blob: 5c7fd517db12b7f79c4cfed2a0249215fac87d57 [file] [log] [blame]
Jonas Ohlsson45e653d2021-07-26 16:13:12 +02001# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
2#
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the License); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an AS IS BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16# Description:
17# The TFLiteSupportedOperators class which is a collection of all TFLite supported operators and parameter checks.
18from collections import defaultdict
19
20import numpy as np
21
22from .data_type import DataType
23from .operation import Op
24from .operation import Padding
25from .supported_operators_util import docstring_format_args
26from .supported_operators_util import list_formatter
27from .tensor import check_quantized_tens_scaling_equal
28from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
29from .tflite_mapping import optype_to_builtintype
30
31
32def _optype_formatter(op_list):
33 # Convert internal op types to external names
34 output = map(optype_to_builtintype, op_list)
35 # Remove UNKNOWNs
36 output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
37 return list_formatter(output)
38
39
40class TFLiteSupportedOperators:
41 # Categorised lists of supported operators
42 npu_pre_ops = set((Op.SplitSliceRead,))
43 convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
44 depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
45 transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
46 convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
47 max_pooling_ops = Op.op_set(Op.is_maxpool_op)
48 avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
49 pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
50 resizing_ops = set((Op.ResizeBilinear,))
51 fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
52 mac_main_ops = (
53 # RNN/LSTM/GRU
54 set((Op.BlockLSTM,))
55 # conv/depthwiseconv/transposeconv
56 | convolution_like_ops
57 # pooling
58 | pooling_ops
59 # resizing/upscaling
60 | resizing_ops
61 # FC layers
62 | fc_vector_products
63 # Mean (converts to depthwise conv)
64 | set((Op.Mean,))
65 )
66 unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
67 binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
68 binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
69 binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
70 binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
71 elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
72 pad_ops = set((Op.Pad,))
73 supported_int32_tensor_ops = (
74 set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
75 )
76
77 relu_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Clip,))
78 activation_ops = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.Softmax, Op.HardSwish))
79 npu_post_ops = (
80 # activation functions
81 activation_ops
82 # concatenation write direction
83 | set((Op.ConcatSliceWrite,))
84 # Quantization
85 | set((Op.Quantize,))
86 )
87 split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
88 concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
Jonas Ohlsson0957e3e2021-09-01 15:57:21 +020089 memory_only_ops = set((Op.Reshape, Op.QuantizedReshape, Op.Squeeze, Op.ExpandDims,)) | concat_ops | split_ops
Jonas Ohlsson45e653d2021-07-26 16:13:12 +020090 per_axis_quant_ops = convolution_like_ops # per-axis/channel quantization only currently supported for conv ops
91 supported_fused_activations = relu_ops | set((Op.Tanh, Op.Sigmoid, Op.LUT,))
92 supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
93 # Supported data types
94 supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
95 supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
96 supported_bias_dtypes = set((DataType.int32, DataType.int64))
97 supported_pad_dtypes = set((DataType.int32, DataType.int64))
98 # Defined ranges for allowed values:
99 tens_dim_range = (1, 65535)
100 stride_range = (1, 3)
101 dilation_range = (1, 2)
102 dilated_height_range = (1, 64)
103 dilated_product_range = (1, 64 * 64)
104 weights_limit = 127 * 65536
105 filter_range = (1, 8)
106 filter_height_range = (1, 256)
107 filter_product_range = (1, 256 * 256)
108 mean_kernel_product = 64 * 64
109 mean_kernel_product_int8 = 16 * 16
110 mean_kernel_product_avgpool = 256 * 256
111
112 def __init__(self):
113 # Setup the generic constraints. Note: the order matters
114 self.generic_constraints = []
115 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dtype)
116 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_int32_ops)
117 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dimension)
118 self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_quant_per_axis)
119 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf)
120 self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf_type)
