blob: 0dec56c4514957e5c6425c1dc302d62b71d9b979 [file] [log] [blame]
Chunosovd621bca2017-11-03 17:33:15 +07001/*
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +01002 * Copyright (c) 2017-2023 Arm Limited.
Chunosovd621bca2017-11-03 17:33:15 +07003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Matthew Benthamf1aeab92023-05-30 13:35:34 +000024#include "arm_compute/core/ActivationLayerInfo.h"
Chunosovd621bca2017-11-03 17:33:15 +070025#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +010026#include "arm_compute/core/Helpers.h"
Matthew Bentham758b5ba2020-03-05 23:37:48 +000027#include "support/ToolchainSupport.h"
Viet-Hoa Doa62129a2023-04-26 15:38:45 +010028#include "src/core/utils/quantization/AsymmHelpers.h"
Chunosovd621bca2017-11-03 17:33:15 +070029
30#include <cmath>
31#include <limits>
32#include <numeric>
33
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010034namespace arm_compute
35{
36namespace quantization
37{
Michalis Spyrou299fdd32019-05-01 13:03:59 +010038constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
Gian Marco Iodice3139f032018-11-05 14:26:32 +000039constexpr float epsilon = 0.00001f;
Chunosovf450caa2017-11-08 16:09:35 +070040
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010041Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
Manuel Bottini07263982019-10-17 18:37:26 +010042{
Michele Di Giorgio35c37942019-12-03 19:34:30 +000043 if(multiplier >= 1.f)
Manuel Bottini07263982019-10-17 18:37:26 +010044 {
45 Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
46 *shift *= -1;
47 return status;
48 }
49 else
50 {
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010051 return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
Manuel Bottini07263982019-10-17 18:37:26 +010052 }
53}
54
Michalis Spyroue7be8a02019-12-12 16:16:09 +000055Status calculate_quantized_multiplier_less_than_one(float multiplier,
56 int32_t *quant_multiplier,
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010057 int32_t *right_shift,
58 bool ignore_epsilon)
Chunosovd621bca2017-11-03 17:33:15 +070059{
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010060 const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
61
Chunosovd621bca2017-11-03 17:33:15 +070062 ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
63 ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010064 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
65 ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
Gian Marco Iodice3139f032018-11-05 14:26:32 +000066
Michalis Spyroue7be8a02019-12-12 16:16:09 +000067 int shift_exp = 0;
68 const double q = std::frexp(multiplier, &shift_exp);
69 *right_shift = -1 * shift_exp;
70 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +070071 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
72 if(q_fixed == fixed_point_one_Q0)
Chunosovd621bca2017-11-03 17:33:15 +070073 {
74 q_fixed /= 2;
75 --*right_shift;
76 }
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010077
78 if(ignore_epsilon && *right_shift > 31)
79 {
80 *right_shift = 0;
81 q_fixed = 0;
82 }
83
Chunosovd621bca2017-11-03 17:33:15 +070084 ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
85 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
Chunosovf450caa2017-11-08 16:09:35 +070086 *quant_multiplier = static_cast<int32_t>(q_fixed);
Chunosovd621bca2017-11-03 17:33:15 +070087
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010088 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +070089}
90
Michalis Spyroue7be8a02019-12-12 16:16:09 +000091Status calculate_quantized_multiplier_greater_than_one(float multiplier,
92 int32_t *quantized_multiplier,
93 int32_t *left_shift)
Chunosovf450caa2017-11-08 16:09:35 +070094{
95 ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
96 ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
97 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
Michalis Spyroue7be8a02019-12-12 16:16:09 +000098
99 int shift_exp = 0;
100 const double q = std::frexp(multiplier, &shift_exp);
101 *left_shift = shift_exp;
102 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +0700103 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
104 if(q_fixed == fixed_point_one_Q0)
105 {
106 q_fixed /= 2;
107 ++*left_shift;
108 }
109 ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
110 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
111 *quantized_multiplier = static_cast<int32_t>(q_fixed);
112
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100113 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +0700114}
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100115
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000116arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
117 const QuantizationInfo &wq_info,
118 const QuantizationInfo &oq_info,
119 GEMMLowpOutputStageInfo &stage_info)
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100120{
121 ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
