPRET_INPUT_AS_3D)
125 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
126 // multiply src_stride_z by DEPTH_GEMM3D
127
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000128 input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
129
130 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +0100131 CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000132
133#else // defined(REINTERPRET_INPUT_AS_3D)
134
135 input_ptr += z * (uint)src_stride_z;
136
137#endif // defined(REINTERPRET_INPUT_AS_3D)
138
139 // Add offset for batched GEMM
140 output_ptr += z * (uint)dst_stride_z;
141
142 // ---------------------------Load input values --------------------------------
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000143 // Load values from the LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +0100144 LOAD_BLOCK(M0, K0, DATA_TYPE, a, input_ptr, 0, src_stride_y, zin);
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000145 BOUNDARY_CONDITION_X(x, a0);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000146#if M0 > 1
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000147 BOUNDARY_CONDITION_X(x, a1);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000148#endif // M0 > 1
149#if M0 > 2
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000150 BOUNDARY_CONDITION_X(x, a2);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000151#endif // M0 > 2
152#if M0 > 3
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000153 BOUNDARY_CONDITION_X(x, a3);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000154#endif // M0 > 3
155#if M0 > 4
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000156 BOUNDARY_CONDITION_X(x, a4);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000157#endif // M0 > 4
158#if M0 > 5
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000159 BOUNDARY_CONDITION_X(x, a5);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000160#endif // M0 > 5
161#if M0 > 6
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000162 BOUNDARY_CONDITION_X(x, a6);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000163#endif // M0 > 6
164#if M0 > 7
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000165 BOUNDARY_CONDITION_X(x, a7);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000166#endif // M0 > 7
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000167 // ---------------------------Store output values ------------------------------
Usama Arif0681e3b2019-04-25 14:28:07 +0100168 REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
169 STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000170
171#undef BLOCK_SIZE
172#undef OUTPUT_OFFSET_X
173#undef OUTPUT_STEP_X
174}
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000175
176#if M0 == 2
177#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
178 ({ \
179 VEC_DATA_TYPE(DATA_TYPE, M0) \
180 res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
181 VSTORE(M0) \
182 (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
183 })
184#elif M0 == 3 // M0 == 3
185#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
186 ({ \
187 VEC_DATA_TYPE(DATA_TYPE, M0) \
188 res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
189 VSTORE(M0) \
190 (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
191 })
192#elif M0 == 4 // M0 == 4
193#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
194 ({ \
195 VEC_DATA_TYPE(DATA_TYPE, M0) \
196 res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
197 VSTORE(M0) \
198 (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
199 })
200#elif M0 == 5 // M0 == 5
201#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
202 ({ \
203 VEC_DATA_TYPE(DATA_TYPE, 4) \
204 res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
205 DATA_TYPE res1 = a4.s##i; \
206 VSTORE(4) \
207 (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
208 *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
209 })
210#elif M0 == 6 // M0 == 6
211#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
212 ({ \
213 VEC_DATA_TYPE(DATA_TYPE, 4) \
214 res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
215 VEC_DATA_TYPE(DATA_TYPE, 2) \
216 res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
217 VSTORE(4) \
218 (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
219 VSTORE(2) \
220 (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
221 })
222#elif M0 == 7 // M0 == 7
223#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
224 ({ \
225 VEC_DATA_TYPE(DATA_TYPE, 4) \
226 res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
227 VEC_DATA_TYPE(DATA_TYPE, 3) \
228 res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
229 VSTORE(4) \
230 (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
231 VSTORE(3) \
232 (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
233 })
234#elif M0 == 8 // M0 == 8
235#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
236 ({ \
237 VEC_DATA_TYPE(DATA_TYPE, M0) \
238 res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
239 VSTORE(M0) \
240 (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
241 })
242#else // M0 not supported
243#error "M0 value not supported"
244#endif // N0 conditions
245
246/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
247 * the output matrix unrolling the values.
248 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +0100249 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
250 * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
251 * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
252 * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000253 * @note Only the following values for M0, K0 and V0 are supported:
254 * M0: 2,3,4,5,6,7,8
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000255 * K0: 2,3,4,8,16
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000256 * V0: greater than 0
Gian Marco Iodiced1f54762019-07-19 09:54:47 +0100257 * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000258 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
259 * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
260 * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
261 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
262 * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
263 *
264 * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
265 * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
266 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
267 * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
268 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
269 * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
270 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
271 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
272 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
273 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
274 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
275 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
276 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
277 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
278 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
279 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
280 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
281 */
282__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
283 TENSOR3D_DECLARATION(dst)
284#if defined(REINTERPRET_INPUT_AS_3D)
285 ,
286 uint cross_plane_pad
287#endif // REINTERPRET_INPUT_AS_3D
288 )
289{
290 // Block size
291#define BLOCK_SIZE ((M0) * (K0))
292
293 // Output offset X
294#if defined(INTERLEAVE)
295#define OUTPUT_OFFSET_X (M0)
296#else // defined(INTERLEAVE)
297#define OUTPUT_OFFSET_X (BLOCK_SIZE)
298#endif // defined(INTERLEAVE)
299
300 // Output step X
301#if defined(INTERLEAVE)
302#define OUTPUT_STEP_X (M0) * (V0)
303#else // Do not interleave
304#define OUTPUT_STEP_X (M0)
305#endif // defined(INTERLEAVE)
306
307 // Compute source and destination addresses
308 uint x = get_global_id(0);
309 uint y = get_global_id(1);
310 uint z = get_global_id(2);
311
312 // ------------------ Compute input/output addresses ---------------------------
313
314 // Compute the input address
315 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
316
317 // Compute the output address
318 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
319 (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
320
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000321 // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
322 REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000323
324#if defined(REINTERPRET_INPUT_AS_3D)
325 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
326 // multiply src_stride_z by DEPTH_GEMM3D
327
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000328 input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
329
330 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +0100331 CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000332
333#else // defined(REINTERPRET_INPUT_AS_3D)
334
335 input_ptr += z * (uint)src_stride_z;
336
337#endif // defined(REINTERPRET_INPUT_AS_3D)
338
339 // Add offset for batched GEMM
340 output_ptr += z * (uint)dst_stride_z;
341
342 // ---------------------------Load input values --------------------------------
343
344 // Load values from the LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +0100345 LOAD_BLOCK(M0, K0, DATA_TYPE, a, input_ptr, 0, src_stride_y, zin);
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000346 BOUNDARY_CONDITION_X(x, a0);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000347#if M0 > 1
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000348 BOUNDARY_CONDITION_X(x, a1);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000349#endif // M0 > 1
350#if M0 > 2
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000351 BOUNDARY_CONDITION_X(x, a2);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000352#endif // M0 > 2
353#if M0 > 3
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000354 BOUNDARY_CONDITION_X(x, a3);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000355#endif // M0 > 3
356#if M0 > 4
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000357 BOUNDARY_CONDITION_X(x, a4);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000358#endif // M0 > 4
359#if M0 > 5
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000360 BOUNDARY_CONDITION_X(x, a5);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000361#endif // M0 > 5
362#if M0 > 6
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000363 BOUNDARY_CONDITION_X(x, a6);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000364#endif // M0 > 6
365#if M0 > 7
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000366 BOUNDARY_CONDITION_X(x, a7);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000367#endif // M0 > 7
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000368 // ---------------------------Transpose and store block -----------------------
369
370 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
371 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
372#if K0 > 2
373 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000374#endif // K0 > 2
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000375#if K0 > 3
376 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
377#endif // K0 > 3
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000378#if K0 > 4
379 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
380 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
381 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
382 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
383#endif // K0 > 4
384#if K0 > 8
385 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
386 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
387 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
388 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
389 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
390 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
391 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
392 TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
393#endif // K0 > 8
394
395#undef BLOCK_SIZE
396#undef OUTPUT_OFFSET_X
397#undef OUTPUT_STEP_X
398}
Gian Marco Iodiceb87b95e2019-01-21 17:14:31 +0000399#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH)
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000400
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000401#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
402/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
403 * the output matrix unrolling the values.
404 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +0100405 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
406 * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
407 * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
408 * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000409 * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
410 * @note Only the following values for K0, N0 and H0 are supported:
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000411 * N0: 2,3,4,8,16
412 * K0: 1,2,3,4,8,16
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000413 * H0: greater than 0
414 *
415 * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
416 * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
417 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
418 * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
419 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
420 * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
421 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
422 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
423 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
424 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
425 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
426 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
427 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
428 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
429 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
430 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
431 */
432__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
433 TENSOR3D_DECLARATION(dst))
434{
435 // Block size
436#define BLOCK_SIZE ((K0) * (N0))
437
438 // Output offset X
439#if defined(INTERLEAVE)
440#define OUTPUT_OFFSET_X (N0)
441#else // defined(INTERLEAVE)
442#define OUTPUT_OFFSET_X (BLOCK_SIZE)
443#endif // defined(INTERLEAVE)
444
445 // Output step X
446#if defined(INTERLEAVE)
447#define OUTPUT_STEP_X (N0) * (H0)
448#else // Do not interleave
449#define OUTPUT_STEP_X (N0)
450#endif // defined(INTERLEAVE)
451
452 // Compute source and destination addresses
453 uint x = get_global_id(0);
454 uint y = get_global_id(1);
455 uint z = get_global_id(2);
456
457 // ------------------ Compute input/output addresses ---------------------------
458
459 // Compute the input address
460 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
461
462 // Compute the output address
463 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
464 x / (uint)H0)
465 * (uint)dst_stride_y)
466 + z * (uint)dst_stride_z;
467
468 // ---------------------------Load input values --------------------------------
469
Vidhya Sudhan Loganathan17b0f8b2019-01-08 12:17:03 +0000470 REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000471
472 // Load values from the RHS matrix
473 a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
474#if K0 > 1
475 if(y * (uint)K0 + 1 < SRC_HEIGHT)
476 {
477 a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
478 }
479#endif // K0 > 1
480#if K0 > 2
481 if(y * (uint)K0 + 2 < SRC_HEIGHT)
482 {
483 a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
484 }
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000485#endif // K0 > 2
486#if K0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000487 if(y * (uint)K0 + 3 < SRC_HEIGHT)
488 {
489 a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
490 }
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000491#endif // K0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000492#if K0 > 4
493 if(y * (uint)K0 + 4 < SRC_HEIGHT)
494 {
495 a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
496 }
497 if(y * (uint)K0 + 5 < SRC_HEIGHT)
498 {
499 a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
500 }
501 if(y * (uint)K0 + 6 < SRC_HEIGHT)
502 {
503 a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
504 }
505 if(y * (uint)K0 + 7 < SRC_HEIGHT)
506 {
507 a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
508 }
509#endif // K0 > 4
510#if K0 > 8
Gian Marco Iodice08ddd7b2018-12-19 10:01:18 +0000511 if(y * (uint)K0 + 8 < SRC_HEIGHT)
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000512 {
513 a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
514 }
515 if(y * (uint)K0 + 9 < SRC_HEIGHT)
516 {
517 a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
518 }
519 if(y * (uint)K0 + 10 < SRC_HEIGHT)
520 {
521 aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
522 }
523 if(y * (uint)K0 + 11 < SRC_HEIGHT)
524 {
525 aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
526 }
527 if(y * (uint)K0 + 12 < SRC_HEIGHT)
528 {
529 aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
530 }
531 if(y * (uint)K0 + 13 < SRC_HEIGHT)
532 {
533 aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
534 }
535 if(y * (uint)K0 + 14 < SRC_HEIGHT)
536 {
537 aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
538 }
539 if(y * (uint)K0 + 15 < SRC_HEIGHT)
540 {
541 aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
542 }
543#endif // K0 > 8
544
545 // ---------------------------Store output values ------------------------------
Usama Arif0681e3b2019-04-25 14:28:07 +0100546 REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
547 STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000548
549#undef BLOCK_SIZE
550#undef OUTPUT_OFFSET_X
551#undef OUTPUT_STEP_X
552}
553
554#if defined(TRANSPOSE)
555/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
556 * the output matrix unrolling the values.
557 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +0100558 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
559 * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
560 * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
561 * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000562 * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
563 * @note The option -DTRANSPOSE must passed at compile time.
564 * @note Only the following values for K0, N0 and H0 are supported:
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000565 * N0: 2,3,4,8,16
566 * K0: 2,3,4,8,16
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000567 * H0: greater than 0
568 *
569 * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
570 * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
571 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
572 * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
573 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
574 * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
575 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
576 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
577 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
578 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
579 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
580 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
581 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
582 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
583 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
584 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
585 */
586__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
587 TENSOR3D_DECLARATION(dst))
588{
589 // Block size
590#define BLOCK_SIZE ((K0) * (N0))
591
592 // Output offset X
593#if defined(INTERLEAVE)
594#define OUTPUT_OFFSET_X (K0)
595#else // defined(INTERLEAVE)
596#define OUTPUT_OFFSET_X (BLOCK_SIZE)
597#endif // defined(INTERLEAVE)
598
599 // Output step X
600#if defined(INTERLEAVE)
601#define OUTPUT_STEP_X (K0) * (H0)
602#else // Do not interleave
603#define OUTPUT_STEP_X (K0)
604#endif // defined(INTERLEAVE)
605
606 // Compute source and destination addresses
607 uint x = get_global_id(0);
608 uint y = get_global_id(1);
609 uint z = get_global_id(2);
610
611 // ------------------ Compute input/output addresses ---------------------------
612
613 // Compute the input address
614 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
615
616 // Compute the output address
617 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
618 (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
619
620 // ---------------------------Load input values --------------------------------
Vidhya Sudhan Loganathan17b0f8b2019-01-08 12:17:03 +0000621 REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000622
623 // Load values from the RHS matrix
624 a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
625 if(y * (uint)K0 + 1 < SRC_HEIGHT)
626 {
627 a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
628 }
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000629#if K0 > 2
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000630 if(y * (uint)K0 + 2 < SRC_HEIGHT)
631 {
632 a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
633 }
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000634#endif // K0 > 2
635#if K0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000636 if(y * (uint)K0 + 3 < SRC_HEIGHT)
637 {
638 a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
639 }
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000640#endif // K0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000641#if K0 > 4
642 if(y * (uint)K0 + 4 < SRC_HEIGHT)
643 {
644 a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
645 }
646 if(y * (uint)K0 + 5 < SRC_HEIGHT)
647 {
648 a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
649 }
650 if(y * (uint)K0 + 6 < SRC_HEIGHT)
651 {
652 a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
653 }
654 if(y * (uint)K0 + 7 < SRC_HEIGHT)
655 {
656 a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
657 }
658#endif // K0 > 4
659#if K0 > 8
Gian Marco Iodice89124342018-12-19 14:17:22 +0000660 if(y * (uint)K0 + 8 < SRC_HEIGHT)
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000661 {
662 a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
663 }
664 if(y * (uint)K0 + 9 < SRC_HEIGHT)
665 {
666 a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
667 }
668 if(y * (uint)K0 + 10 < SRC_HEIGHT)
669 {
670 aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
671 }
672 if(y * (uint)K0 + 11 < SRC_HEIGHT)
673 {
674 aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
675 }
676 if(y * (uint)K0 + 12 < SRC_HEIGHT)
677 {
678 aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
679 }
680 if(y * (uint)K0 + 13 < SRC_HEIGHT)
681 {
682 aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
683 }
684 if(y * (uint)K0 + 14 < SRC_HEIGHT)
685 {
686 aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
687 }
688 if(y * (uint)K0 + 15 < SRC_HEIGHT)
689 {
690 aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
691 }
692#endif // K0 > 8
693
694 // ---------------------------Transpose the block ------------------------------
Vidhya Sudhan Loganathan17b0f8b2019-01-08 12:17:03 +0000695 REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000696
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000697#if K0 == 2
698 // This part computes the following transpositions:
699 // 2x2 -> 2x2
700 // 2x4 -> 4x2
701 // 2x8 -> 8x2
702 // 2x16 -> 16x2
703 res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
704 res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
705#if N0 > 2
706 res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
707#endif // N0 > 2
708#if N0 > 3
709 res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
710#endif // N0 > 3
711#if N0 > 4
712 res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
713 res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
714 res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
715 res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
716#endif // N0 > 4
717#if N0 > 8
718 res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
719 res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
720 resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
721 resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
722 resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
723 resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
724 resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
725 resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
726#endif // N0 > 8
727
728#elif K0 == 3 // K0 == 2
729 // This part computes the following transpositions:
730 // 3x2 -> 2x3
731 // 3x4 -> 4x3
732 // 3x8 -> 8x3
733 // 3x16 -> 16x3
Georgios Pinitasb0f342e2019-05-21 13:32:43 +0100734 res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
735 res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000736#if N0 > 2
Georgios Pinitasb0f342e2019-05-21 13:32:43 +0100737 res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000738#endif // N0 > 2
739#if N0 > 3
Georgios Pinitasb0f342e2019-05-21 13:32:43 +0100740 res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000741#endif // N0 > 3
742#if N0 > 4
Georgios Pinitasb0f342e2019-05-21 13:32:43 +0100743 res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
744 res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
745 res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
746 res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000747#endif // N0 > 4
748#if N0 > 8
Georgios Pinitasb0f342e2019-05-21 13:32:43 +0100749 res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
750 res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
751 resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
752 resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
753 resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
754 resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
755 resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
756 resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000757#endif // N0 > 8
758
759#elif K0 == 4 // K0 == 4
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000760 // This part computes the following transpositions:
761 // 4x2 -> 2x4
762 // 4x4 -> 4x4
763 // 4x8 -> 8x4
764 // 4x16 -> 16x4
765 res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
766 res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
767#if N0 > 2
768 res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000769#endif // N0 > 2
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000770#if N0 > 3
771 res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
772#endif // N0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000773#if N0 > 4
774 res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
775 res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
776 res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
777 res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
778#endif // N0 > 4
779#if N0 > 8
780 res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
781 res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
782 resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
783 resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
784 resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
785 resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
786 resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
787 resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
788#endif // N0 > 8
789
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000790#elif K0 == 8 // K0 == 8
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000791 // This part computes the following transpositions:
792 // 8x2 -> 2x8
793 // 8x4 -> 4x8
794 // 8x8 -> 8x8
795 // 8x16 -> 16x8
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000796 res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
797 res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000798#if N0 > 2
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000799 res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000800#endif // N0 > 2
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000801#if N0 > 3
802 res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
803#endif // N0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000804#if N0 > 4
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000805 res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
806 res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
807 res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
808 res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000809#endif // N0 > 4
810#if N0 > 8
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +0000811 res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
812 res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
813 resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
814 resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
815 resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
816 resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
817 resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
818 resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000819#endif // N0 > 8
820
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000821#elif K0 == 16 // K0 == 16
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000822
823 // This part computes the following transpositions:
824 // 16x2 -> 2x16
825 // 16x4 -> 4x16
826 // 16x8 -> 8x16
827 // 16x16 -> 16x16
828 res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
829 a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
830 res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
831 a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
832#if N0 > 2
833 res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
834 a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000835#endif // N0 > 2
836#if N0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000837 res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
838 a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
Gian Marco Iodicebacfec52019-01-11 11:30:55 +0000839#endif // N0 > 3
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000840#if N0 > 4
841 res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
842 a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
843 res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
844 a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
845 res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
846 a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
847 res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
848 a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
849#endif // N0 > 4
850#if N0 > 8
851 res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
852 a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
853 res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
854 a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
855 resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
856 a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
857 resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
858 a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
859 resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
860 a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
861 resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
862 a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
863 resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
864 a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
865 resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
866 a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
867#endif // N0 > 8
868
869#else // N0 == 16
870#error "Not supported N0 value"
871#endif // N0 > 2
872
873 // ---------------------------Store the output values ------------------------------
Usama Arif0681e3b2019-04-25 14:28:07 +0100874 REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
875 STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
Gian Marco Iodice3b0a2652018-12-07 11:18:09 +0000876
877#undef BLOCK_SIZE
878#undef OUTPUT_OFFSET_X
879#undef OUTPUT_STEP_X
880}
881#endif // defined(TRANSPOSE)
882#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
883
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +0000884#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +0000885
886#define CONCAT(a, b) a##b
887
888#define ARM_DOT1(a, b, c) \
889 ({ \
890 c = fma(a, b, c); \
891 })
892#define ARM_DOT2(a, b, c) \
893 ({ \
894 c = fma(a.s0, b.s0, c); \
895 c = fma(a.s1, b.s1, c); \
896 })
897#define ARM_DOT3(a, b, c) \
898 ({ \
899 ARM_DOT2(a, b, c); \
900 c = fma((a.s2), (b.s2), c); \
901 })
902#define ARM_DOT4(a, b, c) \
903 ({ \
904 ARM_DOT3(a, b, c); \
905 c = fma((a.s3), (b.s3), c); \
906 })
907#define ARM_DOT8(a, b, c) \
908 ({ \
909 ARM_DOT4((a.lo), (b.lo), c); \
910 ARM_DOT4((a.hi), (b.hi), c); \
911 })
912#define ARM_DOT16(a, b, c) \
913 ({ \
914 ARM_DOT8((a.lo), (b.lo), c); \
915 ARM_DOT8((a.hi), (b.hi), c); \
916 })
917
918#if N0 == 2
919#define ARM_DOT_K0XN0(k0, a, b, c) \
920 ({ \
921 CONCAT(ARM_DOT, k0) \
922 ((a), (b##0), (c.s0)); \
923 CONCAT(ARM_DOT, k0) \
924 ((a), (b##1), (c.s1)); \
925 })
926#elif N0 == 3 // N0 == 3
927#define ARM_DOT_K0XN0(k0, a, b, c) \
928 ({ \
929 CONCAT(ARM_DOT, k0) \
930 ((a), (b##0), (c.s0)); \
931 CONCAT(ARM_DOT, k0) \
932 ((a), (b##1), (c.s1)); \
933 CONCAT(ARM_DOT, k0) \
934 ((a), (b##2), (c.s2)); \
935 })
936#elif N0 == 4 // N0 == 4
937#define ARM_DOT_K0XN0(k0, a, b, c) \
938 ({ \
939 CONCAT(ARM_DOT, k0) \
940 ((a), (b##0), (c.s0)); \
941 CONCAT(ARM_DOT, k0) \
942 ((a), (b##1), (c.s1)); \
943 CONCAT(ARM_DOT, k0) \
944 ((a), (b##2), (c.s2)); \
945 CONCAT(ARM_DOT, k0) \
946 ((a), (b##3), (c.s3)); \
947 })
948#elif N0 == 8 // N0 == 8
949#define ARM_DOT_K0XN0(k0, a, b, c) \
950 ({ \
951 CONCAT(ARM_DOT, k0) \
952 ((a), (b##0), (c.s0)); \
953 CONCAT(ARM_DOT, k0) \
954 ((a), (b##1), (c.s1)); \
955 CONCAT(ARM_DOT, k0) \
956 ((a), (b##2), (c.s2)); \
957 CONCAT(ARM_DOT, k0) \
958 ((a), (b##3), (c.s3)); \
959 CONCAT(ARM_DOT, k0) \
960 ((a), (b##4), (c.s4)); \
961 CONCAT(ARM_DOT, k0) \
962 ((a), (b##5), (c.s5)); \
963 CONCAT(ARM_DOT, k0) \
964 ((a), (b##6), (c.s6)); \
965 CONCAT(ARM_DOT, k0) \
966 ((a), (b##7), (c.s7)); \
967 })
968#elif N0 == 16 // N0 == 16
969#define ARM_DOT_K0XN0(k0, a, b, c) \
970 ({ \
971 CONCAT(ARM_DOT, k0) \
972 ((a), (b##0), (c.s0)); \
973 CONCAT(ARM_DOT, k0) \
974 ((a), (b##1), (c.s1)); \
975 CONCAT(ARM_DOT, k0) \
976 ((a), (b##2), (c.s2)); \
977 CONCAT(ARM_DOT, k0) \
978 ((a), (b##3), (c.s3)); \
979 CONCAT(ARM_DOT, k0) \
980 ((a), (b##4), (c.s4)); \
981 CONCAT(ARM_DOT, k0) \
982 ((a), (b##5), (c.s5)); \
983 CONCAT(ARM_DOT, k0) \
984 ((a), (b##6), (c.s6)); \
985 CONCAT(ARM_DOT, k0) \
986 ((a), (b##7), (c.s7)); \
987 CONCAT(ARM_DOT, k0) \
988 ((a), (b##8), (c.s8)); \
989 CONCAT(ARM_DOT, k0) \
990 ((a), (b##9), (c.s9)); \
991 CONCAT(ARM_DOT, k0) \
992 ((a), (b##A), (c.sA)); \
993 CONCAT(ARM_DOT, k0) \
994 ((a), (b##B), (c.sB)); \
995 CONCAT(ARM_DOT, k0) \
996 ((a), (b##C), (c.sC)); \
997 CONCAT(ARM_DOT, k0) \
998 ((a), (b##D), (c.sD)); \
999 CONCAT(ARM_DOT, k0) \
1000 ((a), (b##E), (c.sE)); \
1001 CONCAT(ARM_DOT, k0) \
1002 ((a), (b##F), (c.sF)); \
1003 })
1004#else // N0 not supported
1005#error "N0 value not supported"
1006#endif // N0 conditions
1007
1008/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
1009 * The LHS matrix is NOT reshaped
1010 * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
1011 *
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00001012 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01001013 * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
1014 * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
1015 * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
1016 * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
1017 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001018 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
1019 * @note Only the following configurations of M0, N0 and K0 are currently supported:
1020 * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
1021 * - N0 = 2, 3, 4, 8, 16
1022 * - K0 = 2, 3, 4, 8, 16
Gian Marco Iodice62251f72019-03-11 16:07:12 +00001023 * - H0 >= 1
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001024 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01001025 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01001026 * The activation function is performed after the bias addition
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001027 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
1028 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
1029 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
1030 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
1031 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
1032 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
1033 *
Sheri Zhang1a378102020-04-30 12:59:39 +01001034 * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
1035 * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001036 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
Sheri Zhang1a378102020-04-30 12:59:39 +01001037 * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001038 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
Sheri Zhang1a378102020-04-30 12:59:39 +01001039 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001040 * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
1041 * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
1042 * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
1043 * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
1044 * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
1045 * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01001046 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
1047 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
1048 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
1049 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
1050 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
1051 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001052 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
1053 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
1054 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
1055 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
1056 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
1057 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Sheri Zhang1a378102020-04-30 12:59:39 +01001058 * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001059 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01001060 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001061 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
1062 * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
1063 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001064 */
1065__kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
1066 IMAGE_DECLARATION(rhs),
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001067#if defined(BETA)
1068 IMAGE_DECLARATION(bias),
1069#endif // defined(BETA)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001070 IMAGE_DECLARATION(dst),
1071 uint lhs_stride_z,
1072 uint rhs_stride_z,
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001073#if defined(BETA)
1074 uint bias_stride_z,
1075#endif //defined(BETA)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001076 uint dst_stride_z
1077#if defined(REINTERPRET_INPUT_AS_3D)
1078 ,
1079 uint lhs_cross_plane_pad
1080#endif // REINTERPRET_INPUT_AS_3D
1081#if defined(REINTERPRET_OUTPUT_AS_3D)
1082 ,
1083 uint dst_cross_plane_pad
1084#endif // REINTERPRET_OUTPUT_AS_3D
1085 )
1086{
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001087 // Block size
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001088#define RHS_BLOCK_SIZE ((K0) * (N0))
1089
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001090 // RHS offset and step X
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001091#if defined(RHS_INTERLEAVE)
1092#define RHS_OFFSET_X (K0)
1093#define RHS_STEP_X ((K0) * (H0))
1094#define RHS_STEP_LOOP (1)
1095#else // defined(RHS_INTERLEAVE)
1096#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
1097#define RHS_STEP_X (K0)
1098#define RHS_STEP_LOOP (H0)
1099#endif // defined(RHS_INTERLEAVE)
1100
1101 uint x = get_global_id(0);
1102 uint y = get_global_id(1);
1103 uint z = get_global_id(2);
1104
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00001105#if defined(DUMMY_WORK_ITEMS)
1106 if((x * N0 >= N) || (y * M0 >= M))
1107 {
1108 return;
1109 }
1110#endif // defined(DUMMY_WORK_ITEMS)
1111
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001112 // Compute LHS matrix address
1113 uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
1114
Sheri Zhang1a378102020-04-30 12:59:39 +01001115 // Compute RHS reshaped matrix address
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001116 uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
1117
1118#if defined(MATRIX_B_DEPTH)
1119 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
1120 rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
1121#else // defined(MATRIX_B_DEPTH)
1122 rhs_offset += z * rhs_stride_z;
1123#endif // defined(MATRIX_B_DEPTH)
1124
Usama Arif0681e3b2019-04-25 14:28:07 +01001125 REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001126 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001127
1128#if defined(REINTERPRET_INPUT_AS_3D)
Usama Arif0681e3b2019-04-25 14:28:07 +01001129 // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
1130 CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001131
1132 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1133 // multiply lhs_stride_z by DEPTH_GEMM3D
1134 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
1135
1136#else // defined(REINTERPRET_INPUT_AS_3D)
1137
1138 // Add offset for batched GEMM
1139 lhs_offset += z * lhs_stride_z;
1140
1141#endif // defined(REINTERPRET_INPUT_AS_3D)
1142
1143 // Initialize the accumulators
1144 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
1145
1146 int i = 0;
1147 for(; i <= (K - K0); i += K0)
1148 {
1149 // Supported cases (M0, K0):
1150 // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
1151 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
1152 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
1153 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
1154 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
1155 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
1156 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
1157 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
1158 // Load values from LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +01001159 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001160
Sheri Zhang1a378102020-04-30 12:59:39 +01001161 // Load values from RHS reshaped matrix
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001162 LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001163
1164 // Accumulate
1165 ARM_DOT_K0XN0(K0, a0, b, c0);
1166#if M0 > 1
1167 ARM_DOT_K0XN0(K0, a1, b, c1);
1168#endif // M0 > 1
1169#if M0 > 2
1170 ARM_DOT_K0XN0(K0, a2, b, c2);
1171#endif // M0 > 2
1172#if M0 > 3
1173 ARM_DOT_K0XN0(K0, a3, b, c3);
1174#endif // M0 > 3
1175#if M0 > 4
1176 ARM_DOT_K0XN0(K0, a4, b, c4);
1177#endif // M0 > 4
1178#if M0 > 5
1179 ARM_DOT_K0XN0(K0, a5, b, c5);
1180#endif // M0 > 5
1181#if M0 > 6
1182 ARM_DOT_K0XN0(K0, a6, b, c6);
1183#endif // M0 > 6
1184#if M0 > 7
1185 ARM_DOT_K0XN0(K0, a7, b, c7);
1186#endif // M0 > 7
1187
1188 lhs_offset += K0 * sizeof(DATA_TYPE);
1189 rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
1190 }
1191
1192 // Left-over accumulations
1193 for(; i < K; ++i)
1194 {
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001195 // Load values from LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +01001196 LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001197
Sheri Zhang1a378102020-04-30 12:59:39 +01001198 // Load values from RHS reshaped matrix
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001199 LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001200
1201 // Accumulate
1202 ARM_DOT_K0XN0(1, a0, b, c0);
1203#if M0 > 1
1204 ARM_DOT_K0XN0(1, a1, b, c1);
1205#endif // M0 > 1
1206#if M0 > 2
1207 ARM_DOT_K0XN0(1, a2, b, c2);
1208#endif // M0 > 2
1209#if M0 > 3
1210 ARM_DOT_K0XN0(1, a3, b, c3);
1211#endif // M0 > 3
1212#if M0 > 4
1213 ARM_DOT_K0XN0(1, a4, b, c4);
1214#endif // M0 > 4
1215#if M0 > 5
1216 ARM_DOT_K0XN0(1, a5, b, c5);
1217#endif // M0 > 5
1218#if M0 > 6
1219 ARM_DOT_K0XN0(1, a6, b, c6);
1220#endif // M0 > 6
1221#if M0 > 7
1222 ARM_DOT_K0XN0(1, a7, b, c7);
1223#endif // M0 > 7
1224
1225 lhs_offset += sizeof(DATA_TYPE);
1226 rhs_offset += sizeof(DATA_TYPE);
1227 }
1228
1229 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
1230
1231 REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
1232
1233#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001234
1235 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +01001236 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001237
1238 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1239 // multiply dst_stride_z by DEPTH_GEMM3D
1240 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
1241
1242#else // defined(REINTERPRET_OUTPUT_AS_3D)
1243
1244 // Add offset for batched GEMM
1245 dst_addr += z * dst_stride_z;
1246
1247#endif // defined(REINTERPRET_OUTPUT_AS_3D)
1248
1249 // Multiply by the weight of matrix-matrix product and store the result
1250#if defined(ALPHA)
Usama Arif0681e3b2019-04-25 14:28:07 +01001251 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001252#endif // defined(ALPHA)
1253
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001254 // Add beta*bias
1255#if defined(BETA)
1256#if defined(BROADCAST_BIAS)
1257 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
1258
1259 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
1260
1261#ifndef UNIT_BETA
1262 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
1263#endif // UNIT_BIAS
1264
1265 // c = c + bias[broadcasted]
1266 ADD_BLOCK_BROADCAST(M0, c, bias0);
1267
1268#else // defined(BROADCAST_BIAS)
1269 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
1270 2) * bias_stride_z;
1271
1272 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
1273
1274#ifndef UNIT_BETA
1275 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
1276#endif // UNIT_BIAS
1277
1278 // c = c + bias
1279 ADD_BLOCK(M0, c, bias);
1280
1281#endif // defined(BROADCAST_BIAS)
1282#endif // defined(BETA)
1283
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01001284#if defined(ACTIVATION_TYPE)
1285 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
1286#endif // defined(ACTIVATION_TYPE)
1287
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001288 // Store output block
Usama Arif0681e3b2019-04-25 14:28:07 +01001289 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00001290
1291#undef RHS_BLOCK_SIZE
1292#undef RHS_OFFSET_X
1293#undef RHS_STEP_X
1294}
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001295
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001296#if defined(OPENCL_IMAGE_SUPPORT)
1297/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image
1298 * The LHS matrix is NOT reshaped
1299 * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
1300 *
1301 * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
1302 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
1303 * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
1304 * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
1305 * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
1306 * could be different from the value returned by get_image_height(rhs_img).