121
122 # Setup specific constraints. Note: the order matters
123 self.specific_constraints = defaultdict(list)
124
125 # Conv-like checks:
126 for op_type in TFLiteSupportedOperators.convolution_like_ops:
127 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
128 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilation_range)
129 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_height_range)
130 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_product_range)
131 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
132 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
133 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_limit)
134 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
135 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
136 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
137 # Depthwise Conv specific checks:
138 for op_type in TFLiteSupportedOperators.depthwise_convolution_ops:
139 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depth_multiplier)
140 # Transpose Conv specific checks:
141 for op_type in TFLiteSupportedOperators.transpose_convolution_ops:
142 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_stride)
143 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_same)
144 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_valid)
145
146 # Pooling checks:
147 for op_type in TFLiteSupportedOperators.pooling_ops:
148 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_batch_size)
149 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
150 # AVG pooling specific checks:
151 for op_type in TFLiteSupportedOperators.avg_pooling_ops:
152 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_range)
153 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range_valid_pad)
154 self.specific_constraints[op_type].append(
155 TFLiteSupportedOperators.constraint_filter_product_range_valid_pad
156 )
157 # MAX pooling specific checks:
158 for op_type in TFLiteSupportedOperators.max_pooling_ops:
159 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range)
160 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_product_range)
161
162 # Resizing specific checks:
163 for op_type in TFLiteSupportedOperators.resizing_ops:
164 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize)
erik.andersson@arm.comba2555e2021-10-28 14:08:52 +0200165 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bilinear_resize_attrs)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200166
167 # Vector Product specific checks:
168 for op_type in TFLiteSupportedOperators.fc_vector_products:
169 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
170 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
171 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
172 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
173
174 # Element-wise checks:
175 for op_type in TFLiteSupportedOperators.elem_wise_main_ops:
176 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_elemwise_batch_size)
177 # Binary Min/Max specific checks:
178 for op_type in TFLiteSupportedOperators.binary_elem_wise_min_max_ops:
179 self.specific_constraints[op_type].append(
180 TFLiteSupportedOperators.constraint_matching_quantization_parameters
181 )
182 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
183 # Binary Add/Mul/Sub specific checks:
184 for op_type in TFLiteSupportedOperators.binary_elem_wise_add_mul_sub:
185 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
186 # Binary Shift specific checks:
187 for op_type in TFLiteSupportedOperators.binary_elem_wise_shift_ops:
188 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_inputs_int32)
189 self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
190
191 # SHL specific checks:
192 self.specific_constraints[Op.SHL].append(TFLiteSupportedOperators.constraint_output_int32)
193
194 # CLZ specific checks:
195 self.specific_constraints[Op.CLZ].append(TFLiteSupportedOperators.constraint_output_int32)
196
197 # StridedSlice specific checks:
198 self.specific_constraints[Op.StridedSlice].append(
199 TFLiteSupportedOperators.constraint_stridedslice_stride_values
200 )
201
202 # Pad specific checks:
203 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_shape)
204 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_padding_dimensions)
205 self.specific_constraints[Op.Pad].append(TFLiteSupportedOperators.constraint_pad_type)
206
207 # Mean specific checks:
Dwight Lidmanf54c18d2021-09-29 17:23:03 +0200208 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_batch_size)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200209 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_avgpool)
210 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product)
211 self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product_int8)