122 ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
123 ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
124
125 const unsigned int size = wq_info.scale().size();
126
127 auto &quant_multipliers = stage_info.gemmlowp_multipliers;
128 auto &quant_shifts = stage_info.gemmlowp_shifts;
129 quant_multipliers.resize(size);
130 quant_shifts.resize(size);
131
132 const auto &w_scales = wq_info.scale();
133 const float i_scale = iq_info.scale().at(0);
134 const float o_scale = oq_info.scale().at(0);
135
136 for(unsigned int i = 0; i < size; ++i)
137 {
138 const float multiplier = i_scale * w_scales[i] / o_scale;
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000139 int32_t quant_multiplier = 0;
140 int32_t quant_shift = 0;
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000141 ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100142 quant_multipliers[i] = quant_multiplier;
143 quant_shifts[i] = quant_shift;
144 }
145
146 // Legacy part
147 stage_info.gemmlowp_shift = quant_shifts[0];
148 stage_info.gemmlowp_multiplier = quant_multipliers[0];
149
150 return Status{};
151}
152
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100153std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
154{
155 int min_quant_val = 0;
156 int max_quant_val = 0;
157 switch(data_type)
158 {
159 case DataType::QASYMM8:
160 min_quant_val = std::numeric_limits<uint8_t>::min();
161 max_quant_val = std::numeric_limits<uint8_t>::max();
162 break;
163 case DataType::QSYMM8:
Manuel Bottini8481d832019-12-10 15:28:40 +0000164 case DataType::QASYMM8_SIGNED:
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100165 min_quant_val = std::numeric_limits<int8_t>::min();
166 max_quant_val = std::numeric_limits<int8_t>::max();
167 break;
168 case DataType::QASYMM16:
169 min_quant_val = std::numeric_limits<uint16_t>::min();
170 max_quant_val = std::numeric_limits<uint16_t>::max();
171 break;
172 case DataType::QSYMM16:
173 min_quant_val = std::numeric_limits<int16_t>::min();
174 max_quant_val = std::numeric_limits<int16_t>::max();
175 break;
176 default:
177 ARM_COMPUTE_ERROR("Unsupported data type");
178 }
179 return std::make_pair(min_quant_val, max_quant_val);
180}
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100181
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100182std::tuple<int32_t, int32_t> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100183{
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100184 ARM_COMPUTE_ERROR_ON(data_type != DataType::QASYMM8 && data_type != DataType::QASYMM8_SIGNED);
185
186 const auto min_max = get_min_max(data_type);
187
188 int32_t type_min = std::get<0>(min_max).get<int32_t>();
189 int32_t type_max = std::get<1>(min_max).get<int32_t>();
190
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100191 const UniformQuantizationInfo q_unif = q_info.uniform();
192
193 if(act_info.enabled())
194 {
195 switch(act_info.activation())
196 {
197 case ActivationLayerInfo::ActivationFunction::RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100198 type_min = q_unif.offset;
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100199 break;
200 case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100201 type_min = q_unif.offset;
202 type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info) : quantize_qasymm8_signed(act_info.a(), q_info);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100203 break;
204 case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100205 type_min = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.b(), q_info) : quantize_qasymm8_signed(act_info.b(), q_info);
206 type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info) : quantize_qasymm8_signed(act_info.a(), q_info);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100207 break;
208 default:
209 ARM_COMPUTE_ERROR("Activation function not supported.");
210 break;
211 }
212 }
213
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100214 return std::make_tuple(type_min, type_max);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100215}
216
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000217void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
218 const ITensorInfo *weights,
219 const ITensorInfo *output,
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000220 int32_t *output_multipliers_ptr,
221 int32_t *output_shifts_ptr)
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100222{
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000223 const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
224 const QuantizationInfo wq_info = weights->quantization_info();
225 const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100226
Michele Di Giorgiod02d5ed2021-01-22 09:47:04 +0000227 const unsigned int num_filters = wq_info.scale().size();
228
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100229 for(unsigned int i = 0; i < num_filters; ++i)
230 {
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000231 int32_t output_multiplier = 0;