1307 * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
1308 * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
1309 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
1310 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
1311 * @note Only the following configurations of M0, N0 and K0 are currently supported:
1312 * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
1313 * - N0 = 4, 8, 16
1314 * - K0 = 4, 8, 16
1315 * - H0 >= 1
1316 *
1317 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
1318 * The activation function is performed after the bias addition
1319 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
1320 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
1321 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
1322 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
1323 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
1324 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
1325 *
1326 * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32
1327 * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
1328 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
1329 * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
1330 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
1331 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
1332 * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr
1333 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
1334 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
1335 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
1336 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
1337 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
1338 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
1339 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
1340 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
1341 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
1342 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
1343 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
1344 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
1345 * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
1346 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
1347 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
1348 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
1349 * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
1350 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
1351 */
1352__kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
1353 __read_only image2d_t rhs_img,
1354#if defined(BETA)
1355 IMAGE_DECLARATION(bias),
1356#endif // defined(BETA)
1357 IMAGE_DECLARATION(dst),
1358 uint lhs_stride_z,
1359 uint rhs_stride_z,
1360#if defined(BETA)
1361 uint bias_stride_z,
1362#endif //defined(BETA)
1363 uint dst_stride_z
1364#if defined(REINTERPRET_INPUT_AS_3D)
1365 ,
1366 uint lhs_cross_plane_pad
1367#endif // REINTERPRET_INPUT_AS_3D
1368#if defined(REINTERPRET_OUTPUT_AS_3D)
1369 ,
1370 uint dst_cross_plane_pad
1371#endif // REINTERPRET_OUTPUT_AS_3D
1372 )
1373{
1374 // Pixel unit
1375#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
1376
1377#define LEFTOVER_K (K % K0)
1378
1379 // Block size
1380#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
1381
1382 // RHS offset and step X
1383#if defined(RHS_INTERLEAVE)
1384#define RHS_OFFSET_X (PIXEL_UNIT)
1385#define RHS_STEP_X (PIXEL_UNIT * (H0))
1386#define RHS_STEP_LOOP (1)
1387#else // defined(RHS_INTERLEAVE)
1388#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
1389#define RHS_STEP_X PIXEL_UNIT
1390#define RHS_STEP_LOOP (H0)
1391#endif // defined(RHS_INTERLEAVE)
1392
1393 uint x = get_global_id(0);
1394 uint y = get_global_id(1);
1395 uint z = get_global_id(2);
1396
1397#if defined(DUMMY_WORK_ITEMS)
1398 if((x * N0 >= N) || (y * M0 >= M))
1399 {
1400 return;
1401 }
1402#endif // defined(DUMMY_WORK_ITEMS)
1403
1404 // Compute LHS matrix address
1405 uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
1406
1407#if defined(MATRIX_B_DEPTH)
1408 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
1409 const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
1410#else // defined(MATRIX_B_DEPTH)
1411 const uint z_rhs = get_global_id(2);
1412#endif // defined(MATRIX_B_DEPTH)
1413
1414 // Compute RHS matrix coordinates
1415 uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
1416 const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
1417
1418 REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
1419 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
1420
1421#if defined(REINTERPRET_INPUT_AS_3D)
1422 // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
1423 CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
1424
1425 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1426 // multiply lhs_stride_z by DEPTH_GEMM3D
1427 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
1428
1429#else // defined(REINTERPRET_INPUT_AS_3D)
1430
1431 // Add offset for batched GEMM
1432 lhs_offset += z * lhs_stride_z;
1433
1434#endif // defined(REINTERPRET_INPUT_AS_3D)
1435
1436 // Initialize the accumulators
1437 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
1438
1439 int i = 0;
1440 for(; i <= (K - K0); i += K0)
1441 {
1442 // Load values from LHS matrix
1443 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
1444
1445 // Load values from RHS matrix stored in a cl_image
1446 REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
1447 LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
1448
1449 // Accumulate
1450 ARM_DOT_K0XN0(K0, a0, b, c0);
1451#if M0 > 1
1452 ARM_DOT_K0XN0(K0, a1, b, c1);
1453#endif // M0 > 1
1454#if M0 > 2
1455 ARM_DOT_K0XN0(K0, a2, b, c2);
1456#endif // M0 > 2
1457#if M0 > 3
1458 ARM_DOT_K0XN0(K0, a3, b, c3);
1459#endif // M0 > 3
1460#if M0 > 4
1461 ARM_DOT_K0XN0(K0, a4, b, c4);
1462#endif // M0 > 4
1463#if M0 > 5
1464 ARM_DOT_K0XN0(K0, a5, b, c5);
1465#endif // M0 > 5
1466#if M0 > 6
1467 ARM_DOT_K0XN0(K0, a6, b, c6);
1468#endif // M0 > 6
1469#if M0 > 7
1470 ARM_DOT_K0XN0(K0, a7, b, c7);
1471#endif // M0 > 7
1472
1473 lhs_offset += K0 * sizeof(DATA_TYPE);
1474 x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
1475 }
1476
1477#if LEFTOVER_K != 0
1478 // Note: We cannot read out-of-bound elements from the RHS matrix because
1479 // the RHS width is always multiple of K0. This is not be true for the LHS matrix
1480
1481 union UNION_VEC_TYPE
1482 {
1483 DATA_TYPE s[K0];
1484 VEC_DATA_TYPE(DATA_TYPE, K0)
1485 v;
1486 };
1487
1488 union UNION_VEC_TYPE a0 = {.v = 0 };
1489#if M0 > 1
1490 union UNION_VEC_TYPE a1 = {.v = 0 };
1491#endif // M0 > 1
1492#if M0 > 2
1493 union UNION_VEC_TYPE a2 = {.v = 0 };
1494#endif // M0 > 2
1495#if M0 > 3
1496 union UNION_VEC_TYPE a3 = {.v = 0 };
1497#endif // M0 > 3
1498#if M0 > 4
1499 union UNION_VEC_TYPE a4 = {.v = 0 };
1500#endif // M0 > 4
1501#if M0 > 5
1502 union UNION_VEC_TYPE a5 = {.v = 0 };
1503#endif // M0 > 5
1504#if M0 > 6
1505 union UNION_VEC_TYPE a6 = {.v = 0 };
1506#endif // M0 > 6
1507#if M0 > 7
1508 union UNION_VEC_TYPE a7 = {.v = 0 };
1509#endif // M0 > 7
1510
1511 REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
1512
1513 // Load from RHS matrix
1514 LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
1515
1516 // Load from LHS matrix
1517 for(int k = 0; k < LEFTOVER_K; ++k)
1518 {
1519 a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
1520#if M0 > 1
1521 a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
1522#endif // M0 > 1
1523#if M0 > 2
1524 a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
1525#endif // M0 > 2
1526#if M0 > 3
1527 a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
1528#endif // M0 > 3
1529#if M0 > 4
1530 a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
1531#endif // M0 > 4
1532#if M0 > 5
1533 a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
1534#endif // M0 > 5
1535#if M0 > 6
1536 a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
1537#endif // M0 > 6
1538#if M0 > 7
1539 a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
1540#endif // M0 > 7
1541
1542 lhs_offset += sizeof(DATA_TYPE);
1543 }
1544
1545 // Accumulate
1546 ARM_DOT_K0XN0(K0, a0.v, b, c0);
1547#if M0 > 1
1548 ARM_DOT_K0XN0(K0, a1.v, b, c1);
1549#endif // M0 > 1
1550#if M0 > 2
1551 ARM_DOT_K0XN0(K0, a2.v, b, c2);
1552#endif // M0 > 2
1553#if M0 > 3
1554 ARM_DOT_K0XN0(K0, a3.v, b, c3);
1555#endif // M0 > 3
1556#if M0 > 4
1557 ARM_DOT_K0XN0(K0, a4.v, b, c4);
1558#endif // M0 > 4
1559#if M0 > 5
1560 ARM_DOT_K0XN0(K0, a5.v, b, c5);
1561#endif // M0 > 5
1562#if M0 > 6
1563 ARM_DOT_K0XN0(K0, a6.v, b, c6);
1564#endif // M0 > 6
1565#if M0 > 7
1566 ARM_DOT_K0XN0(K0, a7.v, b, c7);
1567#endif // M0 > 7
1568
1569#endif // LEFTOVER_K != 0
1570
1571 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
1572
1573 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
1574
1575#if defined(REINTERPRET_OUTPUT_AS_3D)
1576
1577 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
1578 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
1579
1580 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1581 // multiply dst_stride_z by DEPTH_GEMM3D
1582 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
1583
1584#else // defined(REINTERPRET_OUTPUT_AS_3D)
1585
1586 // Add offset for batched GEMM
1587 dst_addr += z * dst_stride_z;
1588
1589#endif // defined(REINTERPRET_OUTPUT_AS_3D)
1590
1591 // Multiply by the weight of matrix-matrix product and store the result
1592#if defined(ALPHA)
1593 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
1594#endif // defined(ALPHA)
1595
1596 // Add beta*bias
1597#if defined(BETA)
1598#if defined(BROADCAST_BIAS)
1599 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
1600
1601 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
1602
1603#ifndef UNIT_BETA
1604 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
1605#endif // UNIT_BIAS
1606
1607 // c = c + bias[broadcasted]
1608 ADD_BLOCK_BROADCAST(M0, c, bias0);
1609
1610#else // defined(BROADCAST_BIAS)
1611 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
1612 2) * bias_stride_z;
1613
1614 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
1615
1616#ifndef UNIT_BETA
1617 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
1618#endif // UNIT_BIAS
1619
1620 // c = c + bias
1621 ADD_BLOCK(M0, c, bias);
1622
1623#endif // defined(BROADCAST_BIAS)
1624#endif // defined(BETA)
1625
1626#if defined(ACTIVATION_TYPE)
1627 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
1628#endif // defined(ACTIVATION_TYPE)
1629
1630 // Store output block
1631 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
1632
1633#undef RHS_BLOCK_SIZE
1634#undef RHS_OFFSET_X
1635#undef RHS_STEP_X
1636#undef LEFTOVER_K
1637#undef PIXEL_UNIT
1638}
1639#endif // defined(OPENCL_IMAGE_SUPPORT)
1640
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001641#define VFMA(a, b, c) \
1642 ({ \
1643 c = fma(a, b, c); \
1644 })
1645
1646#if M0 == 1
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001647#define VFMA_M0xN0(i, a, b, c) \
1648 ({ \
1649 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001650 })
1651#elif M0 == 2 // M0 == 2
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001652#define VFMA_M0xN0(i, a, b, c) \
1653 ({ \
1654 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1655 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001656 })
1657#elif M0 == 3 // M0 == 3
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001658#define VFMA_M0xN0(i, a, b, c) \
1659 ({ \
1660 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1661 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1662 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001663 })
1664#elif M0 == 4 // M0 == 4
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001665#define VFMA_M0xN0(i, a, b, c) \
1666 ({ \
1667 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1668 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1669 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
1670 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001671 })
1672#elif M0 == 5 // M0 == 5
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001673#define VFMA_M0xN0(i, a, b, c) \
1674 ({ \
1675 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1676 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1677 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
1678 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
1679 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001680 })
1681#elif M0 == 6 // M0 == 6
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001682#define VFMA_M0xN0(i, a, b, c) \
1683 ({ \
1684 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1685 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1686 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
1687 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
1688 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
1689 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001690 })
1691#elif M0 == 7 // M0 == 7
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001692#define VFMA_M0xN0(i, a, b, c) \
1693 ({ \
1694 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1695 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1696 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
1697 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
1698 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
1699 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
1700 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001701 })
1702#elif M0 == 8 // M0 == 8
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001703#define VFMA_M0xN0(i, a, b, c) \
1704 ({ \
1705 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
1706 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
1707 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
1708 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
1709 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
1710 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
1711 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
1712 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001713 })
1714#else // M0 not supported
1715#error "M0 not supported"
1716#endif // M0 not supported
1717
1718/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
1719 * The LHS matrix is NOT reshaped
1720 * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
1721 *
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00001722 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01001723 * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
1724 * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
1725 * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
1726 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001727 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
1728 * @note Only the following configurations of M0, N0 and K0 are currently supported:
1729 * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
1730 * - N0 = 2, 3, 4, 8, 16
1731 * - K0 = 2, 3, 4, 8, 16
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00001732 * - H0 >= 1
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001733 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01001734 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01001735 * The activation function is performed after the bias addition
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001736 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
1737 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
1738 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
1739 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
1740 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
1741 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
1742 *
Sheri Zhang1a378102020-04-30 12:59:39 +01001743 * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
1744 * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001745 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
Sheri Zhang1a378102020-04-30 12:59:39 +01001746 * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001747 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
Sheri Zhang1a378102020-04-30 12:59:39 +01001748 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001749 * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
1750 * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
1751 * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
1752 * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
1753 * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
1754 * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01001755 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
1756 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001757 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01001758 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001759 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
1760 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
1761 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
1762 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
1763 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
1764 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
1765 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
1766 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Sheri Zhang1a378102020-04-30 12:59:39 +01001767 * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001768 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01001769 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001770 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
1771 * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
1772 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001773 */
1774__kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
1775 IMAGE_DECLARATION(rhs),
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001776#if defined(BETA)
1777 IMAGE_DECLARATION(bias),
1778#endif // defined(BETA)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001779 IMAGE_DECLARATION(dst),
1780 uint lhs_stride_z,
1781 uint rhs_stride_z,
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001782#if defined(BETA)
1783 uint bias_stride_z,
1784#endif //defined(BETA)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001785 uint dst_stride_z
1786#if defined(REINTERPRET_INPUT_AS_3D)
1787 ,
1788 uint lhs_cross_plane_pad
1789#endif // REINTERPRET_INPUT_AS_3D
1790#if defined(REINTERPRET_OUTPUT_AS_3D)
1791 ,
1792 uint dst_cross_plane_pad
1793#endif // REINTERPRET_OUTPUT_AS_3D
1794 )
1795{
1796 // Block size
1797#define RHS_BLOCK_SIZE ((K0) * (N0))
1798
1799 // RHS offset and step X
1800#if defined(RHS_INTERLEAVE)
1801#define RHS_OFFSET_X (N0)
1802#define RHS_STEP_X ((N0) * (H0))
1803#define RHS_STEP_LOOP (1)
1804#else // defined(RHS_INTERLEAVE)
1805#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
1806#define RHS_STEP_X (N0)
1807#define RHS_STEP_LOOP (H0)
1808#endif // defined(RHS_INTERLEAVE)
1809
1810 uint x = get_global_id(0);
1811 uint y = get_global_id(1);
1812 uint z = get_global_id(2);
1813
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00001814#if defined(DUMMY_WORK_ITEMS)
1815 if((x * N0 >= N) || (y * M0 >= M))
1816 {
1817 return;
1818 }
1819#endif // defined(DUMMY_WORK_ITEMS)
1820
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001821 // Compute LHS matrix address
1822 uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
1823
Sheri Zhang1a378102020-04-30 12:59:39 +01001824 // Compute RHS reshaped matrix address
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001825 uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
1826
1827#if defined(MATRIX_B_DEPTH)
1828 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
1829 rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
1830#else // defined(MATRIX_B_DEPTH)
1831 rhs_offset += z * rhs_stride_z;
1832#endif // defined(MATRIX_B_DEPTH)
1833
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001834 REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0;
1835 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0;
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001836
1837#if defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001838
1839 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +01001840 CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001841
1842 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1843 // multiply lhs_stride_z by DEPTH_GEMM3D
1844 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
1845
1846#else // defined(REINTERPRET_INPUT_AS_3D)
1847
1848 // Add offset for batched GEMM
1849 lhs_offset += z * lhs_stride_z;
1850
1851#endif // defined(REINTERPRET_INPUT_AS_3D)
1852
1853 // Initialize the accumulators
1854 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
1855
1856 int i = 0;
1857 for(; i <= (K - K0); i += K0)
1858 {
1859 // Supported cases (M0, K0):
1860 // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
1861 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
1862 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
1863 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
1864 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
1865 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
1866 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
1867 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
1868 // Load values from LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +01001869 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001870
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001871 VEC_DATA_TYPE(DATA_TYPE, N0)
1872 b0;
1873
1874 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
1875 VFMA_M0xN0(0, a, b0, c);
1876 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
1877 VFMA_M0xN0(1, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001878#if K0 > 2
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001879 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
1880 VFMA_M0xN0(2, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001881#endif // K0 > 2
1882#if K0 > 3
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001883 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
1884 VFMA_M0xN0(3, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001885#endif // K0 > 3
1886#if K0 > 4
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001887 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
1888 VFMA_M0xN0(4, a, b0, c);
1889 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
1890 VFMA_M0xN0(5, a, b0, c);
1891 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
1892 VFMA_M0xN0(6, a, b0, c);
1893 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
1894 VFMA_M0xN0(7, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001895#endif // K0 > 4
1896#if K0 > 8
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001897 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
1898 VFMA_M0xN0(8, a, b0, c);
1899 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
1900 VFMA_M0xN0(9, a, b0, c);
1901 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
1902 VFMA_M0xN0(A, a, b0, c);
1903 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
1904 VFMA_M0xN0(B, a, b0, c);
1905 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
1906 VFMA_M0xN0(C, a, b0, c);
1907 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
1908 VFMA_M0xN0(D, a, b0, c);
1909 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
1910 VFMA_M0xN0(E, a, b0, c);
1911 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
1912 VFMA_M0xN0(F, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001913#endif // K0 > 8
1914
1915 lhs_offset += K0 * sizeof(DATA_TYPE);
1916 rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE);
1917 }
1918
1919 // Left-over accumulations
1920 for(; i < K; ++i)
1921 {
1922 // Load values from LHS matrix
1923 VEC_DATA_TYPE(DATA_TYPE, 2)
1924 a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
1925#if M0 > 1
1926 VEC_DATA_TYPE(DATA_TYPE, 2)
1927 a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
1928#endif // M0 > 1
1929#if M0 > 2
1930 VEC_DATA_TYPE(DATA_TYPE, 2)
1931 a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
1932#endif // M0 > 2
1933#if M0 > 3
1934 VEC_DATA_TYPE(DATA_TYPE, 2)
1935 a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
1936#endif // M0 > 3
1937#if M0 > 4
1938 VEC_DATA_TYPE(DATA_TYPE, 2)
1939 a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
1940#endif // M0 > 4
1941#if M0 > 5
1942 VEC_DATA_TYPE(DATA_TYPE, 2)
1943 a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
1944#endif // M0 > 5
1945#if M0 > 6
1946 VEC_DATA_TYPE(DATA_TYPE, 2)
1947 a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
1948#endif // M0 > 6
1949#if M0 > 7
1950 VEC_DATA_TYPE(DATA_TYPE, 2)
giuros01b3204e72019-04-01 13:50:22 +01001951 a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001952#endif // M0 > 7
1953
Gian Marco Iodice781cba72020-06-19 16:56:57 +01001954 VEC_DATA_TYPE(DATA_TYPE, N0)
1955 b0;
1956
1957 b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
1958 VFMA_M0xN0(0, a, b0, c);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001959
1960 lhs_offset += sizeof(DATA_TYPE);
1961 rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
1962 }
1963
1964 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
1965
1966 REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
1967
1968#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001969 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +01001970 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001971
1972 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
1973 // multiply dst_stride_z by DEPTH_GEMM3D
1974 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
1975
1976#else // defined(REINTERPRET_OUTPUT_AS_3D)
1977
1978 // Add offset for batched GEMM
1979 dst_addr += z * dst_stride_z;
1980
1981#endif // defined(REINTERPRET_OUTPUT_AS_3D)
1982
1983 // Multiply by the weight of matrix-matrix product and store the result
1984#if defined(ALPHA)
Usama Arif0681e3b2019-04-25 14:28:07 +01001985 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00001986#endif // defined(ALPHA)
1987
Georgios Pinitasb0f342e2019-05-21 13:32:43 +01001988 // Add beta*bias
1989#if defined(BETA)
1990#if defined(BROADCAST_BIAS)
1991 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
1992
1993 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
1994
1995#ifndef UNIT_BETA
1996 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
1997#endif // UNIT_BIAS
1998
1999 // c = c + bias[broadcasted]
2000 ADD_BLOCK_BROADCAST(M0, c, bias0);
2001
2002#else // defined(BROADCAST_BIAS)
2003 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
2004 2) * bias_stride_z;
2005
2006 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2007
2008#ifndef UNIT_BETA
2009 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
2010#endif // UNIT_BIAS
2011
2012 // c = c + bias
2013 ADD_BLOCK(M0, c, bias);
2014
2015#endif // defined(BROADCAST_BIAS)
2016#endif // defined(BETA)
2017
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01002018#if defined(ACTIVATION_TYPE)
2019 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
2020#endif // defined(ACTIVATION_TYPE)
2021
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00002022 // Store output block
Usama Arif0681e3b2019-04-25 14:28:07 +01002023 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
Gian Marco Iodiceba5e0962019-03-11 12:17:44 +00002024
2025#undef RHS_BLOCK_SIZE
2026#undef RHS_OFFSET_X
2027#undef RHS_STEP_X
2028}
Gian Marco Iodice781cba72020-06-19 16:56:57 +01002029
2030#if defined(OPENCL_IMAGE_SUPPORT)
2031/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
2032 * The LHS matrix is NOT reshaped
2033 * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
2034 *
2035 * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
2036 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
2037 * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
2038 * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
2039 * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
2040 * could be different from the value returned by get_image_height(rhs_img).