212
Tim Hall3584a9c2021-11-18 22:05:17 +0000213 # Reshape specific checks:
214 self.specific_constraints[Op.Reshape].append(TFLiteSupportedOperators.constraint_reshape_shape_constant)
215
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200216 def is_operator_supported(self, op):
217 ext_type = optype_to_builtintype(op.type)
218 if op.type not in TFLiteSupportedOperators.supported_operators:
219 if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
220 print(f"Info: {ext_type} '{op.name}' is a CPU only op")
221 return False
222
223 for constraint in self.generic_constraints + self.specific_constraints[op.type]:
224 valid, extra = constraint(op)
225 if not valid:
226 print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
227 print(f" - {constraint.__doc__}")
228 if extra:
229 print(f" {extra}")
230 return False
231
232 return True
233
234 @classmethod
235 @docstring_format_args([list_formatter(supported_op_dtypes)])
236 def constraint_tens_dtype(cls, op):
237 "Tensors must be of type: {}"
238 valid = True
239 extra = []
240 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
241 if not tensors:
242 tensors = [tens for tens in op.inputs if tens]
243 for tens in tensors:
244 if tens.dtype not in cls.supported_op_dtypes:
245 valid = False
246 extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
247 return valid, ", ".join(extra)
248
249 @classmethod
250 @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
251 def constraint_tens_int32_ops(cls, op):
252 "Tensors which are int32 are only valid when op type is: {}"
253 valid = True
254 extra = []
255 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
256 if not tensors:
257 tensors = [tens for tens in op.inputs if tens]
258 for tens in tensors:
259 if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
260 valid = False
261 extra.append(tens.name)
262 extra = ", ".join(extra)
263 return valid, f"Op has int32 tensor(s): {extra}"
264
265 @classmethod
266 @docstring_format_args(tens_dim_range)
267 def constraint_tens_dimension(cls, op):
268 "Tensor dimensions must be in the range [{}, {}]"
269 tens_min, tens_max = cls.tens_dim_range
270 valid = True
271 extra = []
272 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
273 if not tensors:
274 tensors = [tens for tens in op.inputs if tens]
275 for tens in tensors:
276 if not all(tens_min <= dim <= tens_max for dim in tens.shape):
277 valid = False
278 extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
279 return valid, ", ".join(extra)
280
281 @classmethod
282 @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
283 def constraint_tens_quant_per_axis(cls, op):
284 "Per-axis quantization is only supported for the following op types: {}"
285 valid = True
286 extra = []
287 if op.type not in cls.per_axis_quant_ops:
288 tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
289 for tens in tensors:
290 if tens.quantization.is_per_axis():
291 valid = False
292 extra.append(tens.name)
293 return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)
294
295 @classmethod
296 @docstring_format_args([_optype_formatter(supported_fused_activations)])
297 def constraint_faf(cls, op):
298 "The fused activation function (if present) must be one of type: {}"
299 if op.activation is None:
300 res = True, "Op has no fused activation function"
301 else:
302 faf = op.activation.op_type
303 valid = faf in cls.supported_fused_activations
304 res = valid, f"Op has its fused activation function as: {faf}"
305 return res
306
307 @classmethod
308 @docstring_format_args([list_formatter(supported_faf_dtypes)])
309 def constraint_faf_type(cls, op):
310 "If a fused activation function is present, the Output tensor must be one of type: {}"
311 if op.activation is None:
312 res = True, "Op has no fused activation function"
313 else:
314 valid = op.ofm.dtype in cls.supported_faf_dtypes
315 ext_type = optype_to_builtintype(op.activation.op_type)
316 res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
317 return res
318
319 @classmethod
320 @docstring_format_args(stride_range)
321 def constraint_stride_range(cls, op):
322 "Stride values for both width and height must be in the range [{}, {}]"
323 w, h = op.get_kernel_stride()
324 stride_min, stride_max = cls.stride_range
325 valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
326 return valid, f"Op has stride WxH as: {w}x{h}"
327
328 @classmethod
329 @docstring_format_args(dilation_range)
330 def constraint_dilation_range(cls, op):
331 "Dilation factor values for both width and height must be in the range [{}, {}]"
332 w, h = op.get_kernel_dilation()
333 dilation_min, dilation_max = cls.dilation_range
334 valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
335 return valid, f"Op has dilation factor WxH as: {w}x{h}"
336
337 @classmethod