232 int32_t output_shift = 0;
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100233 const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
Michele Di Giorgio14cbfb22019-10-23 10:53:10 +0100234 calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100235
236 output_multipliers_ptr[i] = output_multiplier;
237 output_shifts_ptr[i] = output_shift;
238 }
239}
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000240
241int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
242{
243 bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
244 int64_t a_64(a);
245 int64_t b_64(b);
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000246 int64_t ab_64 = a_64 * b_64;
Pablo Tello4e66d702022-03-07 18:20:12 +0000247 const bool is_positive_or_zero =
248 a == 0 || b == 0 ||
249 (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000250 int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
251 int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000252 return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
253}
254
255inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
256{
257 const int32_t mask = (1 << exponent) - 1;
258 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
259 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
260}
261
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000262int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000263{
264 const auto left_shift = shift > 0 ? shift : 0;
265 const auto right_shift = shift > 0 ? 0 : -shift;
266 return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
267}
268
269int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
270{
271 if(exponent == 0)
272 {
273 return v;
274 }
275 else if(exponent < 0)
276 {
277 return rounding_divide_by_pow2(v, -exponent);
278 }
279 else
280 {
281 constexpr auto min = std::numeric_limits<int32_t>::min();
282 constexpr auto max = std::numeric_limits<int32_t>::max();
283 const auto width = sizeof(int32_t) * 8;
284
285 const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
286 bool pos_mask = v > threshold;
287 bool neg_mask = v < -threshold;
288 int32_t result = v << exponent;
289 result = pos_mask ? max : result;
290 result = neg_mask ? min : result;
291 return result;
292 }
293}
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000294
295void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
296{
297 ARM_COMPUTE_ERROR_ON(input < 0);
298
299 if(input <= 1)
300 {
301 // dealing the inputs (0 and 1) separately to avoid overflow
302 output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
303 output_shift = 0;
304 return;
305 }
306
307 // prepare input for fixed point operation and compute shift value
308 output_shift = 11;
309 while(input >= (1 << 29))
310 {
311 input /= 4;
312 ++output_shift;
313 }
314
315 const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
316 const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
317 const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
318 output_shift -= left_shift_bit_pairs;
319 input <<= 2 * left_shift_bit_pairs;
320
321 // Calculation in fixed point domain with 3 integer bits.
322 using FixedPointRawType = int32_t;
323 constexpr uint32_t fixedpoint_position = 3;
324 constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
325 using FixedPoint3 = FixedPointRawType;
326 using FixedPoint0 = FixedPointRawType;
327
328 // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
329 const FixedPoint3 fixedpoint_input = (input >> 1);
330 const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
331 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
332
333 // initial guess (1) in fixed point representation
334 FixedPoint3 x = 0x1 << fixedpoint_int_position;
335
336 // multiplication of two fixed point numbers, defined for readability
337 auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
338 {
339 return saturating_rounding_doubling_highmul(a, b);
340 };
341
342 // rescaling of fixed point to have dst_bit integer bits, defined for readability
343 auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
344 {
345 const uint32_t exponent = src_bit - dst_bit;
346 return saturating_rounding_multiply_by_pow2(exponent, a);
347 };
348
349 // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
350 constexpr int32_t num_iteration = 5;
351 for(int32_t i = 0; i < num_iteration; ++i)
352 {
353 const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
354 x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
355 }
356
357 // fixed point representation of sqrt(1/2)
358 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
359 x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
360 output_inv_sqrt = x;
361 if(output_shift < 0)
362 {
363 output_inv_sqrt <<= -output_shift;
364 output_shift = 0;
365 }
366 // convert right shift to left shift
367 output_shift *= reverse_shift;
368}
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100369} // quantization
370} // arm_compute