2041 * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
2042 * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
2043 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
2044 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
2045 * @note Only the following configurations of M0, N0 and K0 are currently supported:
2046 * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
2047 * - N0 = 4, 8, 16
2048 * - K0 = 4, 8, 16
2049 * - H0 >= 1
2050 *
2051 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
2052 * The activation function is performed after the bias addition
2053 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
2054 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
2055 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
2056 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
2057 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
2058 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
2059 *
2060 * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32
2061 * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
2062 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
2063 * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
2064 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
2065 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
2066 * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr
2067 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
2068 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
2069 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
2070 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
2071 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
2072 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
2073 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
2074 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
2075 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
2076 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
2077 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
2078 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
2079 * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
2080 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
2081 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
2082 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
2083 * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
2084 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
2085 */
2086__kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
2087 __read_only image2d_t rhs_img,
2088#if defined(BETA)
2089 IMAGE_DECLARATION(bias),
2090#endif // defined(BETA)
2091 IMAGE_DECLARATION(dst),
2092 uint lhs_stride_z,
2093 uint rhs_stride_z,
2094#if defined(BETA)
2095 uint bias_stride_z,
2096#endif //defined(BETA)
2097 uint dst_stride_z
2098#if defined(REINTERPRET_INPUT_AS_3D)
2099 ,
2100 uint lhs_cross_plane_pad
2101#endif // REINTERPRET_INPUT_AS_3D
2102#if defined(REINTERPRET_OUTPUT_AS_3D)
2103 ,
2104 uint dst_cross_plane_pad
2105#endif // REINTERPRET_OUTPUT_AS_3D
2106 )
2107{
2108 // Pixel unit
2109#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
2110
2111 // Block size
2112#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
2113
2114 // RHS offset and step X
2115#if defined(RHS_INTERLEAVE)
2116#define RHS_OFFSET_X (PIXEL_UNIT)
2117#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
2118#else // defined(RHS_INTERLEAVE)
2119#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
2120#define RHS_STEP_X (PIXEL_UNIT)
2121#endif // defined(RHS_INTERLEAVE)
2122
2123 uint x = get_global_id(0);
2124 uint y = get_global_id(1);
2125 uint z = get_global_id(2);
2126
2127#if defined(DUMMY_WORK_ITEMS)
2128 if((x * N0 >= N) || (y * M0 >= M))
2129 {
2130 return;
2131 }
2132#endif // defined(DUMMY_WORK_ITEMS)
2133
2134 // Compute LHS matrix address
2135 uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
2136
2137#if defined(MATRIX_B_DEPTH)
2138 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
2139 const uint z_rhs = (z % MATRIX_B_DEPTH);
2140#else // defined(MATRIX_B_DEPTH)
2141 const uint z_rhs = z;
2142#endif // defined(MATRIX_B_DEPTH)
2143
2144 // Compute RHS matrix coordinates
2145 uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
2146 const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
2147
2148 REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0);
2149 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
2150
2151#if defined(REINTERPRET_INPUT_AS_3D)
2152
2153 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
2154 CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
2155
2156 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
2157 // multiply lhs_stride_z by DEPTH_GEMM3D
2158 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
2159
2160#else // defined(REINTERPRET_INPUT_AS_3D)
2161
2162 // Add offset for batched GEMM
2163 lhs_offset += z * lhs_stride_z;
2164
2165#endif // defined(REINTERPRET_INPUT_AS_3D)
2166
2167 // Initialize the accumulators
2168 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
2169
2170 int i = 0;
2171 for(; i <= (K - K0); i += K0)
2172 {
2173 // Load values from LHS matrix
2174 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
2175
2176 VEC_DATA_TYPE(DATA_TYPE, N0)
2177 b0;
2178
2179 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
2180 VFMA_M0xN0(0, a, b0, c);
2181 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
2182 VFMA_M0xN0(1, a, b0, c);
2183#if K0 > 2
2184 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
2185 VFMA_M0xN0(2, a, b0, c);
2186#endif // K0 > 2
2187#if K0 > 3
2188 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
2189 VFMA_M0xN0(3, a, b0, c);
2190#endif // K0 > 3
2191#if K0 > 4
2192 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
2193 VFMA_M0xN0(4, a, b0, c);
2194 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
2195 VFMA_M0xN0(5, a, b0, c);
2196 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
2197 VFMA_M0xN0(6, a, b0, c);
2198 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
2199 VFMA_M0xN0(7, a, b0, c);
2200#endif // K0 > 4
2201#if K0 > 8
2202 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
2203 VFMA_M0xN0(8, a, b0, c);
2204 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
2205 VFMA_M0xN0(9, a, b0, c);
2206 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
2207 VFMA_M0xN0(A, a, b0, c);
2208 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
2209 VFMA_M0xN0(B, a, b0, c);
2210 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
2211 VFMA_M0xN0(C, a, b0, c);
2212 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
2213 VFMA_M0xN0(D, a, b0, c);
2214 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
2215 VFMA_M0xN0(E, a, b0, c);
2216 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
2217 VFMA_M0xN0(F, a, b0, c);
2218#endif // K0 > 8
2219
2220 lhs_offset += K0 * sizeof(DATA_TYPE);
2221 x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP;
2222 }
2223
2224 // Left-over accumulations
2225 for(; i < K; ++i)
2226 {
2227 // Load values from LHS matrix
2228 VEC_DATA_TYPE(DATA_TYPE, 2)
2229 a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
2230#if M0 > 1
2231 VEC_DATA_TYPE(DATA_TYPE, 2)
2232 a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
2233#endif // M0 > 1
2234#if M0 > 2
2235 VEC_DATA_TYPE(DATA_TYPE, 2)
2236 a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
2237#endif // M0 > 2
2238#if M0 > 3
2239 VEC_DATA_TYPE(DATA_TYPE, 2)
2240 a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
2241#endif // M0 > 3
2242#if M0 > 4
2243 VEC_DATA_TYPE(DATA_TYPE, 2)
2244 a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
2245#endif // M0 > 4
2246#if M0 > 5
2247 VEC_DATA_TYPE(DATA_TYPE, 2)
2248 a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
2249#endif // M0 > 5
2250#if M0 > 6
2251 VEC_DATA_TYPE(DATA_TYPE, 2)
2252 a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
2253#endif // M0 > 6
2254#if M0 > 7
2255 VEC_DATA_TYPE(DATA_TYPE, 2)
2256 a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
2257#endif // M0 > 7
2258
2259 VEC_DATA_TYPE(DATA_TYPE, N0)
2260 b0;
2261 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
2262
2263 VFMA_M0xN0(0, a, b0, c);
2264
2265 lhs_offset += sizeof(DATA_TYPE);
2266 x_rhs += RHS_STEP_X;
2267 }
2268
2269 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
2270
2271 REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
2272
2273#if defined(REINTERPRET_OUTPUT_AS_3D)
2274 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
2275 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
2276
2277 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
2278 // multiply dst_stride_z by DEPTH_GEMM3D
2279 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
2280
2281#else // defined(REINTERPRET_OUTPUT_AS_3D)
2282
2283 // Add offset for batched GEMM
2284 dst_addr += z * dst_stride_z;
2285
2286#endif // defined(REINTERPRET_OUTPUT_AS_3D)
2287
2288 // Multiply by the weight of matrix-matrix product and store the result
2289#if defined(ALPHA)
2290 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
2291#endif // defined(ALPHA)
2292
2293 // Add beta*bias
2294#if defined(BETA)
2295#if defined(BROADCAST_BIAS)
2296 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
2297
2298 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2299
2300#ifndef UNIT_BETA
2301 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
2302#endif // UNIT_BIAS
2303
2304 // c = c + bias[broadcasted]
2305 ADD_BLOCK_BROADCAST(M0, c, bias0);
2306
2307#else // defined(BROADCAST_BIAS)
2308 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
2309 2) * bias_stride_z;
2310
2311 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2312
2313#ifndef UNIT_BETA
2314 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
2315#endif // UNIT_BIAS
2316
2317 // c = c + bias
2318 ADD_BLOCK(M0, c, bias);
2319
2320#endif // defined(BROADCAST_BIAS)
2321#endif // defined(BETA)
2322
2323#if defined(ACTIVATION_TYPE)
2324 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
2325#endif // defined(ACTIVATION_TYPE)
2326
2327 // Store output block
2328 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
2329
2330#undef RHS_BLOCK_SIZE
2331#undef RHS_OFFSET_X
2332#undef RHS_STEP_X
2333}
2334#endif // defined(OPENCL_IMAGE_SUPPORT)
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00002335#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00002336
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002337#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002338
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002339#if defined(MIXED_PRECISION)
2340#if K0 == 2
2341#define ARM_DOT_K0(a, b, c) \
2342 ({ \
2343 c += a.s0 * b.s0; \
2344 c += a.s1 * b.s1; \
2345 })
2346#elif K0 == 3 // K0 == 3
2347#define ARM_DOT_K0(a, b, c) \
2348 ({ \
2349 c += a.s0 * b.s0; \
2350 c += a.s1 * b.s1; \
2351 c += a.s2 * b.s2; \
2352 })
2353#elif K0 == 4 // K0 == 4
2354#define ARM_DOT_K0(a, b, c) \
2355 ({ \
2356 c += a.s0 * b.s0; \
2357 c += a.s1 * b.s1; \
2358 c += a.s2 * b.s2; \
2359 c += a.s3 * b.s3; \
2360 })
2361#elif K0 == 8 // K0 == 8
2362#define ARM_DOT_K0(a, b, c) \
2363 ({ \
2364 c += a.s0 * b.s0; \
2365 c += a.s1 * b.s1; \
2366 c += a.s2 * b.s2; \
2367 c += a.s3 * b.s3; \
2368 c += a.s4 * b.s4; \
2369 c += a.s5 * b.s5; \
2370 c += a.s6 * b.s6; \
2371 c += a.s7 * b.s7; \
2372 })
2373#elif K0 == 16 // K0 == 16
2374#define ARM_DOT_K0(a, b, c) \
2375 ({ \
2376 c += a.s0 * b.s0; \
2377 c += a.s1 * b.s1; \
2378 c += a.s2 * b.s2; \
2379 c += a.s3 * b.s3; \
2380 c += a.s4 * b.s4; \
2381 c += a.s5 * b.s5; \
2382 c += a.s6 * b.s6; \
2383 c += a.s7 * b.s7; \
2384 c += a.s8 * b.s8; \
2385 c += a.s9 * b.s9; \
2386 c += a.sA * b.sA; \
2387 c += a.sB * b.sB; \
2388 c += a.sC * b.sC; \
2389 c += a.sD * b.sD; \
2390 c += a.sE * b.sE; \
2391 c += a.sF * b.sF; \
2392 })
2393#else // K0 not supported
2394#error "K0 value not supported"
2395#endif // K0 conditions
2396#else // defined(MIXED_PRECISION)
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002397#if K0 == 2
2398#define ARM_DOT_K0(a, b, c) \
2399 ({ \
2400 c = fma(a.s0, b.s0, c); \
2401 c = fma(a.s1, b.s1, c); \
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002402 })
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002403#elif K0 == 3 // K0 == 3
2404#define ARM_DOT_K0(a, b, c) \
2405 ({ \
2406 c = fma(a.s0, b.s0, c); \
2407 c = fma(a.s1, b.s1, c); \
2408 c = fma(a.s2, b.s2, c); \
2409 })
2410#elif K0 == 4 // K0 == 4
2411#define ARM_DOT_K0(a, b, c) \
2412 ({ \
2413 c = fma(a.s0, b.s0, c); \
2414 c = fma(a.s1, b.s1, c); \
2415 c = fma(a.s2, b.s2, c); \
2416 c = fma(a.s3, b.s3, c); \
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002417 })
2418#elif K0 == 8 // K0 == 8
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002419#define ARM_DOT_K0(a, b, c) \
2420 ({ \
2421 c = fma(a.s0, b.s0, c); \
2422 c = fma(a.s1, b.s1, c); \
2423 c = fma(a.s2, b.s2, c); \
2424 c = fma(a.s3, b.s3, c); \
2425 c = fma(a.s4, b.s4, c); \
2426 c = fma(a.s5, b.s5, c); \
2427 c = fma(a.s6, b.s6, c); \
2428 c = fma(a.s7, b.s7, c); \
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002429 })
2430#elif K0 == 16 // K0 == 16
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002431#define ARM_DOT_K0(a, b, c) \
2432 ({ \
2433 c = fma(a.s0, b.s0, c); \
2434 c = fma(a.s1, b.s1, c); \
2435 c = fma(a.s2, b.s2, c); \
2436 c = fma(a.s3, b.s3, c); \
2437 c = fma(a.s4, b.s4, c); \
2438 c = fma(a.s5, b.s5, c); \
2439 c = fma(a.s6, b.s6, c); \
2440 c = fma(a.s7, b.s7, c); \
2441 c = fma(a.s8, b.s8, c); \
2442 c = fma(a.s9, b.s9, c); \
2443 c = fma(a.sA, b.sA, c); \
2444 c = fma(a.sB, b.sB, c); \
2445 c = fma(a.sC, b.sC, c); \
2446 c = fma(a.sD, b.sD, c); \
2447 c = fma(a.sE, b.sE, c); \
2448 c = fma(a.sF, b.sF, c); \
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002449 })
2450#else // K0 not supported
2451#error "K0 value not supported"
2452#endif // K0 conditions
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002453#endif // defined(MIXED_PRECISION)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002454
2455#if N0 == 2
2456#define ARM_DOT_K0XN0(a, b, c) \
2457 ({ \
2458 ARM_DOT_K0((a), (b##0), (c.s0)); \
2459 ARM_DOT_K0((a), (b##1), (c.s1)); \
2460 })
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002461#elif N0 == 3 // N0 == 3
2462#define ARM_DOT_K0XN0(a, b, c) \
2463 ({ \
2464 ARM_DOT_K0((a), (b##0), (c.s0)); \
2465 ARM_DOT_K0((a), (b##1), (c.s1)); \
2466 ARM_DOT_K0((a), (b##2), (c.s2)); \
2467 })
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002468#elif N0 == 4 // N0 == 4
2469#define ARM_DOT_K0XN0(a, b, c) \
2470 ({ \
2471 ARM_DOT_K0((a), (b##0), (c.s0)); \
2472 ARM_DOT_K0((a), (b##1), (c.s1)); \
2473 ARM_DOT_K0((a), (b##2), (c.s2)); \
2474 ARM_DOT_K0((a), (b##3), (c.s3)); \
2475 })
2476#elif N0 == 8 // N0 == 8
2477#define ARM_DOT_K0XN0(a, b, c) \
2478 ({ \
2479 ARM_DOT_K0((a), (b##0), (c.s0)); \
2480 ARM_DOT_K0((a), (b##1), (c.s1)); \
2481 ARM_DOT_K0((a), (b##2), (c.s2)); \
2482 ARM_DOT_K0((a), (b##3), (c.s3)); \
2483 ARM_DOT_K0((a), (b##4), (c.s4)); \
2484 ARM_DOT_K0((a), (b##5), (c.s5)); \
2485 ARM_DOT_K0((a), (b##6), (c.s6)); \
2486 ARM_DOT_K0((a), (b##7), (c.s7)); \
2487 })
2488#elif N0 == 16 // N0 == 16
2489#define ARM_DOT_K0XN0(a, b, c) \
2490 ({ \
2491 ARM_DOT_K0((a), (b##0), (c.s0)); \
2492 ARM_DOT_K0((a), (b##1), (c.s1)); \
2493 ARM_DOT_K0((a), (b##2), (c.s2)); \
2494 ARM_DOT_K0((a), (b##3), (c.s3)); \
2495 ARM_DOT_K0((a), (b##4), (c.s4)); \
2496 ARM_DOT_K0((a), (b##5), (c.s5)); \
2497 ARM_DOT_K0((a), (b##6), (c.s6)); \
2498 ARM_DOT_K0((a), (b##7), (c.s7)); \
2499 ARM_DOT_K0((a), (b##8), (c.s8)); \
2500 ARM_DOT_K0((a), (b##9), (c.s9)); \
2501 ARM_DOT_K0((a), (b##A), (c.sA)); \
2502 ARM_DOT_K0((a), (b##B), (c.sB)); \
2503 ARM_DOT_K0((a), (b##C), (c.sC)); \
2504 ARM_DOT_K0((a), (b##D), (c.sD)); \
2505 ARM_DOT_K0((a), (b##E), (c.sE)); \
2506 ARM_DOT_K0((a), (b##F), (c.sF)); \
2507 })
2508#else // N0 not supported
2509#error "N0 value not supported"
2510#endif // N0 conditions
2511
2512/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
2513 * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
2514 * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
2515 *
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002516 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
2517 * @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float)
2518 * @note The F16 computation also supports mixed precision through the option -DMIXED_PRECISION passed at compile time. If enabled, DATA_TYPE_ACCUMULATOR should be set to float
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00002519 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002520 * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01002521 * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
2522 * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
2523 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002524 * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
2525 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
2526 * @note Only the following configurations of M0, N0 and K0 are currently supported:
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01002527 * - M0 = 2, 3, 4, 5, 6, 7, 8
Gian Marco Iodicebacfec52019-01-11 11:30:55 +00002528 * - N0 = 2, 3, 4, 8, 16
2529 * - K0 = 2, 3, 4, 8, 16
Gian Marco Iodice62251f72019-03-11 16:07:12 +00002530 * - V0 >= 1
2531 * - H0 >= 1
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002532 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01002533 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01002534 * The activation function is performed after the bias addition
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01002535 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002536 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
2537 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
2538 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
2539 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
2540 *
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002541 * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
2542 * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
2543 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
2544 * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
2545 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
2546 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
2547 * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
2548 * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
2549 * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
2550 * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
2551 * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
2552 * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
2553 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
2554 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
2555 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
2556 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
2557 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
2558 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
2559 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
2560 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
2561 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
2562 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
2563 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
2564 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01002565 * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002566 * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
2567 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
2568 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
2569 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
2570 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002571 */
2572__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
2573 IMAGE_DECLARATION(rhs),
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002574#if defined(BETA)
2575 IMAGE_DECLARATION(bias),
2576#endif // defined(BETA)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002577 IMAGE_DECLARATION(dst),
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01002578 uint k,
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002579 uint lhs_stride_z,
2580 uint rhs_stride_z,
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002581#if defined(BETA)
2582 uint bias_stride_z,
2583#endif //defined(BETA)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002584 uint dst_stride_z
2585#if defined(REINTERPRET_OUTPUT_AS_3D)
2586 ,
2587 uint dst_cross_plane_pad
2588#endif // REINTERPRET_OUTPUT_AS_3D
2589 )
2590{
2591 // Block size
2592#define LHS_BLOCK_SIZE ((K0) * (M0))
2593
2594#if defined(LHS_INTERLEAVE)
2595#define LHS_OFFSET_X (K0)
2596#define LHS_STEP_X ((K0) * (V0))
2597#define LHS_STEP_LOOP (1)
2598#else // defined(INTERLEAVE)
2599#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
2600#define LHS_STEP_X (K0)
2601#define LHS_STEP_LOOP (V0)
2602#endif // defined(INTERLEAVE)
2603
2604 // Block size
2605#define RHS_BLOCK_SIZE ((K0) * (N0))
2606
2607 // RHS offset and step X
2608#if defined(RHS_INTERLEAVE)
2609#define RHS_OFFSET_X (K0)
2610#define RHS_STEP_X ((K0) * (H0))
2611#define RHS_STEP_LOOP (1)
2612#else // defined(RHS_INTERLEAVE)
2613#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
2614#define RHS_STEP_X (K0)
2615#define RHS_STEP_LOOP (H0)
2616#endif // defined(RHS_INTERLEAVE)
2617
Gian Marco Iodiceb0c50372019-03-15 10:13:05 +00002618#if defined(DUMMY_WORK_ITEMS)
2619 if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
2620 {
2621 return;
2622 }
2623#endif // defined(DUMMY_WORK_ITEMS)
2624
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002625 // Compute LHS matrix address
2626 __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
2627 (get_global_id(2) * lhs_stride_z);
2628
2629 // Compute RHS matrix address
2630 __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
2631
2632#if defined(MATRIX_B_DEPTH)
2633 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
2634 rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
2635#else // defined(MATRIX_B_DEPTH)
2636 rhs_addr += get_global_id(2) * rhs_stride_z;
2637#endif // defined(MATRIX_B_DEPTH)
2638
2639 // Initialize the accumulators
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002640 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002641
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002642 REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
2643 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
Usama Arif0681e3b2019-04-25 14:28:07 +01002644
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01002645 for(int i = 0; i < k; i += K0)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002646 {
2647 // Supported cases (M0, K0):
Gian Marco Iodiceadc53952019-02-15 11:10:31 +00002648 // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
2649 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
2650 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
2651 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
2652 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
2653 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
2654 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
2655 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002656 // Load values from LHS matrix
Usama Arif0681e3b2019-04-25 14:28:07 +01002657 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002658
2659 // Load values from RHS matrix
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002660 LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002661
2662 // Accumulate
2663 ARM_DOT_K0XN0(a0, b, c0);
2664#if M0 > 1
2665 ARM_DOT_K0XN0(a1, b, c1);
2666#endif // M0 > 1
2667#if M0 > 2
2668 ARM_DOT_K0XN0(a2, b, c2);
2669#endif // M0 > 2
2670#if M0 > 3
2671 ARM_DOT_K0XN0(a3, b, c3);
2672#endif // M0 > 3
2673#if M0 > 4
2674 ARM_DOT_K0XN0(a4, b, c4);
2675#endif // M0 > 4
2676#if M0 > 5
2677 ARM_DOT_K0XN0(a5, b, c5);
2678#endif // M0 > 5
2679#if M0 > 6
2680 ARM_DOT_K0XN0(a6, b, c6);
2681#endif // M0 > 6
2682#if M0 > 7
2683 ARM_DOT_K0XN0(a7, b, c7);
2684#endif // M0 > 7
2685
2686 lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
2687 rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
2688 }
2689
2690 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
2691
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002692 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002693
2694#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002695
2696 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
Usama Arif0681e3b2019-04-25 14:28:07 +01002697 CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002698 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
2699 // multiply dst_stride_z by DEPTH_GEMM3D
2700 dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
2701
2702#else // defined(REINTERPRET_OUTPUT_AS_3D)
2703
2704 // Add offset for batched GEMM
2705 dst_addr += get_global_id(2) * dst_stride_z;
2706
2707#endif // defined(REINTERPRET_OUTPUT_AS_3D)
2708
2709 // Multiply by the weight of matrix-matrix product and store the result
2710#if defined(ALPHA)
Usama Arif0681e3b2019-04-25 14:28:07 +01002711 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002712#endif // defined(ALPHA)
2713
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002714 // Add beta*bias
2715#if defined(BETA)
2716#if defined(BROADCAST_BIAS)
2717 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
2718
2719 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2720
2721#ifndef UNIT_BETA
2722 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
2723#endif // UNIT_BIAS
2724
2725 // c = c + bias[broadcasted]
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002726#if defined(MIXED_PRECISION)
2727 CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
2728 ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
2729#else // defined(MIXED_PRECISION)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002730 ADD_BLOCK_BROADCAST(M0, c, bias0);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002731#endif // defined(MIXED_PRECISION)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002732
2733#else // defined(BROADCAST_BIAS)
2734 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
2735 2) * bias_stride_z;
2736
2737 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2738
2739#ifndef UNIT_BETA
2740 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
2741#endif // UNIT_BIAS
2742
2743 // c = c + bias
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002744#if defined(MIXED_PRECISION)
2745 CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
2746 ADD_BLOCK(M0, c, bias_hp);
2747#else // defined(MIXED_PRECISION)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002748 ADD_BLOCK(M0, c, bias);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002749#endif // defined(MIXED_PRECISION)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002750
2751#endif // defined(BROADCAST_BIAS)
2752#endif // defined(BETA)
2753
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01002754#if defined(ACTIVATION_TYPE)
Georgios Pinitasa07ce152019-10-11 17:38:50 +01002755#if defined(MIXED_PRECISION)
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002756 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
Georgios Pinitasa07ce152019-10-11 17:38:50 +01002757#else // defined(MIXED_PRECISION)
2758 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
2759#endif // defined(MIXED_PRECISION)
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01002760#endif // defined(ACTIVATION_TYPE)
2761
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002762 // Store output block
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002763#if defined(MIXED_PRECISION)
2764 CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
2765#else // defined(MIXED_PRECISION)
Usama Arif0681e3b2019-04-25 14:28:07 +01002766 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01002767#endif // defined(MIXED_PRECISION)
Gian Marco Iodicee16c8902019-06-14 16:11:10 +01002768
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002769#undef LHS_BLOCK_SIZE
2770#undef LHS_OFFSET_X
2771#undef LHS_STEP_X
2772#undef RHS_BLOCK_SIZE
2773#undef RHS_OFFSET_X
2774#undef RHS_STEP_X
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002775#undef LHS_STEP_LOOP
2776#undef RHS_STEP_LOOP
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00002777}
giuros01b3204e72019-04-01 13:50:22 +01002778
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002779#if defined(OPENCL_IMAGE_SUPPORT)
2780/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
2781 * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
2782 * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
2783 *
2784 * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
2785 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
2786 * @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float)
2787 * @note The F16 computation also supports mixed precision through the option -DMIXED_PRECISION passed at compile time. If enabled, DATA_TYPE_ACCUMULATOR should be set to float
2788 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
2789 * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
Gian Marco Iodice781cba72020-06-19 16:56:57 +01002790 * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
2791 * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
2792 * could be different from the value returned by get_image_height(rhs_img).