338 @docstring_format_args(dilated_height_range)
339 def constraint_dilated_height_range(cls, op):
340 "Dilated kernel height must be in the range [{}, {}]"
341 h = op.kernel.area_height()
342 dilated_height_min, dilated_height_max = cls.dilated_height_range
343 valid = dilated_height_min <= h <= dilated_height_max
344 return valid, f"Op has dilated kernel height as: {h}"
345
346 @classmethod
347 @docstring_format_args(dilated_product_range)
348 def constraint_dilated_product_range(cls, op):
349 "Product of dilated kernel width and height must be in the range [{}, {}]"
350 product = op.kernel.area_width() * op.kernel.area_height()
351 dilated_product_min, dilated_product_max = cls.dilated_product_range
352 valid = dilated_product_min <= product <= dilated_product_max
353 return valid, f"Op has product of dilated kernel width and height as: {product}"
354
355 @staticmethod
356 def constraint_weights_type(op):
357 "Weight tensor must be 8-bit"
358 weights = op.weights
359 valid = weights.element_size() == 1
360 return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"
361
362 @staticmethod
363 def constraint_weights_const(op):
364 "Weight tensor must be constant"
365 weights = op.weights
366 valid = weights.values is not None
367 return valid, f"Tensor '{weights.name}' has non-constant values"
368
369 @classmethod
370 @docstring_format_args([weights_limit])
371 def constraint_weights_limit(cls, op):
372 "The sum of the weights cannot exceed {}"
373 weights = op.weights
374 values = weights.values.astype(np.int64) - weights.quantization.zero_point
375 limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
376 valid = limit <= cls.weights_limit
377 return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"
378
379 @classmethod
380 @docstring_format_args([list_formatter(supported_bias_dtypes)])
381 def constraint_bias_type(cls, op):
382 "Optional Bias tensor must be of type: {}"
383 bias = op.bias
384 if bias:
385 valid = bias.dtype in cls.supported_bias_dtypes
386 return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
387 return True, "Op has no bias tensor"
388
389 @staticmethod
390 def constraint_bias_40bit(op):
391 "Optional Bias tensor values must fit within 40-bits"
392 bias = op.bias
393 if bias and bias.dtype == DataType.int64 and bias.values is not None:
Tim Hall8ae29292021-07-28 16:52:03 +0100394 valid = all(len(bin(value)[2:]) <= 40 for value in bias.values)
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200395 return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
396 return True, "Op has no bias tensor, or it fits in 40-bit"
397
398 @staticmethod
399 def constraint_batch_size(op):
400 "IFM Tensor batch size must be 1"
401 ifm = op.ifm
402 valid = ifm.shape[0] == 1
403 return valid, f"Tensor '{ifm.name}' has batch size: {ifm.shape[0]}"
404
405 @staticmethod
406 def constraint_depth_multiplier(op):
407 "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
408 depth_multiplier = op.attrs.get("depth_multiplier", 1)
409 if depth_multiplier > 1:
410 ifm_channels = op.ifm.shape[3]
411 ofm_channels = op.ofm.shape[3]
412 valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
413 extra = (
414 f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
415 f" and depth_multiplier={depth_multiplier}"
416 )
417 return valid, extra
418 return True, "Op has depth_multiplier=1"
419
420 @staticmethod
421 def constraint_tconv_stride(op):
422 "Stride values for both width and height must be 2"
423 w = op.kernel.stride.x
424 h = op.kernel.stride.y
425 valid = (w == 2) and (h == 2)
426 return valid, f"Op has stride WxH as: {w}x{h}"
427
428 @staticmethod
429 def constraint_tconv_same(op):
430 "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
431 if op.attrs["padding"] == Padding.SAME:
432 w = op.kernel.stride.x
433 h = op.kernel.stride.y
434 ifm_shape = op.ifm.shape
435 ofm_shape = op.ofm.shape
436 valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
437 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
438 return True, "Op has padding=VALID"
439
440 @staticmethod
441 def constraint_tconv_valid(op):
442 """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
443 minus difference between kernel size and stride"""
444 if op.attrs["padding"] == Padding.VALID:
445 s_w = op.kernel.stride.x
446 s_h = op.kernel.stride.y
447 k_w = op.kernel.width
448 k_h = op.kernel.height
449 ifm_shape = op.ifm.shape
450 ofm_shape = op.ofm.shape
451 height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
452 width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
453 valid = height_check and width_check
454 extra = (
455 f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
456 f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
457 )
458 return valid, extra
459 return True, "Op has padding=SAME"
460
461 @classmethod
462 @docstring_format_args(filter_range)
463 def constraint_filter_range(cls, op):
464 "Kernel filter values for both width and height must be in the range [{}, {}]"
465 if op.attrs["padding"] == Padding.SAME:
466 w = op.kernel.width
467 h = op.kernel.height
468 filter_min, filter_max = cls.filter_range
469 valid = (filter_min <= w <= filter_max) and (filter_min <= h <= filter_max)
470 return valid, f"Op has kernel filter WxH as: {w}x{h}"
471 return True, "Op has padding=VALID"
472
473 @classmethod
474 @docstring_format_args(filter_height_range)
475 def constraint_filter_height_range(cls, op):
476 "Kernel filter height must be in the range [{}, {}]"
477 h = op.kernel.height
478 filter_height_min, filter_height_max = cls.filter_height_range
479 valid = filter_height_min <= h <= filter_height_max
480 return valid, f"Op has kernel filter height as: {h}"
481
482 @classmethod
483 @docstring_format_args(filter_product_range)
484 def constraint_filter_product_range(cls, op):
485 "Product of kernel filter width and height must be in the range [{}, {}]"
486 product = op.kernel.elements_wh()
487 filter_product_min, filter_product_max = cls.filter_product_range
488 valid = filter_product_min <= product <= filter_product_max
489 return valid, f"Op has product of kernel filter width and height as: {product}"
490
491 @staticmethod
492 @docstring_format_args(filter_height_range)
493 def constraint_filter_height_range_valid_pad(op):
494 "VALID padding: Kernel filter height must be in the range [{}, {}]"
495 if op.attrs["padding"] == Padding.VALID:
496 return TFLiteSupportedOperators.constraint_filter_height_range(op)
497 return True, "Op has padding=SAME"
498
499 @staticmethod
500 @docstring_format_args(filter_product_range)
501 def constraint_filter_product_range_valid_pad(op):
502 "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
503 if op.attrs["padding"] == Padding.VALID:
504 return TFLiteSupportedOperators.constraint_filter_product_range(op)
505 return True, "Op has padding=SAME"
506
507 @staticmethod
508 def constraint_resize(op):
509 """The width and height of the IFM and OFM must match one of the following criteria:
510 IFM W and H must both be 1
511 IFM must match OFM
512 OFM W and H must be 2x IFM -1, if align_corners is True
513 OFM W and H must be 2x IFM, if align_corners is False"""
514 # Easier to start with False condition as very few cases result in a supported resize
515 valid = False
516 ifm_shape = op.ifm.shape
517 ofm_shape = op.ofm.shape
518 align_corners = op.attrs.get("align_corners", False)
519 if len(ifm_shape) == 4:
520 # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
521 if ((ifm_shape[1] == 1) and (ifm_shape[2] == 1)) or (ifm_shape == ofm_shape):
522 valid = True
523 else:
524 upscaled_shape = np.array(ifm_shape[1:3])
525 out_shape = np.array(ofm_shape[1:3])
526 while (upscaled_shape < out_shape).all():
527 upscaled_shape *= 2
528 if align_corners:
529 upscaled_shape -= 1
530 # Valid if OFM is 2x IFM (-1 for align corners)
531 if np.array_equal(out_shape, upscaled_shape):
532 valid = True
533 break
534 return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"
535
536 @staticmethod
erik.andersson@arm.comba2555e2021-10-28 14:08:52 +0200537 def constraint_bilinear_resize_attrs(op):
538 "half_pixel_centers are not supported"
539 valid = True
540 if op.attrs.get("half_pixel_centers"):
541 valid = False
542 return valid, f"Op has half_pixel_centers set to {not valid}."
543
544 @staticmethod
Jonas Ohlsson45e653d2021-07-26 16:13:12 +0200545 def constraint_pad_shape(op):
546 "The padding tensor must have the shape [3,2] or [4,2]"
547 valid = op.inputs[1].shape in ([3, 2], [4, 2])
548 return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"
549
550 @classmethod
551 @docstring_format_args([list_formatter(supported_pad_dtypes)])
552 def constraint_pad_type(cls, op):
553 "Pad tensor must be of type: {}"
554 pad_tensor = op.inputs[1]
555 valid = pad_tensor.dtype in cls.supported_pad_dtypes
556 return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"
557
558 @staticmethod
559 def constraint_padding_dimensions(op):
560 "The pad tensor can only pad width and height"
561 pad_tensor = op.inputs[1].values
562
563 valid = sum(pad_tensor[-1, :]) == 0
564 if valid and len(pad_tensor) > 3:
565 valid = sum(pad_tensor[0, :]) == 0
566 return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"
567
568 @staticmethod
569 def constraint_stridedslice_stride_values(op):
570 "All Strides values must be 1"
571 strides = op.inputs[3]
572 valid = all(stride == 1 for stride in strides.values)
573 return valid, f"Op has strides values {strides.values}"
574
575 @staticmethod
576 def constraint_inputs_int32(op):
577 "Both Input data types must be int32"
578 ifm_dtype = op.ifm.dtype
579 ifm2_dtype = op.ifm2.dtype