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002793 * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
2794 * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
2795 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
2796 * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
2797 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
2798 * @note Only the following configurations of M0, N0 and K0 are currently supported:
2799 * - M0 = 2, 3, 4, 5, 6, 7, 8
2800 * - N0 = 4, 8, 16
2801 * - K0 = 4, 8, 16
2802 * - V0 >= 1
2803 * - H0 >= 1
2804 *
2805 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
2806 * The activation function is performed after the bias addition
2807 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
2808 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
2809 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
2810 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
2811 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
2812 *
2813 * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F32
2814 * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
2815 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
2816 * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
2817 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
2818 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
2819 * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr
2820 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
2821 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
2822 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
2823 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
2824 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
2825 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
2826 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
2827 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
2828 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
2829 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
2830 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
2831 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01002832 * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002833 * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
2834 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
2835 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
2836 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
2837 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
2838 */
2839__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
2840 __read_only image2d_t rhs_img,
2841#if defined(BETA)
2842 IMAGE_DECLARATION(bias),
2843#endif // defined(BETA)
2844 IMAGE_DECLARATION(dst),
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01002845 uint k,
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01002846 uint lhs_stride_z,
2847 uint rhs_stride_z,
2848#if defined(BETA)
2849 uint bias_stride_z,
2850#endif //defined(BETA)
2851 uint dst_stride_z
2852#if defined(REINTERPRET_OUTPUT_AS_3D)
2853 ,
2854 uint dst_cross_plane_pad
2855#endif // REINTERPRET_OUTPUT_AS_3D
2856 )
2857{
2858 // Pixel unit
2859#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
2860
2861 // Block size
2862#define LHS_BLOCK_SIZE ((K0) * (M0))
2863
2864#if defined(LHS_INTERLEAVE)
2865#define LHS_OFFSET_X (K0)
2866#define LHS_STEP_X ((K0) * (V0))
2867#define LHS_STEP_LOOP (1)
2868#else // defined(INTERLEAVE)
2869#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
2870#define LHS_STEP_X (K0)
2871#define LHS_STEP_LOOP (V0)
2872#endif // defined(INTERLEAVE)
2873
2874 // Block size
2875#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
2876
2877 // RHS offset and step X
2878#if defined(RHS_INTERLEAVE)
2879#define RHS_OFFSET_X (PIXEL_UNIT)
2880#define RHS_STEP_X (PIXEL_UNIT * (H0))
2881#define RHS_STEP_LOOP (1)
2882#else // defined(RHS_INTERLEAVE)
2883#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
2884#define RHS_STEP_X PIXEL_UNIT
2885#define RHS_STEP_LOOP (H0)
2886#endif // defined(RHS_INTERLEAVE)
2887
2888#if defined(DUMMY_WORK_ITEMS)
2889 if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
2890 {
2891 return;
2892 }
2893#endif // defined(DUMMY_WORK_ITEMS)
2894
2895 // Compute LHS matrix address
2896 __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
2897 (get_global_id(2) * lhs_stride_z);
2898
2899#if defined(MATRIX_B_DEPTH)
2900 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
2901 const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
2902#else // defined(MATRIX_B_DEPTH)
2903 const uint z_rhs = get_global_id(2);
2904#endif // defined(MATRIX_B_DEPTH)
2905
2906 // Compute RHS matrix coordinates
2907 uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
2908 const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
2909
2910 // Initialize the accumulators
2911 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
2912
2913 REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
2914 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
2915
2916 for(int i = 0; i < K; i += K0)
2917 {
2918 // Load values from LHS matrix
2919 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
2920
2921 // Load values from RHS matrix stored in a cl_image
2922 REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
2923 LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
2924
2925 // Accumulate
2926 ARM_DOT_K0XN0(a0, b, c0);
2927#if M0 > 1
2928 ARM_DOT_K0XN0(a1, b, c1);
2929#endif // M0 > 1
2930#if M0 > 2
2931 ARM_DOT_K0XN0(a2, b, c2);
2932#endif // M0 > 2
2933#if M0 > 3
2934 ARM_DOT_K0XN0(a3, b, c3);
2935#endif // M0 > 3
2936#if M0 > 4
2937 ARM_DOT_K0XN0(a4, b, c4);
2938#endif // M0 > 4
2939#if M0 > 5
2940 ARM_DOT_K0XN0(a5, b, c5);
2941#endif // M0 > 5
2942#if M0 > 6
2943 ARM_DOT_K0XN0(a6, b, c6);
2944#endif // M0 > 6
2945#if M0 > 7
2946 ARM_DOT_K0XN0(a7, b, c7);
2947#endif // M0 > 7
2948
2949 lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
2950
2951 x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
2952 }
2953
2954 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
2955
2956 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
2957
2958#if defined(REINTERPRET_OUTPUT_AS_3D)
2959
2960 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
2961 CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
2962 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
2963 // multiply dst_stride_z by DEPTH_GEMM3D
2964 dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
2965
2966#else // defined(REINTERPRET_OUTPUT_AS_3D)
2967
2968 // Add offset for batched GEMM
2969 dst_addr += get_global_id(2) * dst_stride_z;
2970
2971#endif // defined(REINTERPRET_OUTPUT_AS_3D)
2972
2973 // Multiply by the weight of matrix-matrix product and store the result
2974#if defined(ALPHA)
2975 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
2976#endif // defined(ALPHA)
2977
2978 // Add beta*bias
2979#if defined(BETA)
2980#if defined(BROADCAST_BIAS)
2981 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
2982
2983 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
2984
2985#ifndef UNIT_BETA
2986 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
2987#endif // UNIT_BIAS
2988
2989 // c = c + bias[broadcasted]
2990#if defined(MIXED_PRECISION)
2991 CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
2992 ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
2993#else // defined(MIXED_PRECISION)
2994 ADD_BLOCK_BROADCAST(M0, c, bias0);
2995#endif // defined(MIXED_PRECISION)
2996
2997#else // defined(BROADCAST_BIAS)
2998 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
2999 2) * bias_stride_z;
3000
3001 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
3002
3003#ifndef UNIT_BETA
3004 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
3005#endif // UNIT_BIAS
3006
3007 // c = c + bias
3008#if defined(MIXED_PRECISION)
3009 CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
3010 ADD_BLOCK(M0, c, bias_hp);
3011#else // defined(MIXED_PRECISION)
3012 ADD_BLOCK(M0, c, bias);
3013#endif // defined(MIXED_PRECISION)
3014
3015#endif // defined(BROADCAST_BIAS)
3016#endif // defined(BETA)
3017
3018#if defined(ACTIVATION_TYPE)
3019#if defined(MIXED_PRECISION)
3020 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
3021#else // defined(MIXED_PRECISION)
3022 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
3023#endif // defined(MIXED_PRECISION)
3024#endif // defined(ACTIVATION_TYPE)
3025
3026 // Store output block
3027#if defined(MIXED_PRECISION)
3028 CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
3029#else // defined(MIXED_PRECISION)
3030 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
3031#endif // defined(MIXED_PRECISION)
3032
3033#undef LHS_BLOCK_SIZE
3034#undef LHS_OFFSET_X
3035#undef LHS_STEP_X
3036#undef RHS_BLOCK_SIZE
3037#undef RHS_OFFSET_X
3038#undef RHS_STEP_X
3039#undef PIXEL_UNIT
3040#undef LHS_STEP_LOOP
3041#undef RHS_STEP_LOOP
3042}
3043#endif // defined(OPENCL_IMAGE_SUPPORT)
3044
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003045#if defined(LHS_TRANSPOSE)
3046
3047#define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE)
3048
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003049#if defined(MIXED_PRECISION)
3050
3051#if(GPU_ARCH == GPU_ARCH_MIDGARD)
3052#define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0)));
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003053#else // GPU_ARCH == GPU_ARCH_MIDGARD
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003054#define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c));
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003055#endif // GPU_ARCH == GPU_ARCH_MIDGARD
3056
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003057#else // defined(MIXED_PRECISION
3058
3059#if(GPU_ARCH == GPU_ARCH_MIDGARD)
3060#define ARM_VFMA(N0, a, b, c) c += (a) * (b);
3061#else // GPU_ARCH == GPU_ARCH_MIDGARD
3062#define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c));
3063#endif // GPU_ARCH == GPU_ARCH_MIDGARD
3064
3065#endif // defined(MIXED_PRECISION)
3066
3067#define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \
3068 ({ \
3069 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003070 })
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003071#define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \
3072 ({ \
3073 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \
3074 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003075 })
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003076#define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \
3077 ({ \
3078 ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \
3079 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003080 })
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003081#define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \
3082 ({ \
3083 ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \
3084 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003085 })
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003086#define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \
3087 ({ \
3088 ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \
3089 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \
3090 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \
3091 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \
3092 ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003093 })
3094
3095// Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1
3096// a is the column-vector (transposed)
3097// b is the row-vector (not transposed)
3098// C is the output matrix
3099// Lower case is a vector (a, b)
3100// Upper case is a matrix (C)
3101#define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C)
3102
3103#define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \
3104 ({ \
3105 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \
3106 })
3107#define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \
3108 ({ \
3109 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \
3110 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \
3111 })
3112#define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \
3113 ({ \
3114 ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \
3115 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \
3116 })
3117#define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \
3118 ({ \
3119 ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \
3120 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \
3121 })
3122#define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \
3123 ({ \
3124 ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \
3125 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \
3126 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \
3127 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \
3128 ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \
3129 })
3130#define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \
3131 ({ \
3132 ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \
3133 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \
3134 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \
3135 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \
3136 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \
3137 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \
3138 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \
3139 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \
3140 ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \
3141 })
3142
3143// Factory macro for the matrix (transposed) by matrix (not transposed) multiplication.
3144// The dimensions for this matrix multiplications are defined through M0, N0 and K0
3145// The dimensions supported are:
3146// M0: 1, 2, 3, 4, 8
3147// N0: 1, 2, 3, 4, 8, 16
3148// K0: 1, 2, 3, 4, 8, 16
3149// This macro calls the vector-by-matrix macro K0 times
3150// A, B and C are matrices
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003151#define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \
3152 CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003153 (M0, N0, TYPE, A, B, C)
3154
3155/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
3156 * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
3157 * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
3158 *
3159 * @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
3160 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003161 * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003162 * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
3163 * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
3164 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
3165 * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
3166 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
3167 * @note Only the following configurations of M0, N0 and K0 are currently supported:
3168 * - M0 = 2, 3, 4, 8
3169 * - N0 = 2, 3, 4, 8, 16
3170 * - K0 = 2, 3, 4, 8, 16
3171 * - V0 >= 1
3172 * - H0 >= 1
3173 *
3174 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
3175 * The activation function is performed after the bias addition
3176 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
3177 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
3178 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
3179 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
3180 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
3181 *
3182 * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
3183 * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
3184 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
3185 * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
3186 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
3187 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
3188 * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
3189 * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
3190 * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
3191 * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
3192 * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
3193 * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
3194 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
3195 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
3196 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
3197 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
3198 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
3199 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
3200 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
3201 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
3202 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
3203 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
3204 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
3205 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01003206 * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003207 * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
3208 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
3209 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
3210 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
3211 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
3212 */
3213__kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
3214 IMAGE_DECLARATION(rhs),
3215#if defined(BETA)
3216 IMAGE_DECLARATION(bias),
3217#endif // defined(BETA)
3218 IMAGE_DECLARATION(dst),
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01003219 uint k,
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003220 uint lhs_stride_z,
3221 uint rhs_stride_z,
3222#if defined(BETA)
3223 uint bias_stride_z,
3224#endif //defined(BETA)
3225 uint dst_stride_z
3226#if defined(REINTERPRET_OUTPUT_AS_3D)
3227 ,
3228 uint dst_cross_plane_pad
3229#endif // REINTERPRET_OUTPUT_AS_3D
3230 )
3231{
3232 // Block size
3233#define LHS_BLOCK_SIZE ((K0) * (M0))
3234
3235#if defined(LHS_INTERLEAVE)
3236#define LHS_OFFSET_X (M0)
3237#define LHS_STEP_X ((M0) * (V0))
3238#define LHS_STEP_LOOP (1)
3239#else // defined(INTERLEAVE)
3240#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
3241#define LHS_STEP_X (M0)
3242#define LHS_STEP_LOOP (V0)
3243#endif // defined(INTERLEAVE)
3244
3245 // Block size
3246#define RHS_BLOCK_SIZE ((K0) * (N0))
3247
3248 // RHS offset and step X
3249#if defined(RHS_INTERLEAVE)
3250#define RHS_OFFSET_X (N0)
3251#define RHS_STEP_X ((N0) * (H0))
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003252#else // defined(RHS_INTERLEAVE)
3253#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
3254#define RHS_STEP_X (N0)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003255#endif // defined(RHS_INTERLEAVE)
3256
3257 const uint x = get_global_id(0);
3258 const uint y = get_global_id(1);
3259 const uint z = get_global_id(2);
3260
3261#if defined(DUMMY_WORK_ITEMS)
3262 if((x * N0 >= N) || (y * M0 >= M))
3263 {
3264 return;
3265 }
3266#endif // defined(DUMMY_WORK_ITEMS)
3267
3268 // Compute LHS matrix address
3269 __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
3270
3271 // Compute RHS matrix address
3272 __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
3273
3274#if defined(MATRIX_B_DEPTH)
3275 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
3276 rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
3277#else // defined(MATRIX_B_DEPTH)
3278 rhs_addr += z * rhs_stride_z;
3279#endif // defined(MATRIX_B_DEPTH)
3280
3281 // Initialize the accumulators
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003282 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003283
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003284 REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
3285
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003286 __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
3287 __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
3288
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01003289 for(int i = 0; i < k; i += K0)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003290 {
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003291 VEC_DATA_TYPE(DATA_TYPE, M0)
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003292 a0;
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003293 VEC_DATA_TYPE(DATA_TYPE, N0)
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003294 b0;
3295
3296 a0 = VLOAD(M0)(0, lhs);
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003297 b0 = VLOAD(N0)(0, rhs);
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003298
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003299 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003300
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003301 lhs += LHS_STEP_X;
3302 rhs += RHS_STEP_X;
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003303
Gian Marco Iodice05639f62019-09-24 12:05:06 +01003304#if K0 > 1
3305 a0 = VLOAD(M0)(0, lhs);
3306 b0 = VLOAD(N0)(0, rhs);
3307
3308 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3309
3310 lhs += LHS_STEP_X;
3311 rhs += RHS_STEP_X;
3312#endif // K0 > 1
3313
3314#if K0 > 2
3315 a0 = VLOAD(M0)(0, lhs);
3316 b0 = VLOAD(N0)(0, rhs);
3317
3318 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3319
3320 lhs += LHS_STEP_X;
3321 rhs += RHS_STEP_X;
3322#endif // K0 > 2
3323
3324#if K0 > 3
3325 a0 = VLOAD(M0)(0, lhs);
3326 b0 = VLOAD(N0)(0, rhs);
3327
3328 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3329
3330 lhs += LHS_STEP_X;
3331 rhs += RHS_STEP_X;
3332#endif // K0 > 3
3333
3334#if K0 > 4
3335 a0 = VLOAD(M0)(0, lhs);
3336 b0 = VLOAD(N0)(0, rhs);
3337
3338 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3339
3340 lhs += LHS_STEP_X;
3341 rhs += RHS_STEP_X;
3342
3343 a0 = VLOAD(M0)(0, lhs);
3344 b0 = VLOAD(N0)(0, rhs);
3345
3346 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3347
3348 lhs += LHS_STEP_X;
3349 rhs += RHS_STEP_X;
3350
3351 a0 = VLOAD(M0)(0, lhs);
3352 b0 = VLOAD(N0)(0, rhs);
3353
3354 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3355
3356 lhs += LHS_STEP_X;
3357 rhs += RHS_STEP_X;
3358
3359 a0 = VLOAD(M0)(0, lhs);
3360 b0 = VLOAD(N0)(0, rhs);
3361
3362 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3363
3364 lhs += LHS_STEP_X;
3365 rhs += RHS_STEP_X;
3366#endif // K0 > 4
3367
3368#if K0 > 8
3369 a0 = VLOAD(M0)(0, lhs);
3370 b0 = VLOAD(N0)(0, rhs);
3371
3372 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3373
3374 lhs += LHS_STEP_X;
3375 rhs += RHS_STEP_X;
3376
3377 a0 = VLOAD(M0)(0, lhs);
3378 b0 = VLOAD(N0)(0, rhs);
3379
3380 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3381
3382 lhs += LHS_STEP_X;
3383 rhs += RHS_STEP_X;
3384
3385 a0 = VLOAD(M0)(0, lhs);
3386 b0 = VLOAD(N0)(0, rhs);
3387
3388 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3389
3390 lhs += LHS_STEP_X;
3391 rhs += RHS_STEP_X;
3392
3393 a0 = VLOAD(M0)(0, lhs);
3394 b0 = VLOAD(N0)(0, rhs);
3395
3396 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3397
3398 lhs += LHS_STEP_X;
3399 rhs += RHS_STEP_X;
3400
3401 a0 = VLOAD(M0)(0, lhs);
3402 b0 = VLOAD(N0)(0, rhs);
3403
3404 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3405
3406 lhs += LHS_STEP_X;
3407 rhs += RHS_STEP_X;
3408
3409 a0 = VLOAD(M0)(0, lhs);
3410 b0 = VLOAD(N0)(0, rhs);
3411
3412 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3413
3414 lhs += LHS_STEP_X;
3415 rhs += RHS_STEP_X;
3416
3417 a0 = VLOAD(M0)(0, lhs);
3418 b0 = VLOAD(N0)(0, rhs);
3419
3420 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3421
3422 lhs += LHS_STEP_X;
3423 rhs += RHS_STEP_X;
3424
3425 a0 = VLOAD(M0)(0, lhs);
3426 b0 = VLOAD(N0)(0, rhs);
3427
3428 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3429
3430 lhs += LHS_STEP_X;
3431 rhs += RHS_STEP_X;
3432#endif // K0 > 8
3433
3434#ifndef LHS_INTERLEAVE
3435 lhs += (M0 * K0 * (V0 - 1));
3436#endif // LHS_INTERLEAVE
3437
3438#ifndef RHS_INTERLEAVE
3439 rhs += (N0 * K0 * (H0 - 1));
3440#endif // RHS_INTERLEAVE
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003441 }
3442
3443 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
3444
3445 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
3446
3447#if defined(REINTERPRET_OUTPUT_AS_3D)
3448
3449 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
3450 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
3451 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
3452 // multiply dst_stride_z by DEPTH_GEMM3D
3453 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
3454
3455#else // defined(REINTERPRET_OUTPUT_AS_3D)
3456
3457 // Add offset for batched GEMM
3458 dst_addr += z * dst_stride_z;
3459
3460#endif // defined(REINTERPRET_OUTPUT_AS_3D)
3461
3462 // Multiply by the weight of matrix-matrix product and store the result
3463#if defined(ALPHA)
3464 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
3465#endif // defined(ALPHA)
3466
3467 // Add beta*bias
3468#if defined(BETA)
3469#if defined(BROADCAST_BIAS)
3470 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
3471
3472 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
3473
3474#ifndef UNIT_BETA
3475 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
3476#endif // UNIT_BIAS
3477
3478 // c = c + bias[broadcasted]
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003479#if defined(MIXED_PRECISION)
3480 CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
3481 ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
3482#else // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003483 ADD_BLOCK_BROADCAST(M0, c, bias0);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003484#endif // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003485
3486#else // defined(BROADCAST_BIAS)
3487 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z;
3488
3489 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
3490
3491#ifndef UNIT_BETA
3492 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
3493#endif // UNIT_BIAS
3494
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003495#if defined(MIXED_PRECISION)
3496 CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
3497 ADD_BLOCK(M0, c, bias_hp);
3498#else // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003499 ADD_BLOCK(M0, c, bias);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003500#endif // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003501
3502#endif // defined(BROADCAST_BIAS)
3503#endif // defined(BETA)
3504
3505#if defined(ACTIVATION_TYPE)
Georgios Pinitasa07ce152019-10-11 17:38:50 +01003506#if defined(MIXED_PRECISION)
3507 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
3508#else // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003509 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
Georgios Pinitasa07ce152019-10-11 17:38:50 +01003510#endif // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003511#endif // defined(ACTIVATION_TYPE)
3512
3513 // Store output block
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003514#if defined(MIXED_PRECISION)
3515 CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
3516#else // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003517 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
Gian Marco Iodice0c17aa22019-09-27 09:23:15 +01003518#endif // defined(MIXED_PRECISION)
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003519
3520#undef LHS_BLOCK_SIZE
3521#undef LHS_OFFSET_X
3522#undef LHS_STEP_X
3523#undef RHS_BLOCK_SIZE
3524#undef RHS_OFFSET_X
3525#undef RHS_STEP_X
3526}
3527
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003528#if defined(OPENCL_IMAGE_SUPPORT)
3529/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
3530 * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
3531 * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
3532 *
3533 * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
3534 * @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003535 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
3536 * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
Gian Marco Iodice781cba72020-06-19 16:56:57 +01003537 * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
3538 * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
3539 * could be different from the value returned by get_image_height(rhs_img).
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003540 * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
3541 * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
3542 * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
3543 * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
3544 * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
3545 * @note Only the following configurations of M0, N0 and K0 are currently supported:
3546 * - M0 = 2, 3, 4, 8
3547 * - N0 = 4, 8, 16
3548 * - K0 = 4, 8, 16
3549 * - V0 >= 1
3550 * - H0 >= 1
3551 *
3552 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
3553 * The activation function is performed after the bias addition
3554 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
3555 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
3556 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
3557 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
3558 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
3559 *
3560 * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F32
3561 * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
3562 * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
3563 * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
3564 * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
3565 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
3566 * @param[in] rhs_img The RHS reshaped matrix as cl_image 2d. Supported data type: same as @p lhs_ptr
3567 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
3568 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
3569 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
3570 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
3571 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
3572 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
3573 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
3574 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
3575 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
3576 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
3577 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
3578 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01003579 * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003580 * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
3581 * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
3582 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
3583 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
3584 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
3585 */
3586__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
3587 __read_only image2d_t rhs_img,
3588#if defined(BETA)
3589 IMAGE_DECLARATION(bias),
3590#endif // defined(BETA)
3591 IMAGE_DECLARATION(dst),
Gian Marco Iodicee5563d92020-06-25 17:18:36 +01003592 uint k,
Gian Marco Iodicee3a849a2020-06-10 17:59:30 +01003593 uint lhs_stride_z,
3594 uint rhs_stride_z,
3595#if defined(BETA)
3596 uint bias_stride_z,
3597#endif //defined(BETA)
3598 uint dst_stride_z
3599#if defined(REINTERPRET_OUTPUT_AS_3D)
3600 ,
3601 uint dst_cross_plane_pad
3602#endif // REINTERPRET_OUTPUT_AS_3D
3603 )
3604{
3605 // Pixel unit
3606#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
3607
3608 // Block size
3609#define LHS_BLOCK_SIZE ((K0) * (M0))
3610
3611#if defined(LHS_INTERLEAVE)
3612#define LHS_OFFSET_X (M0)
3613#define LHS_STEP_X ((M0) * (V0))
3614#define LHS_STEP_LOOP (1)
3615#else // defined(INTERLEAVE)
3616#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
3617#define LHS_STEP_X (M0)
3618#define LHS_STEP_LOOP (V0)
3619#endif // defined(INTERLEAVE)
3620
3621 // Block size
3622#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
3623
3624 // RHS offset and step X
3625#if defined(RHS_INTERLEAVE)
3626#define RHS_OFFSET_X (PIXEL_UNIT)
3627#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
3628#else // defined(RHS_INTERLEAVE)
3629#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
3630#define RHS_STEP_X (PIXEL_UNIT)
3631#endif // defined(RHS_INTERLEAVE)
3632
3633 const uint x = get_global_id(0);
3634 const uint y = get_global_id(1);
3635 const uint z = get_global_id(2);
3636
3637#if defined(DUMMY_WORK_ITEMS)
3638 if((x * N0 >= N) || (y * M0 >= M))
3639 {
3640 return;
3641 }
3642#endif // defined(DUMMY_WORK_ITEMS)
3643
3644 // Compute LHS matrix address
3645 __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
3646
3647#if defined(MATRIX_B_DEPTH)
3648 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
3649 const uint z_rhs = (z % MATRIX_B_DEPTH);
3650#else // defined(MATRIX_B_DEPTH)
3651 const uint z_rhs = z;
3652#endif // defined(MATRIX_B_DEPTH)
3653
3654 // Compute RHS matrix coordinates
3655 uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
3656 const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
3657
3658 // Initialize the accumulators
3659 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
3660
3661 REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
3662
3663 __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
3664
3665 for(int i = 0; i < K; i += K0)
3666 {
3667 VEC_DATA_TYPE(DATA_TYPE, M0)
3668 a0;
3669 VEC_DATA_TYPE(DATA_TYPE, N0)
3670 b0;
3671
3672 a0 = VLOAD(M0)(0, lhs);
3673 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
3674
3675 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3676
3677 lhs += LHS_STEP_X;
3678
3679#if K0 > 1
3680 a0 = VLOAD(M0)(0, lhs);
3681 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
3682
3683 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3684
3685 lhs += LHS_STEP_X;
3686#endif // K0 > 1
3687
3688#if K0 > 2
3689 a0 = VLOAD(M0)(0, lhs);
3690 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
3691
3692 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3693
3694 lhs += LHS_STEP_X;
3695#endif // K0 > 2
3696
3697#if K0 > 3
3698 a0 = VLOAD(M0)(0, lhs);
3699 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
3700
3701 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3702
3703 lhs += LHS_STEP_X;
3704#endif // K0 > 3
3705
3706#if K0 > 4
3707 a0 = VLOAD(M0)(0, lhs);
3708 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
3709
3710 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3711
3712 lhs += LHS_STEP_X;
3713
3714 a0 = VLOAD(M0)(0, lhs);
3715 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
3716
3717 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3718
3719 lhs += LHS_STEP_X;
3720
3721 a0 = VLOAD(M0)(0, lhs);
3722 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
3723
3724 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3725
3726 lhs += LHS_STEP_X;
3727
3728 a0 = VLOAD(M0)(0, lhs);
3729 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
3730
3731 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3732
3733 lhs += LHS_STEP_X;
3734#endif // K0 > 4
3735
3736#if K0 > 8
3737 a0 = VLOAD(M0)(0, lhs);
3738 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
3739
3740 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3741
3742 lhs += LHS_STEP_X;
3743
3744 a0 = VLOAD(M0)(0, lhs);
3745 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
3746
3747 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3748
3749 lhs += LHS_STEP_X;
3750
3751 a0 = VLOAD(M0)(0, lhs);
3752 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
3753
3754 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3755
3756 lhs += LHS_STEP_X;
3757
3758 a0 = VLOAD(M0)(0, lhs);
3759 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
3760
3761 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3762
3763 lhs += LHS_STEP_X;
3764
3765 a0 = VLOAD(M0)(0, lhs);
3766 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
3767
3768 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3769
3770 lhs += LHS_STEP_X;
3771
3772 a0 = VLOAD(M0)(0, lhs);
3773 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
3774
3775 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3776
3777 lhs += LHS_STEP_X;
3778
3779 a0 = VLOAD(M0)(0, lhs);
3780 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
3781
3782 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3783
3784 lhs += LHS_STEP_X;
3785
3786 a0 = VLOAD(M0)(0, lhs);
3787 b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
3788
3789 ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
3790
3791 lhs += LHS_STEP_X;
3792#endif // K0 > 8
3793
3794#ifndef LHS_INTERLEAVE
3795 lhs += (M0 * K0 * (V0 - 1));
3796#endif // LHS_INTERLEAVE
3797
3798 x_rhs += K0 * RHS_STEP_X;
3799#ifndef RHS_INTERLEAVE
3800 x_rhs += (PIXEL_UNIT * K0 * (H0 - 1));
3801#endif // RHS_INTERLEAVE
3802 }
3803
3804 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
3805
3806 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
3807
3808#if defined(REINTERPRET_OUTPUT_AS_3D)
3809
3810 // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
3811 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
3812 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
3813 // multiply dst_stride_z by DEPTH_GEMM3D
3814 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
3815
3816#else // defined(REINTERPRET_OUTPUT_AS_3D)
3817
3818 // Add offset for batched GEMM
3819 dst_addr += z * dst_stride_z;
3820
3821#endif // defined(REINTERPRET_OUTPUT_AS_3D)
3822
3823 // Multiply by the weight of matrix-matrix product and store the result
3824#if defined(ALPHA)
3825 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
3826#endif // defined(ALPHA)
3827
3828 // Add beta*bias
3829#if defined(BETA)
3830#if defined(BROADCAST_BIAS)
3831 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
3832
3833 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
3834
3835#ifndef UNIT_BETA
3836 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
3837#endif // UNIT_BIAS
3838
3839 // c = c + bias[broadcasted]
3840#if defined(MIXED_PRECISION)
3841 CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
3842 ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
3843#else // defined(MIXED_PRECISION)
3844 ADD_BLOCK_BROADCAST(M0, c, bias0);
3845#endif // defined(MIXED_PRECISION)
3846
3847#else // defined(BROADCAST_BIAS)
3848 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z;
3849
3850 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
3851
3852#ifndef UNIT_BETA
3853 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
3854#endif // UNIT_BIAS
3855
3856#if defined(MIXED_PRECISION)
3857 CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
3858 ADD_BLOCK(M0, c, bias_hp);
3859#else // defined(MIXED_PRECISION)
3860 ADD_BLOCK(M0, c, bias);
3861#endif // defined(MIXED_PRECISION)
3862
3863#endif // defined(BROADCAST_BIAS)
3864#endif // defined(BETA)
3865
3866#if defined(ACTIVATION_TYPE)
3867#if defined(MIXED_PRECISION)
3868 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
3869#else // defined(MIXED_PRECISION)
3870 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
3871#endif // defined(MIXED_PRECISION)
3872#endif // defined(ACTIVATION_TYPE)
3873
3874 // Store output block
3875#if defined(MIXED_PRECISION)
3876 CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
3877#else // defined(MIXED_PRECISION)
3878 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
3879#endif // defined(MIXED_PRECISION)
3880
3881#undef LHS_BLOCK_SIZE
3882#undef LHS_OFFSET_X
3883#undef LHS_STEP_X
3884#undef RHS_BLOCK_SIZE
3885#undef RHS_OFFSET_X
3886#undef RHS_STEP_X
3887#undef PIXEL_UNIT
3888#undef LHS_STEP_LOOP
3889#undef RHS_STEP_LOOP
3890}
3891#endif // defined(OPENCL_IMAGE_SUPPORT)
3892
Giorgio Arenaae99b6e2019-08-01 14:22:12 +01003893#endif // defined(LHS_TRANSPOSE)
3894
Gian Marco Iodicebf9731e2018-12-12 10:18:04 +00003895#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
3896
giuros01b3204e72019-04-01 13:50:22 +01003897#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
3898
3899#define VFMA(a, b, c) \
3900 ({ \
3901 c = fma(a, b, c); \
3902 })
3903
3904#if M0 == 1
3905#define RHS_VFMA_M0xN0(i, a, b, c) \
3906 ({ \
3907 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3908 })
3909#elif M0 == 2 // M0 == 2
3910#define RHS_VFMA_M0xN0(i, a, b, c) \
3911 ({ \
3912 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3913 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3914 })
3915#elif M0 == 3 // M0 == 3
3916#define RHS_VFMA_M0xN0(i, a, b, c) \
3917 ({ \
3918 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3919 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3920 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3921 })
3922#elif M0 == 4 // M0 == 4
3923#define RHS_VFMA_M0xN0(i, a, b, c) \
3924 ({ \
3925 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3926 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3927 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3928 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
3929 })
3930#elif M0 == 5 // M0 == 5
3931#define RHS_VFMA_M0xN0(i, a, b, c) \
3932 ({ \
3933 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3934 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3935 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3936 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
3937 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
3938 })
3939#elif M0 == 6 // M0 == 6
3940#define RHS_VFMA_M0xN0(i, a, b, c) \
3941 ({ \
3942 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3943 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3944 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3945 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
3946 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
3947 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
3948 })
3949#elif M0 == 7 // M0 == 7
3950#define RHS_VFMA_M0xN0(i, a, b, c) \
3951 ({ \
3952 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3953 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3954 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3955 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
3956 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
3957 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
3958 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
3959 })
3960#elif M0 == 8 // M0 == 8
3961#define RHS_VFMA_M0xN0(i, a, b, c) \
3962 ({ \
3963 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
3964 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
3965 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
3966 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
3967 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
3968 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
3969 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
3970 VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
3971 })
3972#else // M0 not supported
3973#error "M0 not supported"
3974#endif // M0 not supported
3975
3976/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
3977 * The LHS matrix is NOT reshaped
3978 * The RHS matrix is NOT reshaped
3979 *
3980 * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01003981 * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
3982 * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
3983 * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
3984 * @note The number of K0 partial accumulations must be passed at compile time using -DK0 (e.g., -DK0=2)
3985 * @note The number of N0 columns to process must be passed at compile time using -DN0 (e.g. -DN0=2)
giuros01b3204e72019-04-01 13:50:22 +01003986 * @note Only the following configurations of M0, N0 and K0 are currently supported:
3987 * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
3988 * - N0 = 2, 3, 4, 8, 16
3989 * - K0 = 2, 3, 4, 8, 16
3990 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01003991 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01003992 * The activation function is performed after the bias addition
giuros01b3204e72019-04-01 13:50:22 +01003993 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
3994 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
3995 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
3996 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
3997 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
3998 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
3999 *
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004000 * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
4001 * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
4002 * @param[in] lhs_step_x lhs_stride_x * number of elements along X processed per workitem(in bytes)
4003 * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
4004 * @param[in] lhs_step_y lhs_stride_y * number of elements along Y processed per workitem(in bytes)
4005 * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
4006 * @param[in] rhs_ptr Pointer to the RHS matrix. Supported data type: same as @p lhs_ptr
4007 * @param[in] rhs_stride_x Stride of the RHS matrix in X dimension (in bytes)
4008 * @param[in] rhs_step_x rhs_stride_x * number of elements along X processed per workitem(in bytes)
4009 * @param[in] rhs_stride_y Stride of the RHS matrix in Y dimension (in bytes)
4010 * @param[in] rhs_step_y rhs_stride_y * number of elements along Y processed per workitem(in bytes)
4011 * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS matrix
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004012 * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
4013 * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
4014 * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
4015 * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
4016 * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
4017 * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
4018 * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
4019 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
4020 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
4021 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
4022 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
4023 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
4024 * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
4025 * @param[in] rhs_stride_z Stride of the RHS matrix in Z dimension (in bytes)
4026 * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
4027 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
4028 * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
4029 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
giuros01b3204e72019-04-01 13:50:22 +01004030 */
4031__kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
4032 IMAGE_DECLARATION(rhs),
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004033#if defined(BETA)
4034 IMAGE_DECLARATION(bias),
4035#endif // defined(BETA)
giuros01b3204e72019-04-01 13:50:22 +01004036 IMAGE_DECLARATION(dst),
4037 uint lhs_stride_z,
4038 uint rhs_stride_z,
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004039#if defined(BETA)
4040 uint bias_stride_z,
4041#endif //defined(BETA)
giuros01b3204e72019-04-01 13:50:22 +01004042 uint dst_stride_z
4043#if defined(REINTERPRET_INPUT_AS_3D)
4044 ,
4045 uint lhs_cross_plane_pad
4046#endif // REINTERPRET_INPUT_AS_3D
4047#if defined(REINTERPRET_OUTPUT_AS_3D)
4048 ,
4049 uint dst_cross_plane_pad
4050#endif // REINTERPRET_OUTPUT_AS_3D
4051 )
4052{
4053 // Block size
4054#define RHS_BLOCK_SIZE ((K0) * (N0))
4055
4056 // RHS offset and step X
4057#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
4058
4059 uint x = get_global_id(0);
4060 uint y = get_global_id(1);
4061 uint z = get_global_id(2);
4062
4063#if defined(DUMMY_WORK_ITEMS)
4064 if((x * N0 >= N) || (y * M0 >= M))
4065 {
4066 return;
4067 }
4068#endif // defined(DUMMY_WORK_ITEMS)
4069
4070 // Compute LHS matrix address
4071 uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
4072
4073 // Compute RHS matrix address
4074 uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
4075
4076#if defined(MATRIX_B_DEPTH)
4077 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
4078 rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
4079#else // defined(MATRIX_B_DEPTH)
4080 rhs_offset += z * rhs_stride_z;
4081#endif // defined(MATRIX_B_DEPTH)
4082
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004083 REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
4084 REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
giuros01b3204e72019-04-01 13:50:22 +01004085
4086#if defined(REINTERPRET_INPUT_AS_3D)
4087 // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
4088 CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
4089
4090 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
4091 // multiply lhs_stride_z by DEPTH_GEMM3D
4092 lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
4093
4094#else // defined(REINTERPRET_INPUT_AS_3D)
4095
4096 // Add offset for batched GEMM
4097 lhs_offset += z * lhs_stride_z;
4098
4099#endif // defined(REINTERPRET_INPUT_AS_3D)
4100
4101 // Initialize the accumulators
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004102 REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
giuros01b3204e72019-04-01 13:50:22 +01004103
4104 int i = 0;
4105 for(; i <= (K - K0); i += K0)
4106 {
4107 // Supported cases (M0, K0):
4108 // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
4109 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
4110 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
4111 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
4112 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
4113 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
4114 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
4115 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
4116 // Load values from LHS matrix
4117 LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
4118
4119 // Load values from RHS matrix
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004120 LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);
giuros01b3204e72019-04-01 13:50:22 +01004121
4122 RHS_VFMA_M0xN0(0, a, b0, c);
4123 RHS_VFMA_M0xN0(1, a, b1, c);
4124#if K0 > 2
4125 RHS_VFMA_M0xN0(2, a, b2, c);
4126#endif // K0 > 2
4127#if K0 > 3
4128 RHS_VFMA_M0xN0(3, a, b3, c);
4129#endif // K0 > 3
4130#if K0 > 4
4131 RHS_VFMA_M0xN0(4, a, b4, c);
4132 RHS_VFMA_M0xN0(5, a, b5, c);
4133 RHS_VFMA_M0xN0(6, a, b6, c);
4134 RHS_VFMA_M0xN0(7, a, b7, c);
4135#endif // K0 > 4
4136#if K0 > 8
4137 RHS_VFMA_M0xN0(8, a, b8, c);
4138 RHS_VFMA_M0xN0(9, a, b9, c);
Gian Marco Iodice7b9d7ca2019-09-19 16:37:39 +01004139 RHS_VFMA_M0xN0(A, a, bA, c);
4140 RHS_VFMA_M0xN0(B, a, bB, c);
4141 RHS_VFMA_M0xN0(C, a, bC, c);
4142 RHS_VFMA_M0xN0(D, a, bD, c);
4143 RHS_VFMA_M0xN0(E, a, bE, c);
4144 RHS_VFMA_M0xN0(F, a, bF, c);
giuros01b3204e72019-04-01 13:50:22 +01004145#endif // K0 > 8
4146
4147 lhs_offset += K0 * sizeof(DATA_TYPE);
4148 rhs_offset += K0 * rhs_stride_y;
4149 }
4150
4151 // Left-over accumulations
4152 for(; i < K; ++i)
4153 {
4154 // Load values from LHS matrix
4155 VEC_DATA_TYPE(DATA_TYPE, 2)
4156 a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
4157#if M0 > 1
4158 VEC_DATA_TYPE(DATA_TYPE, 2)
4159 a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
4160#endif // M0 > 1
4161#if M0 > 2
4162 VEC_DATA_TYPE(DATA_TYPE, 2)
4163 a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
4164#endif // M0 > 2
4165#if M0 > 3
4166 VEC_DATA_TYPE(DATA_TYPE, 2)
4167 a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
4168#endif // M0 > 3
4169#if M0 > 4
4170 VEC_DATA_TYPE(DATA_TYPE, 2)
4171 a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
4172#endif // M0 > 4
4173#if M0 > 5
4174 VEC_DATA_TYPE(DATA_TYPE, 2)
4175 a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
4176#endif // M0 > 5
4177#if M0 > 6
4178 VEC_DATA_TYPE(DATA_TYPE, 2)
4179 a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
4180#endif // M0 > 6
4181#if M0 > 7
4182 VEC_DATA_TYPE(DATA_TYPE, 2)
4183 a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
4184#endif // M0 > 7
4185
4186 VEC_DATA_TYPE(DATA_TYPE, N0)
4187 b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
4188 RHS_VFMA_M0xN0(0, a, b, c);
4189
4190 lhs_offset += sizeof(DATA_TYPE);
4191 rhs_offset += rhs_stride_y;
4192 }
4193
4194 __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
4195
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004196 REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
giuros01b3204e72019-04-01 13:50:22 +01004197
4198#if defined(REINTERPRET_OUTPUT_AS_3D)
4199 // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
4200 CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
4201
4202 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
4203 // multiply dst_stride_z by DEPTH_GEMM3D
4204 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
4205
4206#else // defined(REINTERPRET_OUTPUT_AS_3D)
4207
4208 // Add offset for batched GEMM
4209 dst_addr += z * dst_stride_z;
4210
4211#endif // defined(REINTERPRET_OUTPUT_AS_3D)
4212
4213 // Multiply by the weight of matrix-matrix product and store the result
giuros01b3204e72019-04-01 13:50:22 +01004214#if defined(ALPHA)
4215 SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
4216#endif // defined(ALPHA)
4217
Gian Marco Iodice944170e2019-06-24 14:40:30 +01004218 // Add beta*bias
4219#if defined(BETA)
4220#if defined(BROADCAST_BIAS)
4221 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
4222
4223 LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
4224
4225#ifndef UNIT_BETA
4226 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
4227#endif // UNIT_BIAS
4228
4229 // c = c + bias[broadcasted]
4230 ADD_BLOCK_BROADCAST(M0, c, bias0);
4231
4232#else // defined(BROADCAST_BIAS)
4233 __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
4234 2) * bias_stride_z;
4235
4236 LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
4237
4238#ifndef UNIT_BETA
4239 SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
4240#endif // UNIT_BIAS
4241
4242 // c = c + bias
4243 ADD_BLOCK(M0, c, bias);
4244
4245#endif // defined(BROADCAST_BIAS)
4246#endif // defined(BETA)
4247
Gian Marco Iodiceca1f4602019-07-16 15:46:48 +01004248#if defined(ACTIVATION_TYPE)
4249 ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
4250#endif // defined(ACTIVATION_TYPE)
4251
giuros01b3204e72019-04-01 13:50:22 +01004252 // Store output block
4253 STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
4254
4255#undef RHS_BLOCK_SIZE
4256#undef RHS_OFFSET_X
4257#undef RHS_STEP_X
4258}
4259#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
4260
Gian Marco36a0a462018-01-12 10:21:40 +00004261#if defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004262/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00004263 *
Gian Marco19835e52018-01-30 13:35:54 +00004264 * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004265 * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
4266 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
4267 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
4268 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004269 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004270 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
4271 * The activation function is performed after the bias addition
4272 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004273 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
4274 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
4275 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
4276 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
4277 *
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004278 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
4279 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
4280 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4281 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
4282 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4283 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004284 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004285 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
4286 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4287 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
4288 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4289 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004290 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
4291 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
4292 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
4293 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
4294 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
4295 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004296 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004297 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004298 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004299 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004300 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004301 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004302 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
4303 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004304 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004305 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01004306 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004307 */
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01004308__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
4309 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004310#if defined(BETA)
4311 IMAGE_DECLARATION(src2),
4312#endif // defined(BETA)
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01004313 IMAGE_DECLARATION(dst),
4314 uint src0_stride_z,
4315 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004316#if defined(BETA)
4317 uint src2_stride_z,
4318#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004319 uint dst_stride_z
4320#if defined(REINTERPRET_OUTPUT_AS_3D)
4321 ,
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004322 uint cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004323#endif // REINTERPRET_OUTPUT_AS_3D
4324 )
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004325{
Gian Marco36a0a462018-01-12 10:21:40 +00004326 int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
4327 int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
Gian Marcoae2af742018-02-15 12:35:44 +00004328 int z = get_global_id(2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004329
Gian Marco36a0a462018-01-12 10:21:40 +00004330 // Offset
4331 const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
4332 const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004333
Gian Marco36a0a462018-01-12 10:21:40 +00004334 // src_addr_a = address of matrix A
4335 // src_addr_b = address of matrix B
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00004336 int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
4337 int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
4338
4339#if defined(MATRIX_B_DEPTH)
4340 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
4341 src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
4342#else // defined(MATRIX_B_DEPTH)
4343 src1_addr_in_bytes += z * src1_stride_z;
4344#endif // defined(MATRIX_B_DEPTH)
4345
4346 __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
4347 __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004348
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004349 // Compute end row address for matrix B
Gian Marco36a0a462018-01-12 10:21:40 +00004350 __global float *src_end_addr_b = src_addr_b + COLS_B;
4351
4352 src_addr_a += offset_row_a;
4353 src_addr_b += offset_row_b;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004354
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004355 // Reset accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004356 float4 c0 = 0.0f;
4357 float4 c1 = 0.0f;
4358 float4 c2 = 0.0f;
4359 float4 c3 = 0.0f;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004360
Gian Marco36a0a462018-01-12 10:21:40 +00004361 for(; src_addr_b <= (src_end_addr_b - (int)(8 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004362 {
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004363 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004364 float4 a0 = vload4(0, src_addr_a);
4365 float4 b0 = vload4(0, src_addr_b);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004366
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004367 c0 += (float4)a0.s0 * b0;
4368 c1 += (float4)a0.s1 * b0;
4369 c2 += (float4)a0.s2 * b0;
4370 c3 += (float4)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004371
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004372 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004373 a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
4374 b0 = vload4(0, src_addr_b + 4 * MULT_TRANSPOSE1XW_WIDTH);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004375
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004376 c0 += (float4)a0.s0 * b0;
4377 c1 += (float4)a0.s1 * b0;
4378 c2 += (float4)a0.s2 * b0;
4379 c3 += (float4)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004380 }
4381
Gian Marco36a0a462018-01-12 10:21:40 +00004382 for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004383 {
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004384 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004385 float4 a0 = vload4(0, src_addr_a);
4386 float4 b0 = vload4(0, src_addr_b);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004387
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004388 c0 += (float4)a0.s0 * b0;
4389 c1 += (float4)a0.s1 * b0;
4390 c2 += (float4)a0.s2 * b0;
4391 c3 += (float4)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004392 }
4393
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004394 // Compute destination address
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004395 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
4396
Gian Marcoae2af742018-02-15 12:35:44 +00004397 // Compute dst address
4398 __global uchar *dst_addr = offset(&dst, 0, 0);
4399
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004400 uint4 zout = 0;
4401
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004402#if defined(REINTERPRET_OUTPUT_AS_3D)
4403 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004404 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004405 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004406 // | |
4407 // | plane0 |
4408 // | |
4409 // |__________________|
4410 // |******************|
4411 // | cross_plane_pad |
4412 // |******************|
4413 // | |
4414 // | plane1 |
4415 // | |
4416 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004417
4418 // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004419 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
4420 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004421
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004422 // Add offset due to the cross plane paddings
4423 zout *= (cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004424
4425 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
4426 // multiply dst_stride_z by DEPTH_GEMM3D
4427 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004428#else // defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marcoae2af742018-02-15 12:35:44 +00004429 // Add offset for batched GEMM
4430 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004431#endif // defined(REINTERPRET_OUTPUT_AS_3D)
4432
4433 // Multiply by the weight of matrix-matrix product and store the result
4434#if defined(ALPHA)
4435 SCALE_BLOCK(4, float, c, ALPHA);
4436#endif // defined(ALPHA)
4437
4438 // Add beta*bias
4439#if defined(BETA)
4440 REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
4441
4442#if defined(BROADCAST_BIAS)
4443 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
4444
4445 LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
4446
4447#ifndef UNIT_BETA
4448 SCALE_BLOCK(1, float, bias, BETA);
4449#endif // UNIT_BIAS
4450
4451 // c = c + bias[broadcasted]
4452 ADD_BLOCK_BROADCAST(4, c, bias0);
4453
4454#else // defined(BROADCAST_BIAS)
4455 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
4456 2) * src2_stride_z;
4457
4458 LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
4459
4460#ifndef UNIT_BETA
4461 SCALE_BLOCK(4, float, bias, BETA);
4462#endif // UNIT_BIAS
4463
4464 // c = c + bias
4465 ADD_BLOCK(4, c, bias);
4466
4467#endif // defined(BROADCAST_BIAS)
4468#endif // defined(BETA)
4469
4470#if defined(ACTIVATION_TYPE)
4471 ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, c, A_VAL, B_VAL);
4472#endif // defined(ACTIVATION_TYPE)
Gian Marcoae2af742018-02-15 12:35:44 +00004473
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004474 // Store 4x4 block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004475 vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
4476 vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
4477 vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
4478 vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004479}
4480
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004481/** This OpenCL kernel is optimized for Bifrost and tt computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004482 *
Gian Marco19835e52018-01-30 13:35:54 +00004483 * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004484 * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
4485 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
4486 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
4487 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
4488 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004489 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004490 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
4491 * The activation function is performed after the bias addition
4492 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004493 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
4494 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
4495 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
4496 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
4497 *
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004498 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
4499 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
4500 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4501 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
4502 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4503 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004504 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004505 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
4506 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4507 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
4508 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4509 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004510 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
4511 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
4512 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
4513 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
4514 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
4515 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004516 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004517 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004518 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004519 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004520 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004521 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004522 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
4523 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004524 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004525 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01004526 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004527 */
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01004528__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
4529 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004530#if defined(BETA)
4531 IMAGE_DECLARATION(src2),
4532#endif // defined(BETA)
Gian Marcoae2af742018-02-15 12:35:44 +00004533 IMAGE_DECLARATION(dst),
4534 uint src0_stride_z,
4535 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004536#if defined(BETA)
4537 uint src2_stride_z,
4538#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004539 uint dst_stride_z
4540#if defined(REINTERPRET_OUTPUT_AS_3D)
4541 ,
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004542 uint cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004543#endif // REINTERPRET_OUTPUT_AS_3D
4544 )
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004545{
Gian Marco36a0a462018-01-12 10:21:40 +00004546 int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
4547 int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
Gian Marcoae2af742018-02-15 12:35:44 +00004548 int z = get_global_id(2);
Gian Marco36a0a462018-01-12 10:21:40 +00004549
4550 // Offset
4551 const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
4552 const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
4553
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004554 // src_addr_a = address of matrix A
4555 // src_addr_b = address of matrix B
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00004556 int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
4557 int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
4558
4559#if defined(MATRIX_B_DEPTH)
4560 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
4561 src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
4562#else // defined(MATRIX_B_DEPTH)
4563 src1_addr_in_bytes += z * src1_stride_z;
4564#endif // defined(MATRIX_B_DEPTH)
4565
4566 __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
4567 __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004568
Gian Marco36a0a462018-01-12 10:21:40 +00004569 src_addr_a += offset_row_a;
4570 src_addr_b += offset_row_b;
4571
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004572 // Reset accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004573 float4 c0 = 0.0f;
4574 float4 c1 = 0.0f;
4575 float4 c2 = 0.0f;
4576 float4 c3 = 0.0f;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004577
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004578#define COLS_MTX_B (COLS_B / (4 * MULT_TRANSPOSE1XW_WIDTH))
4579
4580 int i = 0;
4581 for(; i <= (int)(COLS_MTX_B - 4); i += 4)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004582 {
4583 // Load values from matrix A (interleaved) and matrix B (transposed)
4584 float4 a0 = vload4(0, src_addr_a);
4585 float4 b0 = vload4(0, src_addr_b);
4586
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004587 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
4588 src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004589
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004590 c0.s0 = fma(a0.s0, b0.s0, c0.s0);
4591 c0.s1 = fma(a0.s0, b0.s1, c0.s1);
4592 c0.s2 = fma(a0.s0, b0.s2, c0.s2);
4593 c0.s3 = fma(a0.s0, b0.s3, c0.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004594
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004595 c1.s0 = fma(a0.s1, b0.s0, c1.s0);
4596 c1.s1 = fma(a0.s1, b0.s1, c1.s1);
4597 c1.s2 = fma(a0.s1, b0.s2, c1.s2);
4598 c1.s3 = fma(a0.s1, b0.s3, c1.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004599
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004600 c2.s0 = fma(a0.s2, b0.s0, c2.s0);
4601 c2.s1 = fma(a0.s2, b0.s1, c2.s1);
4602 c2.s2 = fma(a0.s2, b0.s2, c2.s2);
4603 c2.s3 = fma(a0.s2, b0.s3, c2.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004604
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004605 c3.s0 = fma(a0.s3, b0.s0, c3.s0);
4606 c3.s1 = fma(a0.s3, b0.s1, c3.s1);
4607 c3.s2 = fma(a0.s3, b0.s2, c3.s2);
4608 c3.s3 = fma(a0.s3, b0.s3, c3.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004609
4610 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004611 a0 = vload4(0, src_addr_a);
4612 b0 = vload4(0, src_addr_b);
4613
4614 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
4615 src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004616
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004617 c0.s0 = fma(a0.s0, b0.s0, c0.s0);
4618 c0.s1 = fma(a0.s0, b0.s1, c0.s1);
4619 c0.s2 = fma(a0.s0, b0.s2, c0.s2);
4620 c0.s3 = fma(a0.s0, b0.s3, c0.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004621
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004622 c1.s0 = fma(a0.s1, b0.s0, c1.s0);
4623 c1.s1 = fma(a0.s1, b0.s1, c1.s1);
4624 c1.s2 = fma(a0.s1, b0.s2, c1.s2);
4625 c1.s3 = fma(a0.s1, b0.s3, c1.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004626
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004627 c2.s0 = fma(a0.s2, b0.s0, c2.s0);
4628 c2.s1 = fma(a0.s2, b0.s1, c2.s1);
4629 c2.s2 = fma(a0.s2, b0.s2, c2.s2);
4630 c2.s3 = fma(a0.s2, b0.s3, c2.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004631
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004632 c3.s0 = fma(a0.s3, b0.s0, c3.s0);
4633 c3.s1 = fma(a0.s3, b0.s1, c3.s1);
4634 c3.s2 = fma(a0.s3, b0.s2, c3.s2);
4635 c3.s3 = fma(a0.s3, b0.s3, c3.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004636
4637 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004638 a0 = vload4(0, src_addr_a);
4639 b0 = vload4(0, src_addr_b);
4640
4641 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
4642 src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
4643
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004644 c0.s0 = fma(a0.s0, b0.s0, c0.s0);
4645 c0.s1 = fma(a0.s0, b0.s1, c0.s1);
4646 c0.s2 = fma(a0.s0, b0.s2, c0.s2);
4647 c0.s3 = fma(a0.s0, b0.s3, c0.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004648
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004649 c1.s0 = fma(a0.s1, b0.s0, c1.s0);
4650 c1.s1 = fma(a0.s1, b0.s1, c1.s1);
4651 c1.s2 = fma(a0.s1, b0.s2, c1.s2);
4652 c1.s3 = fma(a0.s1, b0.s3, c1.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004653
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004654 c2.s0 = fma(a0.s2, b0.s0, c2.s0);
4655 c2.s1 = fma(a0.s2, b0.s1, c2.s1);
4656 c2.s2 = fma(a0.s2, b0.s2, c2.s2);
4657 c2.s3 = fma(a0.s2, b0.s3, c2.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004658
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004659 c3.s0 = fma(a0.s3, b0.s0, c3.s0);
4660 c3.s1 = fma(a0.s3, b0.s1, c3.s1);
4661 c3.s2 = fma(a0.s3, b0.s2, c3.s2);
4662 c3.s3 = fma(a0.s3, b0.s3, c3.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004663
4664 // Load values from matrix A (interleaved) and matrix B (transposed)
4665 a0 = vload4(0, src_addr_a);
4666 b0 = vload4(0, src_addr_b);
4667
4668 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
4669 src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004670
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004671 c0.s0 = fma(a0.s0, b0.s0, c0.s0);
4672 c0.s1 = fma(a0.s0, b0.s1, c0.s1);
4673 c0.s2 = fma(a0.s0, b0.s2, c0.s2);
4674 c0.s3 = fma(a0.s0, b0.s3, c0.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004675
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004676 c1.s0 = fma(a0.s1, b0.s0, c1.s0);
4677 c1.s1 = fma(a0.s1, b0.s1, c1.s1);
4678 c1.s2 = fma(a0.s1, b0.s2, c1.s2);
4679 c1.s3 = fma(a0.s1, b0.s3, c1.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004680
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004681 c2.s0 = fma(a0.s2, b0.s0, c2.s0);
4682 c2.s1 = fma(a0.s2, b0.s1, c2.s1);
4683 c2.s2 = fma(a0.s2, b0.s2, c2.s2);
4684 c2.s3 = fma(a0.s2, b0.s3, c2.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004685
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004686 c3.s0 = fma(a0.s3, b0.s0, c3.s0);
4687 c3.s1 = fma(a0.s3, b0.s1, c3.s1);
4688 c3.s2 = fma(a0.s3, b0.s2, c3.s2);
4689 c3.s3 = fma(a0.s3, b0.s3, c3.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004690 }
4691
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004692 for(; i < (int)(COLS_MTX_B); ++i)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004693 {
4694 // Load values from matrix A (interleaved) and matrix B (transposed)
4695 float4 a0 = vload4(0, src_addr_a);
4696 float4 b0 = vload4(0, src_addr_b);
4697
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01004698 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
4699 src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
4700
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004701 c0.s0 = fma(a0.s0, b0.s0, c0.s0);
4702 c0.s1 = fma(a0.s0, b0.s1, c0.s1);
4703 c0.s2 = fma(a0.s0, b0.s2, c0.s2);
4704 c0.s3 = fma(a0.s0, b0.s3, c0.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004705
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004706 c1.s0 = fma(a0.s1, b0.s0, c1.s0);
4707 c1.s1 = fma(a0.s1, b0.s1, c1.s1);
4708 c1.s2 = fma(a0.s1, b0.s2, c1.s2);
4709 c1.s3 = fma(a0.s1, b0.s3, c1.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004710
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004711 c2.s0 = fma(a0.s2, b0.s0, c2.s0);
4712 c2.s1 = fma(a0.s2, b0.s1, c2.s1);
4713 c2.s2 = fma(a0.s2, b0.s2, c2.s2);
4714 c2.s3 = fma(a0.s2, b0.s3, c2.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004715
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004716 c3.s0 = fma(a0.s3, b0.s0, c3.s0);
4717 c3.s1 = fma(a0.s3, b0.s1, c3.s1);
4718 c3.s2 = fma(a0.s3, b0.s2, c3.s2);
4719 c3.s3 = fma(a0.s3, b0.s3, c3.s3);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004720 }
4721
4722 // Compute destination address
4723 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
4724
Gian Marcoae2af742018-02-15 12:35:44 +00004725 // Compute dst address
4726 __global uchar *dst_addr = offset(&dst, 0, 0);
4727
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004728 uint4 zout = 0;
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00004729
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004730#if defined(REINTERPRET_OUTPUT_AS_3D)
4731 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004732 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004733 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004734 // | |
4735 // | plane0 |
4736 // | |
4737 // |__________________|
4738 // |******************|
4739 // | cross_plane_pad |
4740 // |******************|
4741 // | |
4742 // | plane1 |
4743 // | |
4744 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004745
4746 // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004747 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
4748 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004749
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004750 // Add offset due to the cross plane paddings
4751 zout *= (cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004752
4753 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
4754 // multiply dst_stride_z by DEPTH_GEMM3D
4755 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004756#else // defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marcoae2af742018-02-15 12:35:44 +00004757 // Add offset for batched GEMM
4758 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004759#endif // defined(REINTERPRET_OUTPUT_AS_3D)
4760
4761 // Multiply by the weight of matrix-matrix product and store the result
4762#if defined(ALPHA)
4763 SCALE_BLOCK(4, float, c, ALPHA);
4764#endif // defined(ALPHA)
4765
4766 // Add beta*bias
4767#if defined(BETA)
4768 REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
4769
4770#if defined(BROADCAST_BIAS)
4771 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
4772
4773 LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
4774
4775#ifndef UNIT_BETA
4776 SCALE_BLOCK(1, float, bias, BETA);
4777#endif // UNIT_BIAS
4778
4779 // c = c + bias[broadcasted]
4780 ADD_BLOCK_BROADCAST(4, c, bias0);
4781
4782#else // defined(BROADCAST_BIAS)
4783 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
4784 2) * src2_stride_z;
4785
4786 LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
4787
4788#ifndef UNIT_BETA
4789 SCALE_BLOCK(4, float, bias, BETA);
4790#endif // UNIT_BIAS
4791
4792 // c = c + bias
4793 ADD_BLOCK(4, c, bias);
4794
4795#endif // defined(BROADCAST_BIAS)
4796#endif // defined(BETA)
4797
4798#if defined(ACTIVATION_TYPE)
4799 ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, c, A_VAL, B_VAL);
4800#endif // defined(ACTIVATION_TYPE)
Gian Marcoae2af742018-02-15 12:35:44 +00004801
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004802 // Store 4x4 block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004803 vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
4804 vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
4805 vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
4806 vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004807}
4808
Georgios Pinitas84225582018-05-14 12:00:05 +01004809// Undefine local defines
4810#undef COLS_MTX_B
4811
Matthew Bentham6f31f8c2017-10-27 11:50:06 +01004812#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004813/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00004814 *
Gian Marco19835e52018-01-30 13:35:54 +00004815 * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004816 * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
4817 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
4818 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
4819 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004820 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004821 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
4822 * The activation function is performed after the bias addition
4823 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004824 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
4825 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
4826 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
4827 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
4828 *
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004829 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
4830 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
4831 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4832 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
4833 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4834 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004835 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004836 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
4837 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
4838 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
4839 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
4840 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004841 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
4842 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
4843 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
4844 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
4845 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
4846 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01004847 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004848 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004849 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004850 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
Gian Marco36a0a462018-01-12 10:21:40 +00004851 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004852 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004853 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
4854 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004855 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004856 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01004857 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004858 */
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01004859__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
4860 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004861#if defined(BETA)
4862 IMAGE_DECLARATION(src2),
4863#endif // defined(BETA)
Gian Marcoae2af742018-02-15 12:35:44 +00004864 IMAGE_DECLARATION(dst),
4865 uint src0_stride_z,
4866 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004867#if defined(BETA)
4868 uint src2_stride_z,
4869#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004870 uint dst_stride_z
4871#if defined(REINTERPRET_OUTPUT_AS_3D)
4872 ,
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004873 uint cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004874#endif // REINTERPRET_OUTPUT_AS_3D
4875 )
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004876{
Gian Marco36a0a462018-01-12 10:21:40 +00004877 int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
4878 int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
Gian Marcoae2af742018-02-15 12:35:44 +00004879 int z = get_global_id(2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004880
Gian Marco36a0a462018-01-12 10:21:40 +00004881 // Offset
4882 const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
4883 const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004884
Gian Marco36a0a462018-01-12 10:21:40 +00004885 // src_addr_a = address of matrix A
4886 // src_addr_b = address of matrix B
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00004887 int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
4888 int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
4889
4890#if defined(MATRIX_B_DEPTH)
4891 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
4892 src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
4893#else // defined(MATRIX_B_DEPTH)
4894 src1_addr_in_bytes += z * src1_stride_z;
4895#endif // defined(MATRIX_B_DEPTH)
4896
4897 __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
4898 __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004899
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004900 // Compute end row address for matrix B
Gian Marco36a0a462018-01-12 10:21:40 +00004901 __global half *src_end_addr_b = src_addr_b + COLS_B;
4902
4903 src_addr_a += offset_row_a;
4904 src_addr_b += offset_row_b;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004905
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004906 // Reset accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004907 half8 c0 = 0.0f;
4908 half8 c1 = 0.0f;
4909 half8 c2 = 0.0f;
4910 half8 c3 = 0.0f;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004911
Gian Marco36a0a462018-01-12 10:21:40 +00004912 for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004913 {
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004914 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004915 half4 a0 = vload4(0, src_addr_a);
4916 half8 b0 = vload8(0, src_addr_b);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004917
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004918 c0 += (half8)a0.s0 * b0;
4919 c1 += (half8)a0.s1 * b0;
4920 c2 += (half8)a0.s2 * b0;
4921 c3 += (half8)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004922
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004923 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004924 a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
4925 b0 = vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004926
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004927 c0 += (half8)a0.s0 * b0;
4928 c1 += (half8)a0.s1 * b0;
4929 c2 += (half8)a0.s2 * b0;
4930 c3 += (half8)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004931 }
4932
Gian Marco36a0a462018-01-12 10:21:40 +00004933 for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004934 {
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004935 // Load values from matrix A (interleaved) and matrix B (transposed)
Gian Marco36a0a462018-01-12 10:21:40 +00004936 half4 a0 = vload4(0, src_addr_a);
4937 half8 b0 = vload8(0, src_addr_b);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004938
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004939 c0 += (half8)a0.s0 * b0;
4940 c1 += (half8)a0.s1 * b0;
4941 c2 += (half8)a0.s2 * b0;
4942 c3 += (half8)a0.s3 * b0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004943 }
4944
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00004945 // Compute destination address
Anthony Barbier6ff3b192017-09-04 18:44:23 +01004946 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
4947
Gian Marcoae2af742018-02-15 12:35:44 +00004948 // Compute dst address
4949 __global uchar *dst_addr = offset(&dst, 0, 0);
4950
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004951 uint4 zout = 0;
4952
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004953#if defined(REINTERPRET_OUTPUT_AS_3D)
4954 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004955 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004956 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004957 // | |
4958 // | plane0 |
4959 // | |
4960 // |__________________|
4961 // |******************|
4962 // | cross_plane_pad |
4963 // |******************|
4964 // | |
4965 // | plane1 |
4966 // | |
4967 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004968
4969 // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004970 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
4971 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004972
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01004973 // Add offset due to the cross plane paddings
4974 zout *= (cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004975
4976 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
4977 // multiply dst_stride_z by DEPTH_GEMM3D
4978 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Isabella Gottardi8e74f442018-03-01 16:42:00 +00004979#else // defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marcoae2af742018-02-15 12:35:44 +00004980 // Add offset for batched GEMM
4981 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01004982#endif // defined(REINTERPRET_OUTPUT_AS_3D)
4983
4984 // Multiply by the weight of matrix-matrix product and store the result
4985#if defined(ALPHA)
4986 SCALE_BLOCK(4, half, c, ALPHA);
4987#endif // defined(ALPHA)
4988
4989 // Add beta*bias
4990#if defined(BETA)
4991 REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
4992
4993#if defined(BROADCAST_BIAS)
4994 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
4995
4996 LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
4997
4998#ifndef UNIT_BETA
4999 SCALE_BLOCK(1, half, bias, BETA);
5000#endif // UNIT_BIAS
5001
5002 // c = c + bias[broadcasted]
5003 ADD_BLOCK_BROADCAST(4, c, bias0);
5004
5005#else // defined(BROADCAST_BIAS)
5006
5007 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
5008 2) * src2_stride_z;
5009
5010 LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
5011
5012#ifndef UNIT_BETA
5013 SCALE_BLOCK(4, half, bias, BETA);
5014#endif // UNIT_BIAS
5015
5016 // c = c + bias
5017 ADD_BLOCK(4, c, bias);
5018
5019#endif // defined(BROADCAST_BIAS)
5020#endif // defined(BETA)
5021
5022#if defined(ACTIVATION_TYPE)
5023 ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c, A_VAL, B_VAL);
5024#endif // defined(ACTIVATION_TYPE)
Gian Marcoae2af742018-02-15 12:35:44 +00005025
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005026 // Store 4x8 block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005027 vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
5028 vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
5029 vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
5030 vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005031}
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005032
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005033/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1) while accumulating the result in a 32 floating point variable.