580 valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
581 return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"
582
583 @staticmethod
584 def constraint_output_int32(op):
585 "OFM must be int32"
586 ofm_dtype = op.ofm.dtype
587 valid = ofm_dtype == DataType.int32
588 return valid, f"Op has ofm_dtype={ofm_dtype}"
589
590 @staticmethod
591 def constraint_matching_quantization_parameters(op):
592 "Both Input quantization parameters must match OFM quantization parameters"
593 valid = True
594 extra = []
595 if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
596 valid = False
597 extra.append(op.ifm.name)
598 if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
599 valid = False
600 extra.append(op.ifm2.name)
601 extra = ", ".join(extra)
602 return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"
603
604 @staticmethod
605 def constraint_elemwise_batch_size(op):
606 "Batch size must be 1 for Input tensors with more than 2 dimensions"
607 valid = True
608 extra = []
609 for tens in (op.ifm, op.ifm2):
610 # Unary ops have ifm2 as None
611 if tens is not None:
612 if (len(tens.shape) > 2) and (tens.shape[0] != 1):
613 valid = False
614 extra.append(tens.name)
615 extra = ", ".join(extra)
616 return valid, f"Op has invalid input tensors: {extra}"
617
618 @staticmethod
619 def constraint_broadcast_shapes(op):
620 "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
621 ifm_shape = op.ifm.shape
622 ifm2_shape = op.ifm2.shape if op.ifm2 else None
623 ofm_shape = op.ofm.shape
624 valid = True
625 if ifm_shape is not None and ifm2_shape is not None:
626 # align trailing dimensions
627 size = min(len(ifm_shape), len(ifm2_shape))
628 for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
629 mi = max(i, i2)
630 # Input dimensions should match or one should be of dimension 1
631 # Output dimension should match the largest input dimension, together
632 # with constraint_match_either_shapes ensures broadcast from only one input
633 if not (i == i2 or i == 1 or i2 == 1) or o != mi:
634 valid = False
635 break
636
637 return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"
638
639 @classmethod
640 @docstring_format_args([mean_kernel_product_avgpool])
641 def constraint_mean_height_width_product_avgpool(cls, op):
642 """Product of height and width can be at most {}"""
643 shape = op.inputs[0].shape
644 hi = 0 if len(shape) < 4 else 1
645 h, w = shape[hi : hi + 2]
646 max_prod = cls.mean_kernel_product_avgpool
647 return h * w <= max_prod, f"Product of height and width is {h * w}"
648
649 @classmethod
650 @docstring_format_args([mean_kernel_product])
651 def constraint_mean_height_width_product(cls, op):
652 """Product of height and width can be at most {} when IFM and OFM have different scale or zero point,
653 or keep_dims is True"""
654 ifmq, ofmq = op.ifm.quantization, op.ofm.quantization
655 keep_dims = op.attrs.get("keep_dims")
656 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
657 if not keep_dims and ifmq.scale_f32 == ofmq.scale_f32 and ifmq.zero_point == ofmq.zero_point:
658 return True, ""
659 shape = op.inputs[0].shape
660 hi = 0 if len(shape) < 4 else 1
661 h, w = shape[hi : hi + 2]
662 max_prod = cls.mean_kernel_product
663 return h * w <= max_prod, f"Product of height and width is {h * w}"
664
665 @classmethod
666 @docstring_format_args([mean_kernel_product_int8])
667 def constraint_mean_height_width_product_int8(cls, op):
668 """Product of IFM height and width can be at most {} when the following are true:
669 IFM dimensions are 4,
670 Axis indices are 1 and 2,
671 keep_dims is set to True and
672 IFM datatype is int8"""
673 shape = op.ifm.shape
674 axis = int(op.inputs[1].values) if op.inputs[1].shape == [] else list(op.inputs[1].values)
675 # doesn't apply, size is checked by constraint_mean_height_width_product_avgpool
676 # and constraint_mean_height_width_product
677 if (
678 len(shape) != 4
679 or op.ifm.dtype != DataType.int8
680 or not op.attrs.get("keep_dims")
681 or axis not in ([1, 2], [2, 1])
682 ):
683 return True, ""
684 hi = 0 if len(shape) < 4 else 1
685 h, w = shape[hi : hi + 2]
686 max_prod = cls.mean_kernel_product_int8
687 return h * w <= max_prod, f"Product of height and width is {h * w}"
Tim Hall3584a9c2021-11-18 22:05:17 +0000688
689 @staticmethod
690 def constraint_reshape_shape_constant(op):
691 "Shape must be constant"
692 valid = True
693 extra = []
694
695 reshape_tens = op.inputs[1]
696 if reshape_tens is not None:
697 # constant inputs have either no driving operator or a const one
698 # create a list of non-constant inputs
699 if not (len(reshape_tens.ops) == 0 or reshape_tens.ops[0].type == Op.Const):
700 valid = False
701 extra.append(reshape_tens.name)
702 extra = ", ".join(extra)
703
704 return valid, f"Op has non-const input(s): {extra}"