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00005034 *
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005035 * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005036 * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
5037 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
5038 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
5039 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005040 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005041 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
5042 * The activation function is performed after the bias addition
5043 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005044 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
5045 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
5046 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
5047 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
5048 *
5049 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
5050 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
5051 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5052 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
5053 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5054 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
5055 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
5056 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
5057 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5058 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
5059 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5060 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005061 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
5062 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
5063 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
5064 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
5065 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
5066 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005067 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
5068 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
5069 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
5070 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
5071 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
5072 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
5073 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
5074 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005075 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005076 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
5077 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
5078 */
5079__kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
5080 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005081#if defined(BETA)
5082 IMAGE_DECLARATION(src2),
5083#endif // defined(BETA)
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005084 IMAGE_DECLARATION(dst),
5085 uint src0_stride_z,
5086 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005087#if defined(BETA)
5088 uint src2_stride_z,
5089#endif //defined(BETA)
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005090 uint dst_stride_z
5091#if defined(REINTERPRET_OUTPUT_AS_3D)
5092 ,
5093 uint cross_plane_pad
5094#endif // REINTERPRET_OUTPUT_AS_3D
5095 )
5096{
5097 int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
5098 int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
5099 int z = get_global_id(2);
5100
5101 // Offset
5102 const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
5103 const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
5104
5105 // src_addr_a = address of matrix A
5106 // src_addr_b = address of matrix B
5107 int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
5108 int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
5109
5110#if defined(MATRIX_B_DEPTH)
5111 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
5112 src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
5113#else // defined(MATRIX_B_DEPTH)
5114 src1_addr_in_bytes += z * src1_stride_z;
5115#endif // defined(MATRIX_B_DEPTH)
5116
5117 __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
5118 __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
5119
5120 // Compute end row address for matrix B
5121 __global half *src_end_addr_b = src_addr_b + COLS_B;
5122
5123 src_addr_a += offset_row_a;
5124 src_addr_b += offset_row_b;
5125
5126 // Reset accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005127 float8 c0 = 0.0f;
5128 float8 c1 = 0.0f;
5129 float8 c2 = 0.0f;
5130 float8 c3 = 0.0f;
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005131
5132 for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
5133 {
5134 // Load values from matrix A (interleaved) and matrix B (transposed)
5135 float4 a0 = convert_float4(vload4(0, src_addr_a));
5136 float8 b0 = convert_float8(vload8(0, src_addr_b));
5137
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005138 c0 += (float8)a0.s0 * b0;
5139 c1 += (float8)a0.s1 * b0;
5140 c2 += (float8)a0.s2 * b0;
5141 c3 += (float8)a0.s3 * b0;
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005142
5143 // Load values from matrix A (interleaved) and matrix B (transposed)
5144 a0 = convert_float4(vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT));
5145 b0 = convert_float8(vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH));
5146
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005147 c0 += (float8)a0.s0 * b0;
5148 c1 += (float8)a0.s1 * b0;
5149 c2 += (float8)a0.s2 * b0;
5150 c3 += (float8)a0.s3 * b0;
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005151 }
5152
5153 for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
5154 {
5155 // Load values from matrix A (interleaved) and matrix B (transposed)
5156 float4 a0 = convert_float4(vload4(0, src_addr_a));
5157 float8 b0 = convert_float8(vload8(0, src_addr_b));
5158
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005159 c0 += (float8)a0.s0 * b0;
5160 c1 += (float8)a0.s1 * b0;
5161 c2 += (float8)a0.s2 * b0;
5162 c3 += (float8)a0.s3 * b0;
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005163 }
5164
5165 // Compute destination address
5166 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
5167
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005168 // Compute dst address
5169 __global uchar *dst_addr = offset(&dst, 0, 0);
5170
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005171 uint4 zout = 0;
5172
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005173#if defined(REINTERPRET_OUTPUT_AS_3D)
5174 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
5175 // in order to take into account the presence of possible cross plane paddings
5176 //
5177 // | |
5178 // | plane0 |
5179 // | |
5180 // |__________________|
5181 // |******************|
5182 // | cross_plane_pad |
5183 // |******************|
5184 // | |
5185 // | plane1 |
5186 // | |
5187 // |__________________|
5188
5189 // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005190 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
5191 zout = min(DEPTH_GEMM3D - 1, zout);
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005192
5193 // Add offset due to the cross plane paddings
5194 zout *= (cross_plane_pad * dst_stride_y);
5195
5196 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
5197 // multiply dst_stride_z by DEPTH_GEMM3D
5198 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005199#else // defined(REINTERPRET_OUTPUT_AS_3D)
5200 // Add offset for batched GEMM
5201 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005202#endif // defined(REINTERPRET_OUTPUT_AS_3D)
5203
5204 // Multiply by the weight of matrix-matrix product and store the result
5205#if defined(ALPHA)
5206 SCALE_BLOCK(4, float, c, ALPHA);
5207#endif // defined(ALPHA)
5208
5209#if defined(BETA)
5210 REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
5211
5212#if defined(BROADCAST_BIAS)
5213 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
5214
5215 LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
5216
5217 float8 bias_f0 = convert_float8(bias0);
5218
5219#ifndef UNIT_BETA
5220 SCALE_BLOCK(1, float, bias_f, BETA);
5221#endif // UNIT_BIAS
5222
5223 // c = c + bias[broadcasted]
5224 ADD_BLOCK_BROADCAST(4, c, bias_f0);
5225
5226#else // defined(BROADCAST_BIAS)
5227 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
5228 2) * src2_stride_z;
5229
5230 LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
5231
5232 float8 bias_f0 = convert_float8(bias0);
5233 float8 bias_f1 = convert_float8(bias1);
5234 float8 bias_f2 = convert_float8(bias2);
5235 float8 bias_f3 = convert_float8(bias3);
5236
5237#ifndef UNIT_BETA
5238 SCALE_BLOCK(4, float, bias_f, BETA);
5239#endif // UNIT_BIAS
5240
5241 // c = c + bias
5242 ADD_BLOCK(4, c, bias_f);
5243
5244#endif // defined(BROADCAST_BIAS)
5245#endif // defined(BETA)
5246
5247 half8 c_h0 = convert_half8(c0);
5248 half8 c_h1 = convert_half8(c1);
5249 half8 c_h2 = convert_half8(c2);
5250 half8 c_h3 = convert_half8(c3);
5251
5252#if defined(ACTIVATION_TYPE)
5253 ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c_h, A_VAL, B_VAL);
5254#endif // defined(ACTIVATION_TYPE)
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005255
5256 // Store 4x8 block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005257 vstore8(c_h0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
5258 vstore8(c_h1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
5259 vstore8(c_h2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
5260 vstore8(c_h3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
Vidhya Sudhan Loganathan38d93bd2018-11-20 15:38:13 +00005261}
5262
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005263/** This OpenCL kernel optimized for Bifrost architectures computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00005264 *
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005265 * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005266 * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
5267 * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
5268 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
5269 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005270 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005271 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
5272 * The activation function is performed after the bias addition
5273 * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005274 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
5275 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
5276 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
5277 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
5278 *
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005279 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
5280 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
5281 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5282 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
5283 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5284 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
5285 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
5286 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
5287 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5288 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
5289 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5290 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005291 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
5292 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
5293 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
5294 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
5295 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
5296 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005297 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
5298 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
5299 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
5300 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
5301 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
5302 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005303 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
5304 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
5305 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005306 * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005307 */
5308__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
5309 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005310#if defined(BETA)
5311 IMAGE_DECLARATION(src2),
5312#endif // defined(BETA)
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005313 IMAGE_DECLARATION(dst),
5314 uint src0_stride_z,
5315 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005316#if defined(BETA)
5317 uint src2_stride_z,
5318#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005319 uint dst_stride_z
5320#if defined(REINTERPRET_OUTPUT_AS_3D)
5321 ,
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005322 uint cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005323#endif // REINTERPRET_OUTPUT_AS_3D
5324 )
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005325{
5326 int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
5327 int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
5328 int z = get_global_id(2);
5329
5330 // Offset
5331 const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
5332 const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
5333
5334 // src_addr_a = address of matrix A
5335 // src_addr_b = address of matrix B
5336 int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
5337 int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
5338
5339#if defined(MATRIX_B_DEPTH)
5340 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
5341 src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
5342#else // defined(MATRIX_B_DEPTH)
5343 src1_addr_in_bytes += z * src1_stride_z;
5344#endif // defined(MATRIX_B_DEPTH)
5345
5346 __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
5347 __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
5348
5349 // Compute end row address for matrix B
5350 __global half *src_end_addr_b = src_addr_b + COLS_B;
5351
5352 src_addr_a += offset_row_a;
5353 src_addr_b += offset_row_b;
5354
5355 // Reset accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005356 half8 c0 = 0.0f;
5357 half8 c1 = 0.0f;
5358 half8 c2 = 0.0f;
5359 half8 c3 = 0.0f;
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005360
5361#define COLS_MTX_B (COLS_B / (8 * MULT_TRANSPOSE1XW_WIDTH))
5362
5363 int i = 0;
5364 for(; i <= (int)(COLS_MTX_B - 4); i += 4)
5365 {
5366#if MULT_INTERLEAVE4X4_HEIGHT == 1
5367 // Load values from matrix A (interleaved) and matrix B (transposed)
5368 half8 a0 = vload8(0, src_addr_a);
5369 half8 b0 = vload8(0, src_addr_b);
5370
5371 src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
5372 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5373
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005374 c0 = fma((half8)a0.s0, b0, c0);
5375 c1 = fma((half8)a0.s1, b0, c1);
5376 c2 = fma((half8)a0.s2, b0, c2);
5377 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005378
5379 // Load values from matrix B (transposed)
5380 b0 = vload8(0, src_addr_b);
5381
5382 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5383
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005384 c0 = fma((half8)a0.s4, b0, c0);
5385 c1 = fma((half8)a0.s5, b0, c1);
5386 c2 = fma((half8)a0.s6, b0, c2);
5387 c3 = fma((half8)a0.s7, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005388
5389 // Load values from matrix A (interleaved) and matrix B (transposed)
5390 a0 = vload8(0, src_addr_a);
5391 b0 = vload8(0, src_addr_b);
5392
5393 src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
5394 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5395
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005396 c0 = fma((half8)a0.s0, b0, c0);
5397 c1 = fma((half8)a0.s1, b0, c1);
5398 c2 = fma((half8)a0.s2, b0, c2);
5399 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005400
5401 // Load values from matrix B (transposed)
5402 b0 = vload8(0, src_addr_b);
5403
5404 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5405
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005406 c0 = fma((half8)a0.s4, b0, c0);
5407 c1 = fma((half8)a0.s5, b0, c1);
5408 c2 = fma((half8)a0.s6, b0, c2);
5409 c3 = fma((half8)a0.s7, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005410#else // MULT_INTERLEAVE4X4_HEIGHT == 1
5411 // Load values from matrix A (interleaved) and matrix B (transposed)
5412 half4 a0 = vload4(0, src_addr_a);
5413 half8 b0 = vload8(0, src_addr_b);
5414
5415 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
5416 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5417
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005418 c0 = fma((half8)a0.s0, b0, c0);
5419 c1 = fma((half8)a0.s1, b0, c1);
5420 c2 = fma((half8)a0.s2, b0, c2);
5421 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005422
5423 // Load values from matrix A (interleaved) and matrix B (transposed)
5424 a0 = vload4(0, src_addr_a);
5425 b0 = vload8(0, src_addr_b);
5426
5427 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
5428 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5429
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005430 c0 = fma((half8)a0.s0, b0, c0);
5431 c1 = fma((half8)a0.s1, b0, c1);
5432 c2 = fma((half8)a0.s2, b0, c2);
5433 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005434
5435 // Load values from matrix A (interleaved) and matrix B (transposed)
5436 a0 = vload4(0, src_addr_a);
5437 b0 = vload8(0, src_addr_b);
5438
5439 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
5440 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5441
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005442 c0 = fma((half8)a0.s0, b0, c0);
5443 c1 = fma((half8)a0.s1, b0, c1);
5444 c2 = fma((half8)a0.s2, b0, c2);
5445 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005446
5447 // Load values from matrix A (interleaved) and matrix B (transposed)
5448 a0 = vload4(0, src_addr_a);
5449 b0 = vload8(0, src_addr_b);
5450
5451 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
5452 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5453
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005454 c0 = fma((half8)a0.s0, b0, c0);
5455 c1 = fma((half8)a0.s1, b0, c1);
5456 c2 = fma((half8)a0.s2, b0, c2);
5457 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005458#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
5459 }
5460
5461 for(; i < (int)(COLS_MTX_B); ++i)
5462 {
5463 // Load values from matrix A (interleaved) and matrix B (transposed)
5464 half4 a0 = vload4(0, src_addr_a);
5465 half8 b0 = vload8(0, src_addr_b);
5466
5467 src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
5468 src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
5469
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005470 c0 = fma((half8)a0.s0, b0, c0);
5471 c1 = fma((half8)a0.s1, b0, c1);
5472 c2 = fma((half8)a0.s2, b0, c2);
5473 c3 = fma((half8)a0.s3, b0, c3);
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005474 }
5475
5476 // Compute destination address
5477 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
5478
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005479 // Compute dst address
5480 __global uchar *dst_addr = offset(&dst, 0, 0);
5481
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005482 uint4 zout = 0;
5483
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005484#if defined(REINTERPRET_OUTPUT_AS_3D)
5485 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005486 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005487 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005488 // | |
5489 // | plane0 |
5490 // | |
5491 // |__________________|
5492 // |******************|
5493 // | cross_plane_pad |
5494 // |******************|
5495 // | |
5496 // | plane1 |
5497 // | |
5498 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005499
5500 // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005501 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
5502 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005503
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005504 // Add offset due to the cross plane paddings
5505 zout *= (cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005506
5507 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
5508 // multiply dst_stride_z by DEPTH_GEMM3D
5509 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005510#else // defined(REINTERPRET_OUTPUT_AS_3D)
5511 // Add offset for batched GEMM
5512 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005513#endif // defined(REINTERPRET_OUTPUT_AS_3D)
5514
5515 // Multiply by the weight of matrix-matrix product and store the result
5516#if defined(ALPHA)
5517 SCALE_BLOCK(4, half, c, ALPHA);
5518#endif // defined(ALPHA)
5519
5520 // Add beta*bias
5521#if defined(BETA)
5522 REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
5523
5524#if defined(BROADCAST_BIAS)
5525 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
5526
5527 LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
5528
5529#ifndef UNIT_BETA
5530 SCALE_BLOCK(1, half, bias, BETA);
5531#endif // UNIT_BIAS
5532
5533 // c = c + bias[broadcasted]
5534 ADD_BLOCK_BROADCAST(4, c, bias0);
5535
5536#else // defined(BROADCAST_BIAS)
5537 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
5538 2) * src2_stride_z;
5539
5540 LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
5541
5542#ifndef UNIT_BETA
5543 SCALE_BLOCK(4, half, bias, BETA);
5544#endif // UNIT_BIAS
5545
5546 // c = c + bias
5547 ADD_BLOCK(4, c, bias);
5548
5549#endif // defined(BROADCAST_BIAS)
5550#endif // defined(BETA)
5551
5552#if defined(ACTIVATION_TYPE)
5553 ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c, A_VAL, B_VAL);
5554#endif // defined(ACTIVATION_TYPE)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005555
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005556 // Store 4x8 block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005557 vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
5558 vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
5559 vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
5560 vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
Gian Marco Iodicebb36a8e2018-04-19 12:05:08 +01005561}
Georgios Pinitas84225582018-05-14 12:00:05 +01005562
5563// Undefine local defines
5564#undef COLS_MTX_B
5565
Matthew Bentham6f31f8c2017-10-27 11:50:06 +01005566#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005567
Gian Marco36a0a462018-01-12 10:21:40 +00005568#endif // defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01005569
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005570#if defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
5571#if defined(DATA_TYPE)
5572#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00005573/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped.
5574 *
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005575 * @note This OpenCL kernel works with floating point data types (F16/F32)
5576 * @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
5577 * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005578 * @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DCOLS_A and -DALPHA
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005579 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
5580 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005581 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005582 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
5583 * The activation function is performed after the bias addition
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005584 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
5585 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005586 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
5587 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
5588 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
5589 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
5590 *
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005591 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005592 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
5593 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5594 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
5595 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5596 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01005597 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005598 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
5599 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5600 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
5601 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5602 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005603 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
5604 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
5605 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
5606 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
5607 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
5608 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01005609 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005610 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
5611 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
5612 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
5613 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
5614 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005615 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
5616 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005617 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005618 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005619 * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
5620 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005621 */
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005622__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
5623 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005624#if defined(BETA)
5625 IMAGE_DECLARATION(src2),
5626#endif // defined(BETA)
Gian Marcoae2af742018-02-15 12:35:44 +00005627 IMAGE_DECLARATION(dst),
5628 uint src0_stride_z,
5629 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005630#if defined(BETA)
5631 uint src2_stride_z,
5632#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005633 uint dst_stride_z
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005634#if defined(REINTERPRET_INPUT_AS_3D)
5635 ,
5636 uint src_cross_plane_pad
5637#endif // REINTERPRET_INPUT_AS_3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005638#if defined(REINTERPRET_OUTPUT_AS_3D)
5639 ,
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005640 uint dst_cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005641#endif // REINTERPRET_OUTPUT_AS_3D
5642 )
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005643{
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005644 int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005645
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005646 // Compute starting address for matrix A and Matrix B
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005647 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005648
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005649 // Update address for the matrix A
5650 src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005651
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005652 // Update address for the matrix B
5653 src_addr.s1 += idx * sizeof(DATA_TYPE);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005654
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005655#if defined(REINTERPRET_INPUT_AS_3D)
5656 // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
5657 // in order to take into account the presence of possible cross plane paddings
5658 //
5659 // | |
5660 // | plane0 |
5661 // | |
5662 // |__________________|
5663 // |******************|
5664 // | cross_plane_pad |
5665 // |******************|
5666 // | |
5667 // | plane1 |
5668 // | |
5669 // |__________________|
5670
5671 // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
5672 uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
5673 zin = min(DEPTH_GEMM3D - 1, zin);
5674
5675 // Add offset due to the cross plane paddings
5676 zin *= (src_cross_plane_pad * src0_stride_y);
5677
5678 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
5679 // multiply src0_stride_z by DEPTH_GEMM3D
5680 src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
5681
5682#else // defined(REINTERPRET_INPUT_AS_3D)
5683
Gian Marcoae2af742018-02-15 12:35:44 +00005684 // Add offset for batched GEMM
5685 src_addr.s0 += get_global_id(2) * src0_stride_z;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00005686
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005687#endif // defined(REINTERPRET_INPUT_AS_3D)
5688
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00005689#if defined(MATRIX_B_DEPTH)
5690 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
5691 src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
5692#else // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00005693 src_addr.s1 += get_global_id(2) * src1_stride_z;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00005694#endif // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00005695
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005696 int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(DATA_TYPE));
5697
5698 VECTOR_TYPE acc0 = 0.0f;
5699#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5700 VECTOR_TYPE acc1 = 0.0f;
5701#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5702#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5703 VECTOR_TYPE acc2 = 0.0f;
5704#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5705#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5706 VECTOR_TYPE acc3 = 0.0f;
5707#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5708
Georgios Pinitas96880cf2017-10-20 18:52:20 +01005709 for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005710 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005711#if defined(REINTERPRET_INPUT_AS_3D)
5712 // Load values from matrix A
Usama Arif0681e3b2019-04-25 14:28:07 +01005713 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, DATA_TYPE, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
5714#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005715 // Load values from matrix A
5716 VEC_DATA_TYPE(DATA_TYPE, 2)
5717 a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
5718#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5719 VEC_DATA_TYPE(DATA_TYPE, 2)
5720 a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
5721#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5722#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5723 VEC_DATA_TYPE(DATA_TYPE, 2)
5724 a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
5725#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5726#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5727 VEC_DATA_TYPE(DATA_TYPE, 2)
5728 a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
5729#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005730#endif // defined(REINTERPRET_INPUT_AS_3D)
5731
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005732 // Load values from matrix B
5733 VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
5734 VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005735
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005736 // Accumulate
5737 acc0 += b0 * (VECTOR_TYPE)a0.s0;
5738 acc0 += b1 * (VECTOR_TYPE)a0.s1;
5739#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5740 acc1 += b0 * (VECTOR_TYPE)a1.s0;
5741 acc1 += b1 * (VECTOR_TYPE)a1.s1;
5742#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5743#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5744 acc2 += b0 * (VECTOR_TYPE)a2.s0;
5745 acc2 += b1 * (VECTOR_TYPE)a2.s1;
5746#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5747#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5748 acc3 += b0 * (VECTOR_TYPE)a3.s0;
5749 acc3 += b1 * (VECTOR_TYPE)a3.s1;
5750#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005751 }
5752
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005753 for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005754 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005755#if defined(REINTERPRET_INPUT_AS_3D)
5756 // Load values from matrix A
5757 DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
5758#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5759 DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
5760#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5761#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5762 DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
5763#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5764#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5765 DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
5766#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5767#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005768 // Load values from matrix A
5769 DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
5770#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5771 DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
5772#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5773#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5774 DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
5775#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5776#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5777 DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
5778#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005779#endif // defined(REINTERPRET_INPUT_AS_3D)
5780
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005781 // Load values from matrix B
5782 VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005783
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005784 // Accumulate
5785 acc0 += b0 * (VECTOR_TYPE)a0;
5786#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5787 acc1 += b0 * (VECTOR_TYPE)a1;
5788#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
5789#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5790 acc2 += b0 * (VECTOR_TYPE)a2;
5791#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
5792#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
5793 acc3 += b0 * (VECTOR_TYPE)a3;
5794#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005795 }
5796
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005797 int z = get_global_id(2);
5798
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005799 // Compute destination address
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005800 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
5801
Gian Marcoae2af742018-02-15 12:35:44 +00005802 // Compute dst address
5803 __global uchar *dst_addr = offset(&dst, 0, 0);
5804
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005805 uint4 zout = 0;
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005806
5807#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005808
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005809 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005810 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005811 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005812 // | |
5813 // | plane0 |
5814 // | |
5815 // |__________________|
5816 // |******************|
5817 // | cross_plane_pad |
5818 // |******************|
5819 // | |
5820 // | plane1 |
5821 // | |
5822 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005823
5824 // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005825 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
5826 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005827
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01005828 // Add offset due to the cross plane paddings
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005829 zout *= (dst_cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005830
5831 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
5832 // multiply dst_stride_z by DEPTH_GEMM3D
5833 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005834#else // defined(REINTERPRET_OUTPUT_AS_3D)
5835 // Add offset for batched GEMM
5836 dst_addr += z * dst_stride_z;
5837#endif // defined(REINTERPRET_OUTPUT_AS_3D)
5838
5839 // Multiply by the weight of matrix-matrix product and store the result
5840#if defined(ALPHA)
5841 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, acc, ALPHA);
5842#endif // defined(ALPHA)
5843
5844 // Add beta*bias
5845#if defined(BETA)
5846 REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
5847
5848#if defined(BROADCAST_BIAS)
5849 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE));
5850
5851 LOAD_BLOCK(1, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
5852
5853#ifndef UNIT_BETA
5854 SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
5855#endif // UNIT_BIAS
5856
5857 // c = c + bias[broadcasted]
5858 ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
5859
5860#else // defined(BROADCAST_BIAS)
5861 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE)) + (get_global_id(1) *
5862 (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
5863
5864 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
5865
5866#ifndef UNIT_BETA
5867 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, bias, BETA);
5868#endif // UNIT_BIAS
5869
5870 // c = c + bias
5871 ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
5872
5873#endif // defined(BROADCAST_BIAS)
5874#endif // defined(BETA)
5875
5876#if defined(ACTIVATION_TYPE)
5877 ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, DATA_TYPE, acc, A_VAL, B_VAL);
5878#endif // defined(ACTIVATION_TYPE)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005879
5880 // Store output block
Usama Arif0681e3b2019-04-25 14:28:07 +01005881 STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, acc, dst_addr, dst_stride_y, zout.s);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01005882}
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01005883#endif // defined(DATA_TYPE)
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01005884
Michele Di Giorgiof6f08da2018-04-26 10:24:30 +01005885/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005886 *
5887 * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
5888 * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
5889 * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
5890 * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
5891 * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005892 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
5893 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005894 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005895 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
5896 * The activation function is performed after the bias addition
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005897 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
5898 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005899 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
5900 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
5901 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
5902 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
5903 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005904 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005905 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
5906 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5907 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
5908 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5909 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
5910 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
5911 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
5912 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
5913 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
5914 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
5915 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005916 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
5917 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
5918 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
5919 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
5920 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
5921 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005922 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
5923 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
5924 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
5925 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
5926 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
5927 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005928 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
5929 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005930 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005931 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005932 * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
5933 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005934 */
5935__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
5936 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005937#if defined(BETA)
5938 IMAGE_DECLARATION(src2),
5939#endif // defined(BETA)
Gian Marcoae2af742018-02-15 12:35:44 +00005940 IMAGE_DECLARATION(dst),
5941 uint src0_stride_z,
5942 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01005943#if defined(BETA)
5944 uint src2_stride_z,
5945#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005946 uint dst_stride_z
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005947#if defined(REINTERPRET_INPUT_AS_3D)
5948 ,
5949 uint src_cross_plane_pad
5950#endif // REINTERPRET_INPUT_AS_3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005951#if defined(REINTERPRET_OUTPUT_AS_3D)
5952 ,
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005953 uint dst_cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00005954#endif // REINTERPRET_OUTPUT_AS_3D
5955 )
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00005956{
5957 int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
5958
5959 // Compute starting address for matrix A and matrix B
5960 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
5961
5962 // Update address for matrix A
5963 src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
5964
5965 // Update address for matrix B
5966 src_addr.s1 += idx * sizeof(float);
5967
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01005968#if defined(REINTERPRET_INPUT_AS_3D)
5969 // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
5970 // in order to take into account the presence of possible cross plane paddings
5971 //
5972 // | |
5973 // | plane0 |
5974 // | |
5975 // |__________________|
5976 // |******************|
5977 // | cross_plane_pad |
5978 // |******************|
5979 // | |
5980 // | plane1 |
5981 // | |
5982 // |__________________|
5983
5984 // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
5985 uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
5986 zin = min(DEPTH_GEMM3D - 1, zin);
5987
5988 // Add offset due to the cross plane paddings
5989 zin *= (src_cross_plane_pad * src0_stride_y);
5990
5991 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
5992 // multiply src0_stride_z by DEPTH_GEMM3D
5993 src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
5994
5995#else // defined(REINTERPRET_INPUT_AS_3D)
5996
Gian Marcoae2af742018-02-15 12:35:44 +00005997 // Add offset for batched GEMM
5998 src_addr.s0 += get_global_id(2) * src0_stride_z;
5999
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006000#endif // defined(REINTERPRET_INPUT_AS_3D)
6001
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00006002#if defined(MATRIX_B_DEPTH)
6003 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
6004 src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
6005#else // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00006006 src_addr.s1 += get_global_id(2) * src1_stride_z;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00006007#endif // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00006008
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006009 // Initialize accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006010 float4 acc0 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006011
6012#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006013 float4 acc1 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006014#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6015
6016#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006017 float4 acc2 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006018#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6019
6020#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006021 float4 acc3 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006022#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6023
6024 // A and B src indices get incremented at the same time.
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006025 int i = 0;
6026 for(; i <= ((int)COLS_A - 4); i += 4)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006027 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006028#if defined(REINTERPRET_INPUT_AS_3D)
6029 // Load values from matrix A and matrix B
Usama Arif0681e3b2019-04-25 14:28:07 +01006030 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
6031#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006032 // Load values from matrix A and matrix B
6033 float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006034#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006035 float4 a1 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006036#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6037#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006038 float4 a2 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006039#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6040#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006041 float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006042#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006043#endif // defined(REINTERPRET_INPUT_AS_3D)
6044
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006045 float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
6046 src_addr.s1 += src1_stride_y;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006047
6048 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006049 acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
6050 acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
6051 acc0.s2 = fma(a0.s0, b0.s2, acc0.s2);
6052 acc0.s3 = fma(a0.s0, b0.s3, acc0.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006053
6054#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006055
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006056 acc1.s0 = fma(a1.s0, b0.s0, acc1.s0);
6057 acc1.s1 = fma(a1.s0, b0.s1, acc1.s1);
6058 acc1.s2 = fma(a1.s0, b0.s2, acc1.s2);
6059 acc1.s3 = fma(a1.s0, b0.s3, acc1.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006060
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006061#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6062#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006063
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006064 acc2.s0 = fma(a2.s0, b0.s0, acc2.s0);
6065 acc2.s1 = fma(a2.s0, b0.s1, acc2.s1);
6066 acc2.s2 = fma(a2.s0, b0.s2, acc2.s2);
6067 acc2.s3 = fma(a2.s0, b0.s3, acc2.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006068
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006069#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6070#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006071
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006072 acc3.s0 = fma(a3.s0, b0.s0, acc3.s0);
6073 acc3.s1 = fma(a3.s0, b0.s1, acc3.s1);
6074 acc3.s2 = fma(a3.s0, b0.s2, acc3.s2);
6075 acc3.s3 = fma(a3.s0, b0.s3, acc3.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006076#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006077
6078 // Load values from matrix A and matrix B
6079 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
6080 src_addr.s1 += src1_stride_y;
6081
6082 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006083 acc0.s0 = fma(a0.s1, b0.s0, acc0.s0);
6084 acc0.s1 = fma(a0.s1, b0.s1, acc0.s1);
6085 acc0.s2 = fma(a0.s1, b0.s2, acc0.s2);
6086 acc0.s3 = fma(a0.s1, b0.s3, acc0.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006087
6088#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6089
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006090 acc1.s0 = fma(a1.s1, b0.s0, acc1.s0);
6091 acc1.s1 = fma(a1.s1, b0.s1, acc1.s1);
6092 acc1.s2 = fma(a1.s1, b0.s2, acc1.s2);
6093 acc1.s3 = fma(a1.s1, b0.s3, acc1.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006094
6095#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6096#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6097
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006098 acc2.s0 = fma(a2.s1, b0.s0, acc2.s0);
6099 acc2.s1 = fma(a2.s1, b0.s1, acc2.s1);
6100 acc2.s2 = fma(a2.s1, b0.s2, acc2.s2);
6101 acc2.s3 = fma(a2.s1, b0.s3, acc2.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006102
6103#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6104#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6105
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006106 acc3.s0 = fma(a3.s1, b0.s0, acc3.s0);
6107 acc3.s1 = fma(a3.s1, b0.s1, acc3.s1);
6108 acc3.s2 = fma(a3.s1, b0.s2, acc3.s2);
6109 acc3.s3 = fma(a3.s1, b0.s3, acc3.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006110#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6111
6112 // Load values from matrix A and matrix B
6113 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
6114 src_addr.s1 += src1_stride_y;
6115
6116 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006117 acc0.s0 = fma(a0.s2, b0.s0, acc0.s0);
6118 acc0.s1 = fma(a0.s2, b0.s1, acc0.s1);
6119 acc0.s2 = fma(a0.s2, b0.s2, acc0.s2);
6120 acc0.s3 = fma(a0.s2, b0.s3, acc0.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006121
6122#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6123
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006124 acc1.s0 = fma(a1.s2, b0.s0, acc1.s0);
6125 acc1.s1 = fma(a1.s2, b0.s1, acc1.s1);
6126 acc1.s2 = fma(a1.s2, b0.s2, acc1.s2);
6127 acc1.s3 = fma(a1.s2, b0.s3, acc1.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006128
6129#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6130#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6131
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006132 acc2.s0 = fma(a2.s2, b0.s0, acc2.s0);
6133 acc2.s1 = fma(a2.s2, b0.s1, acc2.s1);
6134 acc2.s2 = fma(a2.s2, b0.s2, acc2.s2);
6135 acc2.s3 = fma(a2.s2, b0.s3, acc2.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006136
6137#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6138#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6139
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006140 acc3.s0 = fma(a3.s2, b0.s0, acc3.s0);
6141 acc3.s1 = fma(a3.s2, b0.s1, acc3.s1);
6142 acc3.s2 = fma(a3.s2, b0.s2, acc3.s2);
6143 acc3.s3 = fma(a3.s2, b0.s3, acc3.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006144#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6145
6146 // Load values from matrix A and matrix B
6147 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
6148 src_addr.s1 += src1_stride_y;
6149
6150 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006151 acc0.s0 = fma(a0.s3, b0.s0, acc0.s0);
6152 acc0.s1 = fma(a0.s3, b0.s1, acc0.s1);
6153 acc0.s2 = fma(a0.s3, b0.s2, acc0.s2);
6154 acc0.s3 = fma(a0.s3, b0.s3, acc0.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006155
6156#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6157
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006158 acc1.s0 = fma(a1.s3, b0.s0, acc1.s0);
6159 acc1.s1 = fma(a1.s3, b0.s1, acc1.s1);
6160 acc1.s2 = fma(a1.s3, b0.s2, acc1.s2);
6161 acc1.s3 = fma(a1.s3, b0.s3, acc1.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006162
6163#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6164#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6165
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006166 acc2.s0 = fma(a2.s3, b0.s0, acc2.s0);
6167 acc2.s1 = fma(a2.s3, b0.s1, acc2.s1);
6168 acc2.s2 = fma(a2.s3, b0.s2, acc2.s2);
6169 acc2.s3 = fma(a2.s3, b0.s3, acc2.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006170
6171#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6172#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6173
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006174 acc3.s0 = fma(a3.s3, b0.s0, acc3.s0);
6175 acc3.s1 = fma(a3.s3, b0.s1, acc3.s1);
6176 acc3.s2 = fma(a3.s3, b0.s2, acc3.s2);
6177 acc3.s3 = fma(a3.s3, b0.s3, acc3.s3);
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006178#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6179
6180 src_addr.s0 += 4 * sizeof(float);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006181 }
6182
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006183 for(; i < (int)COLS_A; ++i)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006184 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006185#if defined(REINTERPRET_INPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006186 // Load values from matrix A
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006187 float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
6188#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6189 float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
6190#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6191#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6192 float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
6193#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6194#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6195 float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
6196#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6197#else // defined(REINTERPRET_INPUT_AS_3D)
6198 // Load values from matrix A
6199 float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006200#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6201 float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
6202#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6203#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6204 float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
6205#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6206#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6207 float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
6208#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006209#endif // defined(REINTERPRET_INPUT_AS_3D)
6210
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006211 // Load values from matrix B
6212 float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006213 src_addr.s1 += src1_stride_y;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006214
6215 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006216 acc0.s0 = fma(a0, b0.s0, acc0.s0);
6217 acc0.s1 = fma(a0, b0.s1, acc0.s1);
6218 acc0.s2 = fma(a0, b0.s2, acc0.s2);
6219 acc0.s3 = fma(a0, b0.s3, acc0.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006220#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006221 acc1.s0 = fma(a1, b0.s0, acc1.s0);
6222 acc1.s1 = fma(a1, b0.s1, acc1.s1);
6223 acc1.s2 = fma(a1, b0.s2, acc1.s2);
6224 acc1.s3 = fma(a1, b0.s3, acc1.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006225#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6226#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006227 acc2.s0 = fma(a2, b0.s0, acc2.s0);
6228 acc2.s1 = fma(a2, b0.s1, acc2.s1);
6229 acc2.s2 = fma(a2, b0.s2, acc2.s2);
6230 acc2.s3 = fma(a2, b0.s3, acc2.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006231#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6232#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006233 acc3.s0 = fma(a3, b0.s0, acc3.s0);
6234 acc3.s1 = fma(a3, b0.s1, acc3.s1);
6235 acc3.s2 = fma(a3, b0.s2, acc3.s2);
6236 acc3.s3 = fma(a3, b0.s3, acc3.s3);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006237#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006238
6239 src_addr.s0 += sizeof(float);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006240 }
6241
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006242 int z = get_global_id(2);
6243
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006244 // Compute destination address
6245 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
6246
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006247 // Compute dst address
6248 __global uchar *dst_addr = offset(&dst, 0, 0);
6249
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006250 uint4 zout = 0;
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00006251
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006252#if defined(REINTERPRET_OUTPUT_AS_3D)
6253 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006254 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006255 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006256 // | |
6257 // | plane0 |
6258 // | |
6259 // |__________________|
6260 // |******************|
6261 // | cross_plane_pad |
6262 // |******************|
6263 // | |
6264 // | plane1 |
6265 // | |
6266 // |__________________|
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006267
6268 // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006269 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
6270 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006271
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006272 // Add offset due to the cross plane paddings
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006273 zout *= (dst_cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006274
6275 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
6276 // multiply dst_stride_z by DEPTH_GEMM3D
6277 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006278#else // defined(REINTERPRET_OUTPUT_AS_3D)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006279 // Add offset for batched GEMM
6280 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006281#endif // defined(REINTERPRET_OUTPUT_AS_3D)
6282
6283 // Multiply by the weight of matrix-matrix product and store the result
6284#if defined(ALPHA)
6285 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
6286#endif // defined(ALPHA)
6287
6288 // Add beta*bias
6289#if defined(BETA)
6290 REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
6291
6292#if defined(BROADCAST_BIAS)
6293 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
6294
6295 LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
6296
6297#ifndef UNIT_BETA
6298 SCALE_BLOCK(1, float, bias, BETA);
6299#endif // UNIT_BIAS
6300
6301 // acc = acc + bias[broadcasted]
6302 ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
6303
6304#else // defined(BROADCAST_BIAS)
6305 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) *
6306 (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
6307
6308 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
6309
6310#ifndef UNIT_BETA
6311 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
6312#endif // UNIT_BIAS
6313
6314 // acc = acc + bias
6315 ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
6316
6317#endif // defined(BROADCAST_BIAS)
6318#endif // defined(BETA)
6319
6320#if defined(ACTIVATION_TYPE)
6321 ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, acc, A_VAL, B_VAL);
6322#endif // defined(ACTIVATION_TYPE)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006323
6324 // Store the output block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006325 vstore4(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006326#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006327 vstore4(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006328#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6329#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006330 vstore4(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006331#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6332#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006333 vstore4(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006334#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006335}
6336
6337/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
6338 *
6339 * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
6340 * This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
6341 * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
6342 * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=2.
6343 * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
6344 * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006345 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
6346 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006347 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006348 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
6349 * The activation function is performed after the bias addition
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006350 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
6351 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006352 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
6353 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
6354 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
6355 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
6356 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006357 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006358 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
6359 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
6360 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
6361 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
6362 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
6363 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
6364 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
6365 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
6366 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
6367 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
6368 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006369 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
6370 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
6371 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
6372 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
6373 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
6374 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006375 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
6376 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
6377 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
6378 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
6379 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
6380 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006381 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
6382 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006383 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006384 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006385 * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
6386 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006387 */
6388__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
6389 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006390#if defined(BETA)
6391 IMAGE_DECLARATION(src2),
6392#endif // defined(BETA)
Gian Marcoae2af742018-02-15 12:35:44 +00006393 IMAGE_DECLARATION(dst),
6394 uint src0_stride_z,
6395 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006396#if defined(BETA)
6397 uint src2_stride_z,
6398#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006399 uint dst_stride_z
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006400#if defined(REINTERPRET_INPUT_AS_3D)
6401 ,
6402 uint src_cross_plane_pad
6403#endif // REINTERPRET_INPUT_AS_3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006404#if defined(REINTERPRET_OUTPUT_AS_3D)
6405 ,
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006406 uint dst_cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006407#endif // REINTERPRET_OUTPUT_AS_3D
6408 )
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006409{
6410 // Requires 2 NUM_ELEMS_PROCESSED_PER_THREAD_X, C vect2, A vect4, B (2 vload2) // to fix for NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6411 int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
6412
6413 // Compute starting address for matrix A and Matrix B
6414 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
6415
6416 // Update address for the matrix A
6417 src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
6418
6419 // Update address for the matrix B
6420 src_addr.s1 += idx * sizeof(float);
6421
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006422#if defined(REINTERPRET_INPUT_AS_3D)
6423 // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
6424 // in order to take into account the presence of possible cross plane paddings
6425 //
6426 // | |
6427 // | plane0 |
6428 // | |
6429 // |__________________|
6430 // |******************|
6431 // | cross_plane_pad |
6432 // |******************|
6433 // | |
6434 // | plane1 |
6435 // | |
6436 // |__________________|
6437
6438 // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
6439 uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
6440 zin = min(DEPTH_GEMM3D - 1, zin);
6441
6442 // Add offset due to the cross plane paddings
6443 zin *= (src_cross_plane_pad * src0_stride_y);
6444
6445 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
6446 // multiply src0_stride_z by DEPTH_GEMM3D
6447 src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
6448
6449#else // defined(REINTERPRET_INPUT_AS_3D)
6450
Gian Marcoae2af742018-02-15 12:35:44 +00006451 // Add offset for batched GEMM
6452 src_addr.s0 += get_global_id(2) * src0_stride_z;
6453
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006454#endif // defined(REINTERPRET_INPUT_AS_3D)
6455
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00006456#if defined(MATRIX_B_DEPTH)
6457 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
6458 src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
6459#else // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00006460 src_addr.s1 += get_global_id(2) * src1_stride_z;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +00006461#endif // defined(MATRIX_B_DEPTH)
Gian Marcoae2af742018-02-15 12:35:44 +00006462
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006463 // Initialize accumulators
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006464 float2 acc0 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006465#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006466 float2 acc1 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006467#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6468#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006469 float2 acc2 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006470#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6471#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006472 float2 acc3 = 0.0f;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006473#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6474
6475 // A and B src indices get incremented at the same time.
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006476 int i = 0;
6477 for(; i <= ((int)COLS_A - 8); i += 8)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006478 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006479#if defined(REINTERPRET_INPUT_AS_3D)
6480 // Load values from matrix A
6481 float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + zin.s0));
6482#else // defined(REINTERPRET_INPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006483 // Load values from matrix A
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006484 float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0));
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006485#endif // defined(REINTERPRET_INPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006486
6487 // Load values from matrix B
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006488 float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6489 src_addr.s1 += src1_stride_y;
6490 float2 b1 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6491 src_addr.s1 += src1_stride_y;
6492 float2 b2 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6493 src_addr.s1 += src1_stride_y;
6494 float2 b3 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6495 src_addr.s1 += src1_stride_y;
6496 float2 b4 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6497 src_addr.s1 += src1_stride_y;
6498 float2 b5 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6499 src_addr.s1 += src1_stride_y;
6500 float2 b6 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6501 src_addr.s1 += src1_stride_y;
6502 float2 b7 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
6503 src_addr.s1 += src1_stride_y;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006504
6505 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006506 acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
6507 acc0.s0 = fma(a0.s1, b1.s0, acc0.s0);
6508 acc0.s0 = fma(a0.s2, b2.s0, acc0.s0);
6509 acc0.s0 = fma(a0.s3, b3.s0, acc0.s0);
6510 acc0.s0 = fma(a0.s4, b4.s0, acc0.s0);
6511 acc0.s0 = fma(a0.s5, b5.s0, acc0.s0);
6512 acc0.s0 = fma(a0.s6, b6.s0, acc0.s0);
6513 acc0.s0 = fma(a0.s7, b7.s0, acc0.s0);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006514
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006515 acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
6516 acc0.s1 = fma(a0.s1, b1.s1, acc0.s1);
6517 acc0.s1 = fma(a0.s2, b2.s1, acc0.s1);
6518 acc0.s1 = fma(a0.s3, b3.s1, acc0.s1);
6519 acc0.s1 = fma(a0.s4, b4.s1, acc0.s1);
6520 acc0.s1 = fma(a0.s5, b5.s1, acc0.s1);
6521 acc0.s1 = fma(a0.s6, b6.s1, acc0.s1);
6522 acc0.s1 = fma(a0.s7, b7.s1, acc0.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006523
6524#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006525#if defined(REINTERPRET_INPUT_AS_3D)
6526 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
6527#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006528 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006529#endif // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006530 acc1.s0 = fma(a0.s0, b0.s0, acc1.s0);
6531 acc1.s0 = fma(a0.s1, b1.s0, acc1.s0);
6532 acc1.s0 = fma(a0.s2, b2.s0, acc1.s0);
6533 acc1.s0 = fma(a0.s3, b3.s0, acc1.s0);
6534 acc1.s0 = fma(a0.s4, b4.s0, acc1.s0);
6535 acc1.s0 = fma(a0.s5, b5.s0, acc1.s0);
6536 acc1.s0 = fma(a0.s6, b6.s0, acc1.s0);
6537 acc1.s0 = fma(a0.s7, b7.s0, acc1.s0);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006538
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006539 acc1.s1 = fma(a0.s0, b0.s1, acc1.s1);
6540 acc1.s1 = fma(a0.s1, b1.s1, acc1.s1);
6541 acc1.s1 = fma(a0.s2, b2.s1, acc1.s1);
6542 acc1.s1 = fma(a0.s3, b3.s1, acc1.s1);
6543 acc1.s1 = fma(a0.s4, b4.s1, acc1.s1);
6544 acc1.s1 = fma(a0.s5, b5.s1, acc1.s1);
6545 acc1.s1 = fma(a0.s6, b6.s1, acc1.s1);
6546 acc1.s1 = fma(a0.s7, b7.s1, acc1.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006547#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6548#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006549#if defined(REINTERPRET_INPUT_AS_3D)
6550 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
6551#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006552 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006553#endif // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006554 acc2.s0 = fma(a0.s0, b0.s0, acc2.s0);
6555 acc2.s0 = fma(a0.s1, b1.s0, acc2.s0);
6556 acc2.s0 = fma(a0.s2, b2.s0, acc2.s0);
6557 acc2.s0 = fma(a0.s3, b3.s0, acc2.s0);
6558 acc2.s0 = fma(a0.s4, b4.s0, acc2.s0);
6559 acc2.s0 = fma(a0.s5, b5.s0, acc2.s0);
6560 acc2.s0 = fma(a0.s6, b6.s0, acc2.s0);
6561 acc2.s0 = fma(a0.s7, b7.s0, acc2.s0);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006562
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006563 acc2.s1 = fma(a0.s0, b0.s1, acc2.s1);
6564 acc2.s1 = fma(a0.s1, b1.s1, acc2.s1);
6565 acc2.s1 = fma(a0.s2, b2.s1, acc2.s1);
6566 acc2.s1 = fma(a0.s3, b3.s1, acc2.s1);
6567 acc2.s1 = fma(a0.s4, b4.s1, acc2.s1);
6568 acc2.s1 = fma(a0.s5, b5.s1, acc2.s1);
6569 acc2.s1 = fma(a0.s6, b6.s1, acc2.s1);
6570 acc2.s1 = fma(a0.s7, b7.s1, acc2.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006571#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6572#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006573#if defined(REINTERPRET_INPUT_AS_3D)
6574 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
6575#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006576 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006577#endif // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006578 acc3.s0 = fma(a0.s0, b0.s0, acc3.s0);
6579 acc3.s0 = fma(a0.s1, b1.s0, acc3.s0);
6580 acc3.s0 = fma(a0.s2, b2.s0, acc3.s0);
6581 acc3.s0 = fma(a0.s3, b3.s0, acc3.s0);
6582 acc3.s0 = fma(a0.s4, b4.s0, acc3.s0);
6583 acc3.s0 = fma(a0.s5, b5.s0, acc3.s0);
6584 acc3.s0 = fma(a0.s6, b6.s0, acc3.s0);
6585 acc3.s0 = fma(a0.s7, b7.s0, acc3.s0);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006586
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006587 acc3.s1 = fma(a0.s0, b0.s1, acc3.s1);
6588 acc3.s1 = fma(a0.s1, b1.s1, acc3.s1);
6589 acc3.s1 = fma(a0.s2, b2.s1, acc3.s1);
6590 acc3.s1 = fma(a0.s3, b3.s1, acc3.s1);
6591 acc3.s1 = fma(a0.s4, b4.s1, acc3.s1);
6592 acc3.s1 = fma(a0.s5, b5.s1, acc3.s1);
6593 acc3.s1 = fma(a0.s6, b6.s1, acc3.s1);
6594 acc3.s1 = fma(a0.s7, b7.s1, acc3.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006595#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006596
6597 src_addr.s0 += sizeof(float) * 8;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006598 }
6599 // float size increment
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006600 for(; i < (int)COLS_A; ++i)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006601 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006602#if defined(REINTERPRET_INPUT_AS_3D)
6603 // Load values from matrix A
6604 float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
6605#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6606 float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
6607#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6608#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6609 float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
6610#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6611#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6612 float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
6613#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6614#else // defined(REINTERPRET_INPUT_AS_3D)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006615 // Load values from matrix A
6616 float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
6617#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6618 float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
6619#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6620#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6621 float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
6622#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6623#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6624 float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
6625#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006626#endif // defined(REINTERPRET_INPUT_AS_3D)
6627
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006628 // Load values from matrix B
6629 float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006630 src_addr.s1 += src1_stride_y;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006631
6632 // Multiply and accumulate
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006633 acc0.s0 = fma(a0, b0.s0, acc0.s0);
6634 acc0.s1 = fma(a0, b0.s1, acc0.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006635#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006636 acc1.s0 = fma(a1, b0.s0, acc1.s0);
6637 acc1.s1 = fma(a1, b0.s1, acc1.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006638#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6639#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006640 acc2.s0 = fma(a2, b0.s0, acc2.s0);
6641 acc2.s1 = fma(a2, b0.s1, acc2.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006642#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6643#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006644 acc3.s0 = fma(a3, b0.s0, acc3.s0);
6645 acc3.s1 = fma(a3, b0.s1, acc3.s1);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006646#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodicec9c62c22018-04-06 10:00:10 +01006647
6648 src_addr.s0 += sizeof(float);
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006649 }
6650
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006651 int z = get_global_id(2);
6652
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006653 // Compute destination address
6654 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
6655
Gian Marcoae2af742018-02-15 12:35:44 +00006656 // Compute dst address
6657 __global uchar *dst_addr = offset(&dst, 0, 0);
6658
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006659 uint4 zout = 0;
Michele Di Giorgioebc3a902018-11-16 16:04:25 +00006660
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006661#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006662
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006663 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006664 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006665 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006666 // | |
6667 // | plane0 |
6668 // | |
6669 // |__________________|
6670 // |******************|
6671 // | cross_plane_pad |
6672 // |******************|
6673 // | |
6674 // | plane1 |
6675 // | |
6676 // |__________________|
Gian Marcoae2af742018-02-15 12:35:44 +00006677
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006678 // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006679 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
6680 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006681
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01006682 // Add offset due to the cross plane paddings
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01006683 zout *= (dst_cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006684
6685 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
6686 // multiply dst_stride_z by DEPTH_GEMM3D
6687 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006688#else // defined(REINTERPRET_OUTPUT_AS_3D)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006689 // Add offset for batched GEMM
6690 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006691#endif // defined(REINTERPRET_OUTPUT_AS_3D)
6692
6693 // Multiply by the weight of matrix-matrix product and store the result
6694#if defined(ALPHA)
6695 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
6696#endif // defined(ALPHA)
6697
6698 // Add beta*bias
6699#if defined(BETA)
6700 REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
6701
6702#if defined(BROADCAST_BIAS)
6703 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float));
6704
6705 LOAD_BLOCK(1, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
6706
6707#ifndef UNIT_BETA
6708 SCALE_BLOCK(1, float, bias, BETA);
6709#endif // UNIT_BIAS
6710
6711 // acc = acc + bias[broadcasted]
6712 ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
6713
6714#else // defined(BROADCAST_BIAS)
6715 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float)) + (get_global_id(1) *
6716 (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
6717
6718 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
6719
6720#ifndef UNIT_BETA
6721 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
6722#endif // UNIT_BIAS
6723
6724 // acc = acc + bias
6725 ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
6726
6727#endif // defined(BROADCAST_BIAS)
6728#endif // defined(BETA)
6729
6730#if defined(ACTIVATION_TYPE)
6731 ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, acc, A_VAL, B_VAL);
6732#endif // defined(ACTIVATION_TYPE)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006733
6734 // Store the output block
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006735 vstore2(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006736#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006737 vstore2(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006738#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6739#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006740 vstore2(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006741#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6742#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006743 vstore2(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
Isabella Gottardi8e74f442018-03-01 16:42:00 +00006744#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00006745}
6746
Vidhya Sudhan Loganathanbdff4912018-05-22 15:03:09 +01006747#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01006748/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
6749 *
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006750 * @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
6751 * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
6752 * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
6753 * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
6754 * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006755 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
6756 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006757 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006758 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
6759 * The activation function is performed after the bias addition
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006760 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
6761 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
6762 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
6763 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
6764 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
6765 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
6766 *
6767 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
6768 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
6769 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
6770 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
6771 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
6772 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
6773 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
6774 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
6775 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
6776 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
6777 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
6778 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006779 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
6780 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
6781 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
6782 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
6783 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
6784 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006785 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
6786 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
6787 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
6788 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
6789 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
6790 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
6791 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
6792 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006793 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006794 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
6795 * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
6796 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
6797 */
6798__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
6799 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006800#if defined(BETA)
6801 IMAGE_DECLARATION(src2),
6802#endif // defined(BETA)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006803 IMAGE_DECLARATION(dst),
6804 uint src0_stride_z,
6805 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01006806#if defined(BETA)
6807 uint src2_stride_z,
6808#endif //defined(BETA)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006809 uint dst_stride_z
6810#if defined(REINTERPRET_INPUT_AS_3D)
6811 ,
6812 uint src_cross_plane_pad
6813#endif // REINTERPRET_INPUT_AS_3D
6814#if defined(REINTERPRET_OUTPUT_AS_3D)
6815 ,
6816 uint dst_cross_plane_pad
6817#endif // REINTERPRET_OUTPUT_AS_3D
6818 )
6819{
6820 int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
6821
6822 // Compute starting address for matrix A and Matrix B
6823 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
6824
6825 // Update address for the matrix A
6826 src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
6827
6828 // Update address for the matrix B
6829 src_addr.s1 += idx * sizeof(half);
6830
6831#if defined(REINTERPRET_INPUT_AS_3D)
6832 // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
6833 // in order to take into account the presence of possible cross plane paddings
6834 //
6835 // | |
6836 // | plane0 |
6837 // | |
6838 // |__________________|
6839 // |******************|
6840 // | cross_plane_pad |
6841 // |******************|
6842 // | |
6843 // | plane1 |
6844 // | |
6845 // |__________________|
6846
6847 // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
6848 uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
6849 zin = min(DEPTH_GEMM3D - 1, zin);
6850
6851 // Add offset due to the cross plane paddings
6852 zin *= (src_cross_plane_pad * src0_stride_y);
6853
6854 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
6855 // multiply src0_stride_z by DEPTH_GEMM3D
6856 src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
6857
6858#else // defined(REINTERPRET_INPUT_AS_3D)
6859
6860 // Add offset for batched GEMM
6861 src_addr.s0 += get_global_id(2) * src0_stride_z;
6862
6863#endif // defined(REINTERPRET_INPUT_AS_3D)
6864
6865#if defined(MATRIX_B_DEPTH)
6866 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
6867 src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
6868#else // defined(MATRIX_B_DEPTH)
6869 src_addr.s1 += get_global_id(2) * src1_stride_z;
6870#endif // defined(MATRIX_B_DEPTH)
6871
6872 float8 acc0 = 0.0h;
6873#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6874 float8 acc1 = 0.0h;
6875#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6876#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6877 float8 acc2 = 0.0h;
6878#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6879#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6880 float8 acc3 = 0.0h;
6881#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6882
6883 int i = 0;
6884 for(; i <= ((int)COLS_A - 4); i += 4)
6885 {
6886#if defined(REINTERPRET_INPUT_AS_3D)
6887 // Load values from matrix A
Usama Arif0681e3b2019-04-25 14:28:07 +01006888 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
6889#else // defined(REINTERPRET_INPUT_AS_3D)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00006890 // Load values from matrix A
6891 half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
6892#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6893 half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
6894#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6895#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6896 half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
6897#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6898#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6899 half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
6900#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6901#endif // defined(REINTERPRET_INPUT_AS_3D)
6902
6903 // Load values from matrix B
6904 float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
6905 src_addr.s1 += src1_stride_y;
6906
6907 // Accumulate
6908 acc0 = fma(b0, (float8)a0.s0, acc0);
6909#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6910 acc1 = fma(b0, (float8)a1.s0, acc1);
6911#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6912#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6913 acc2 = fma(b0, (float8)a2.s0, acc2);
6914#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6915#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6916 acc3 = fma(b0, (float8)a3.s0, acc3);
6917#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6918
6919 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
6920 src_addr.s1 += src1_stride_y;
6921 acc0 = fma(b0, (float8)a0.s1, acc0);
6922#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6923 acc1 = fma(b0, (float8)a1.s1, acc1);
6924#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6925#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6926 acc2 = fma(b0, (float8)a2.s1, acc2);
6927#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6928#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6929 acc3 = fma(b0, (float8)a3.s1, acc3);
6930#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6931
6932 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
6933 src_addr.s1 += src1_stride_y;
6934 acc0 = fma(b0, (float8)a0.s2, acc0);
6935#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6936 acc1 = fma(b0, (float8)a1.s2, acc1);
6937#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6938#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6939 acc2 = fma(b0, (float8)a2.s2, acc2);
6940#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6941#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6942 acc3 = fma(b0, (float8)a3.s2, acc3);
6943#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6944
6945 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
6946 src_addr.s1 += src1_stride_y;
6947 acc0 = fma(b0, (float8)a0.s3, acc0);
6948#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6949 acc1 = fma(b0, (float8)a1.s3, acc1);
6950#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6951#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6952 acc2 = fma(b0, (float8)a2.s3, acc2);
6953#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6954#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6955 acc3 = fma(b0, (float8)a3.s3, acc3);
6956#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6957
6958 src_addr.s0 += 4 * sizeof(half);
6959 }
6960
6961 for(; i < (int)COLS_A; ++i)
6962 {
6963#if defined(REINTERPRET_INPUT_AS_3D)
6964 // Load values from matrix A
6965 half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
6966#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6967 half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
6968#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6969#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6970 half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
6971#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6972#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6973 half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
6974#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6975#else // defined(REINTERPRET_INPUT_AS_3D)
6976 // Load values from matrix A
6977 half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
6978#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6979 half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
6980#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6981#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6982 half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
6983#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
6984#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6985 half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
6986#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
6987#endif // defined(REINTERPRET_INPUT_AS_3D)
6988
6989 // Load values from matrix B
6990 float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
6991
6992 src_addr += (int2)(sizeof(half), src1_stride_y);
6993
6994 // Accumulate
6995 acc0 = fma(b0, (float8)a0, acc0); // b0 * (half8)a0;
6996#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6997 acc1 = fma(b0, (float8)a1, acc1); // b0 * (half8)a1;
6998#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
6999#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7000 acc2 = fma(b0, (float8)a2, acc2); // b0 * (half8)a2;
7001#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7002#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7003 acc3 = fma(b0, (float8)a3, acc3); // b0 * (half8)a3;
7004#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7005 }
7006
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007007 int z = get_global_id(2);
7008
7009 // Compute destination address
7010 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
7011
7012 // Compute dst address
7013 __global uchar *dst_addr = offset(&dst, 0, 0);
7014
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007015 uint4 zout = 0;
7016
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007017#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007018
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007019 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
7020 // in order to take into account the presence of possible cross plane paddings
7021 //
7022 // | |
7023 // | plane0 |
7024 // | |
7025 // |__________________|
7026 // |******************|
7027 // | cross_plane_pad |
7028 // |******************|
7029 // | |
7030 // | plane1 |
7031 // | |
7032 // |__________________|
7033
7034 // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007035 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
7036 zout = min(DEPTH_GEMM3D - 1, zout);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007037
7038 // Add offset due to the cross plane paddings
7039 zout *= (dst_cross_plane_pad * dst_stride_y);
7040
7041 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
7042 // multiply dst_stride_z by DEPTH_GEMM3D
7043 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007044#else // defined(REINTERPRET_OUTPUT_AS_3D)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007045 // Add offset for batched GEMM
7046 dst_addr += z * dst_stride_z;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007047#endif // defined(REINTERPRET_OUTPUT_AS_3D)
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007048
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007049 // Multiply by the weight of matrix-matrix product and store the result
7050#if defined(ALPHA)
7051 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
7052#endif // defined(ALPHA)
7053
7054#if defined(BETA)
7055 REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
7056
7057#if defined(BROADCAST_BIAS)
7058 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
7059
7060 LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
7061
7062 float8 bias_f0 = convert_float8(bias0);
7063
7064#ifndef UNIT_BETA
7065 SCALE_BLOCK(1, float, bias_f, BETA);
7066#endif // UNIT_BIAS
7067
7068 // acc = acc + bias[broadcasted]
7069 ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f0);
7070
7071#else // defined(BROADCAST_BIAS)
7072 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
7073 (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
7074
7075 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
7076
7077 float8 bias_f0 = convert_float8(bias0);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007078#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007079 float8 bias_f1 = convert_float8(bias1);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007080#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7081#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007082 float8 bias_f2 = convert_float8(bias2);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007083#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7084#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007085 float8 bias_f3 = convert_float8(bias3);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007086#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007087
7088#ifndef UNIT_BETA
7089 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias_f, BETA);
7090#endif // UNIT_BIAS
7091
7092 // acc = acc + bias
7093 ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f);
7094
7095#endif // defined(BROADCAST_BIAS)
7096#endif // defined(BETA)
7097
7098 half8 acc_h0 = convert_half8(acc0);
7099#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7100 half8 acc_h1 = convert_half8(acc1);
7101#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7102#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7103 half8 acc_h2 = convert_half8(acc2);
7104#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7105#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7106 half8 acc_h3 = convert_half8(acc3);
7107#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7108
7109#if defined(ACTIVATION_TYPE)
7110 ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, acc_h, A_VAL, B_VAL);
7111#endif // defined(ACTIVATION_TYPE)
7112
7113 // Store the output block
7114 STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc_h, dst_addr, dst_stride_y, zout.s);
Vidhya Sudhan Loganathana25d16c2018-11-16 11:33:12 +00007115}
7116
7117/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
7118 *
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007119 * @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
7120 * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
7121 * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
7122 * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
7123 * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007124 * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
7125 * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007126 *
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007127 * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
7128 * The activation function is performed after the bias addition
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007129 * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
7130 * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007131 * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
7132 * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
7133 * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
7134 * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
7135 *
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007136 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
7137 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
7138 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7139 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
7140 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
7141 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
7142 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
7143 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
7144 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7145 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
7146 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
7147 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007148 * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
7149 * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
7150 * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
7151 * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
7152 * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
7153 * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007154 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
7155 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
7156 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
7157 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
7158 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
7159 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007160 * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
7161 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007162 * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007163 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007164 * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
7165 * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007166 */
7167__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
7168 IMAGE_DECLARATION(src1),
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007169#if defined(BETA)
7170 IMAGE_DECLARATION(src2),
7171#endif // defined(BETA)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007172 IMAGE_DECLARATION(dst),
7173 uint src0_stride_z,
7174 uint src1_stride_z,
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007175#if defined(BETA)
7176 uint src2_stride_z,
7177#endif //defined(BETA)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007178 uint dst_stride_z
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007179#if defined(REINTERPRET_INPUT_AS_3D)
7180 ,
7181 uint src_cross_plane_pad
7182#endif // REINTERPRET_INPUT_AS_3D
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007183#if defined(REINTERPRET_OUTPUT_AS_3D)
7184 ,
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007185 uint dst_cross_plane_pad
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007186#endif // REINTERPRET_OUTPUT_AS_3D
7187 )
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007188{
7189 int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
7190
7191 // Compute starting address for matrix A and Matrix B
7192 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
7193
7194 // Update address for the matrix A
7195 src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
7196
7197 // Update address for the matrix B
7198 src_addr.s1 += idx * sizeof(half);
7199
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007200#if defined(REINTERPRET_INPUT_AS_3D)
7201 // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
7202 // in order to take into account the presence of possible cross plane paddings
7203 //
7204 // | |
7205 // | plane0 |
7206 // | |
7207 // |__________________|
7208 // |******************|
7209 // | cross_plane_pad |
7210 // |******************|
7211 // | |
7212 // | plane1 |
7213 // | |
7214 // |__________________|
7215
7216 // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
7217 uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
7218 zin = min(DEPTH_GEMM3D - 1, zin);
7219
7220 // Add offset due to the cross plane paddings
7221 zin *= (src_cross_plane_pad * src0_stride_y);
7222
7223 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
7224 // multiply src0_stride_z by DEPTH_GEMM3D
7225 src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
7226
7227#else // defined(REINTERPRET_INPUT_AS_3D)
7228
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007229 // Add offset for batched GEMM
7230 src_addr.s0 += get_global_id(2) * src0_stride_z;
7231
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007232#endif // defined(REINTERPRET_INPUT_AS_3D)
7233
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007234#if defined(MATRIX_B_DEPTH)
7235 // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
7236 src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
7237#else // defined(MATRIX_B_DEPTH)
7238 src_addr.s1 += get_global_id(2) * src1_stride_z;
7239#endif // defined(MATRIX_B_DEPTH)
7240
7241 half8 acc0 = 0.0h;
7242#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7243 half8 acc1 = 0.0h;
7244#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7245#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7246 half8 acc2 = 0.0h;
7247#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7248#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7249 half8 acc3 = 0.0h;
7250#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7251
7252 int i = 0;
7253 for(; i <= ((int)COLS_A - 4); i += 4)
7254 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007255#if defined(REINTERPRET_INPUT_AS_3D)
7256 // Load values from matrix A
Usama Arif0681e3b2019-04-25 14:28:07 +01007257 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
7258#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007259 // Load values from matrix A
7260 half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
7261#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7262 half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
7263#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7264#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7265 half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
7266#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7267#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7268 half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
7269#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007270#endif // defined(REINTERPRET_INPUT_AS_3D)
7271
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007272 // Load values from matrix B
7273 half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
7274 src_addr.s1 += src1_stride_y;
7275
7276 // Accumulate
7277 acc0 = fma(b0, (half8)a0.s0, acc0);
7278#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7279 acc1 = fma(b0, (half8)a1.s0, acc1);
7280#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7281#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7282 acc2 = fma(b0, (half8)a2.s0, acc2);
7283#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7284#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7285 acc3 = fma(b0, (half8)a3.s0, acc3);
7286#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7287
7288 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
7289 src_addr.s1 += src1_stride_y;
7290 acc0 = fma(b0, (half8)a0.s1, acc0);
7291#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7292 acc1 = fma(b0, (half8)a1.s1, acc1);
7293#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7294#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7295 acc2 = fma(b0, (half8)a2.s1, acc2);
7296#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7297#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7298 acc3 = fma(b0, (half8)a3.s1, acc3);
7299#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7300
7301 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
7302 src_addr.s1 += src1_stride_y;
7303 acc0 = fma(b0, (half8)a0.s2, acc0);
7304#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7305 acc1 = fma(b0, (half8)a1.s2, acc1);
7306#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7307#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7308 acc2 = fma(b0, (half8)a2.s2, acc2);
7309#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7310#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7311 acc3 = fma(b0, (half8)a3.s2, acc3);
7312#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7313
7314 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
7315 src_addr.s1 += src1_stride_y;
7316 acc0 = fma(b0, (half8)a0.s3, acc0);
7317#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7318 acc1 = fma(b0, (half8)a1.s3, acc1);
7319#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7320#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7321 acc2 = fma(b0, (half8)a2.s3, acc2);
7322#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7323#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7324 acc3 = fma(b0, (half8)a3.s3, acc3);
7325#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7326
7327 src_addr.s0 += 4 * sizeof(half);
7328 }
7329
7330 for(; i < (int)COLS_A; ++i)
7331 {
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007332#if defined(REINTERPRET_INPUT_AS_3D)
7333 // Load values from matrix A
7334 half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
7335#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7336 half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
7337#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7338#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7339 half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
7340#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7341#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7342 half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
7343#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7344#else // defined(REINTERPRET_INPUT_AS_3D)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007345 // Load values from matrix A
7346 half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
7347#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7348 half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
7349#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7350#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7351 half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
7352#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7353#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7354 half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
7355#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007356#endif // defined(REINTERPRET_INPUT_AS_3D)
7357
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007358 // Load values from matrix B
7359 half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
7360
7361 src_addr += (int2)(sizeof(half), src1_stride_y);
7362
7363 // Accumulate
7364 acc0 = fma(b0, (half8)a0, acc0); // b0 * (half8)a0;
7365#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7366 acc1 = fma(b0, (half8)a1, acc1); // b0 * (half8)a1;
7367#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
7368#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7369 acc2 = fma(b0, (half8)a2, acc2); // b0 * (half8)a2;
7370#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
7371#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7372 acc3 = fma(b0, (half8)a3, acc3); // b0 * (half8)a3;
7373#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
7374 }
7375
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007376 int z = get_global_id(2);
7377
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007378 // Compute destination address
7379 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
7380
7381 // Compute dst address
7382 __global uchar *dst_addr = offset(&dst, 0, 0);
7383
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007384 uint4 zout = 0;
7385
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007386#if defined(REINTERPRET_OUTPUT_AS_3D)
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007387
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007388 // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01007389 // in order to take into account the presence of possible cross plane paddings
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007390 //
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01007391 // | |
7392 // | plane0 |
7393 // | |
7394 // |__________________|
7395 // |******************|
7396 // | cross_plane_pad |
7397 // |******************|
7398 // | |
7399 // | plane1 |
7400 // | |
7401 // |__________________|
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007402
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007403 // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007404 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
7405 zout = min(DEPTH_GEMM3D - 1, zout);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007406
Georgios Pinitase8bd2c72018-07-11 15:54:56 +01007407 // Add offset due to the cross plane paddings
Gian Marco Iodice68a3f562018-07-26 11:44:03 +01007408 zout *= (dst_cross_plane_pad * dst_stride_y);
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007409
7410 // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
7411 // multiply dst_stride_z by DEPTH_GEMM3D
7412 dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007413#else // defined(REINTERPRET_OUTPUT_AS_3D)
7414 // Add offset for batched GEMM
7415 dst_addr += z * dst_stride_z;
7416#endif // defined(REINTERPRET_OUTPUT_AS_3D)
7417
7418 // Multiply by the weight of matrix-matrix product and store the result
7419#if defined(ALPHA)
7420 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, acc, ALPHA);
7421#endif // defined(ALPHA)
7422
7423 // Add beta*bias
7424#if defined(BETA)
7425 REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
7426
7427#if defined(BROADCAST_BIAS)
7428 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
7429
7430 LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
7431
7432#ifndef UNIT_BETA
7433 SCALE_BLOCK(1, half, bias, BETA);
7434#endif // UNIT_BIAS
7435
7436 // acc = acc + bias[broadcasted]
7437 ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
7438
7439#else // defined(BROADCAST_BIAS)
7440 __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
7441 (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
7442
7443 LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
7444
7445#ifndef UNIT_BETA
7446 SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, bias, BETA);
7447#endif // UNIT_BIAS
7448
7449 // acc = acc + bias
7450 ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
7451
7452#endif // defined(BROADCAST_BIAS)
7453#endif // defined(BETA)
7454
7455#if defined(ACTIVATION_TYPE)
7456 ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, acc, A_VAL, B_VAL);
7457#endif // defined(ACTIVATION_TYPE)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007458
7459 // Store the output block
Usama Arif0681e3b2019-04-25 14:28:07 +01007460 STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc, dst_addr, dst_stride_y, zout.s);
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007461}
Vidhya Sudhan Loganathanbdff4912018-05-22 15:03:09 +01007462#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Gian Marco Iodicefd683112018-04-17 09:52:44 +01007463
Gian Marco Iodiceedfa9f42017-08-15 11:45:22 +01007464#endif // defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007465
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007466#if defined(BETA)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007467/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
7468 *
Gian Marco19835e52018-01-30 13:35:54 +00007469 * @note The beta's value need to be passed at compile time using -DBETA
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007470 *
7471 * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
7472 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
7473 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7474 * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
7475 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007476 * @param[in] src_stride_z Stride of the destination tensor in Z dimension (in bytes)
7477 * @param[in] src_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007478 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01007479 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007480 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
7481 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
7482 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
7483 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007484 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
7485 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007486 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
7487 */
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007488__kernel void gemm_ma_f32(TENSOR3D_DECLARATION(src),
7489 TENSOR3D_DECLARATION(dst))
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007490{
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007491 // Compute source and destination addresses
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007492 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
7493 Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007494
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007495 // Load values from A x B
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007496 float4 alpha_ab = vload4(0, (__global float *)dst.ptr);
7497
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007498 // Load values from Matrix C
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007499 float4 c = vload4(0, (__global float *)src.ptr);
7500
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007501 // Computes alpha * axb + beta * c
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007502 float4 out = alpha_ab + (float4)BETA * c;
7503
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007504 // Store final result in axb matrix
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007505 vstore4(out, 0, (__global float *)dst.ptr);
7506}
7507
Vidhya Sudhan Loganathan76c85642018-05-25 13:53:02 +01007508#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007509/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
7510 *
Gian Marco19835e52018-01-30 13:35:54 +00007511 * @note The beta's value need to be passed at compile time using -DBETA
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01007512 *
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007513 * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
7514 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
7515 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7516 * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
7517 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007518 * @param[in] src_stride_z Stride of the destination tensor in Z dimension (in bytes)
7519 * @param[in] src_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007520 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01007521 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007522 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
7523 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
7524 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
7525 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007526 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
7527 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007528 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
7529 */
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007530__kernel void gemm_ma_f16(TENSOR3D_DECLARATION(src),
7531 TENSOR3D_DECLARATION(dst))
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007532{
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007533 // Compute source and destination addresses
Isabella Gottardi8e74f442018-03-01 16:42:00 +00007534 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
7535 Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007536
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007537 // Load values from A x B
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007538 half8 alpha_ab = vload8(0, (__global half *)dst.ptr);
7539
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007540 // Load values from Matrix C
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007541 half8 c = vload8(0, (__global half *)src.ptr);
7542
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007543 // Computes alpha * axb + beta * c
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007544 half8 out = alpha_ab + (half8)BETA * c;
7545
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007546 // Store final result in axb matrix
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007547 vstore8(out, 0, (__global half *)dst.ptr);
7548}
Vidhya Sudhan Loganathan76c85642018-05-25 13:53:02 +01007549#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007550#endif // defined(BETA)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007551
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007552#if defined(WIDTH_VECTOR_A)
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007553/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
7554 *
Gian Marco19835e52018-01-30 13:35:54 +00007555 * @note The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007556 *
Gian Marco19835e52018-01-30 13:35:54 +00007557 * @note The input A and matrix B must not be reshaped
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007558 *
7559 * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
7560 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
7561 * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7562 * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
7563 * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
7564 * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01007565 * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007566 * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
7567 * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
7568 * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
7569 * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
7570 * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
7571 * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
7572 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
Gian Marco Iodice3a3066b2017-06-23 13:38:14 +01007573 * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007574 * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
7575 * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
7576 * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
7577 * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
7578 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
7579 */
7580__kernel void gemm_lc_vm_f32(IMAGE_DECLARATION(src0),
7581 TENSOR3D_DECLARATION(src1),
7582 IMAGE_DECLARATION(dst))
7583{
7584 int idx = get_global_id(0) * 4;
7585 int idy = get_global_id(1);
7586
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007587 // Compute the address for the vector A and matrix B
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007588 int2 src_addr = ((int2)(src0_offset_first_element_in_bytes + src0_stride_y * idy, src1_offset_first_element_in_bytes + src1_stride_z * idy));
7589 src_addr.s1 += idx * sizeof(float);
7590
7591 int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
7592
7593 float4 acc = 0.0f;
7594
Georgios Pinitas96880cf2017-10-20 18:52:20 +01007595 for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007596 {
7597 float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
7598 float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
7599 float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
7600
7601 acc += b0 * (float4)a0.s0;
7602 acc += b1 * (float4)a0.s1;
7603 }
7604
7605 for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
7606 {
7607 float a0 = *((__global float *)(src0_ptr + src_addr.s0));
7608 float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
7609
7610 acc += b0 * (float4)a0;
7611 }
7612
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007613 // Compute destination address
Anthony Barbier6ff3b192017-09-04 18:44:23 +01007614 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
7615
7616 vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
7617}
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007618#endif // defined(WIDTH_VECTOR_A)
7619
7620/** This kernel accumulates each row with the biases vector.
7621 *
7622 * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=short.
7623 * @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=16.
7624 *
Vidhya Sudhan Loganathan7485d5a2018-07-04 09:34:00 +01007625 * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: U8/S8/U16/S16/F16/U32/S32/F32
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007626 * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
7627 * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
7628 * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
7629 * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
7630 * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
7631 * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
7632 * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
7633 * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
7634 * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
7635 */
7636#if defined(DATA_TYPE) && defined(VECTOR_SIZE)
7637__kernel void gemm_accumulate_biases(
7638 IMAGE_DECLARATION(accum),
7639 VECTOR_DECLARATION(biases))
7640{
7641 Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
7642 Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
7643
Gian Marco Iodiced1f54762019-07-19 09:54:47 +01007644 // Vector size, e.g. number of vector elements.
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007645 VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
7646 accum_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)accum.ptr);
7647 VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
7648 biases_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
Vidhya Sudhan Loganathan7485d5a2018-07-04 09:34:00 +01007649 accum_value = biases_value + accum_value;
Anton Lokhmotov3e80c7f2017-11-20 11:02:10 +00007650 // Store result in the accumulate buffer
7651 VSTORE(VECTOR_SIZE)
7652 (accum_value, 0, (__global DATA_TYPE *)accum.ptr);
7653}
7654#endif // defined(DATA_TYPE) && defined(VECTOR_SIZE)